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Talk Outline

I will discuss how to aggregate the information inherent in several

directed graphs, using the methodology of social choice theory.

• The Model: Graph Aggregation

• Main Concept: Collective Rationality wrt Graph Properties

• Axioms for Aggregators and Basic Results

• General Impossibility Theorem: Proof and Applications

• Graph Aggregation and Modal Logic

Except for the material on modal logic, this has been published here:

U. Endriss and U. Grandi. Collective Rationality in Graph Aggregation. Proc. 21st

European Conference on Artificial Intelligence (ECAI-2014).
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Graph Aggregation

Fix a finite set of vertices V . A (directed) graph G = 〈V,E〉 based on

V is defined by a set of edges E ⊆ V ×V (thus: graph = edge-set).

Everyone in a finite group of agents N = {1, . . . , n} provides a graph,

giving rise to a profile E = (E1, . . . , En).

An aggregator is a function mapping profiles to collective graphs:

F : (2V×V )n → 2V×V

Examples for aggregators:

• majority rule: accept an edge iff > n
2 of the individuals do

• intersection rule: return E1 ∩ · · · ∩ En
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Examples

You may need to use graph aggregation in some of these situations:

• Elections: aggregation of preference relations

• Consensus clustering: aggregating outputs (equivalence classes)

generated by different clustering algorithms

• Aggregation of Dungian abstract argumentation frameworks

(graphs of attack relations between arguments)

• Social network analysis: aggregating influence networks

• Epistemology: aggregating Kripke frames for epistemic logics

– aggregation by intersection = distributed knowledge

– aggregation by union = shared knowledge

– aggregation by transitive closure of union = common knowledge
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Collective Rationality

Examples for typical properties a graph may or may not possess:

Reflexivity ∀x.xEx

Symmetry ∀xy.(xEy → yEx)

Transitivity ∀xyz.(xEy ∧ yEz → xEz)

Seriality ∀x.∃y.xEy

Completeness ∀xy.[x 6= y → (xEy ∨ yEx)]

Connectedness ∀xyz.[xEy ∧ xEz → (yEz ∨ zEy)]

Aggregator F is collectively rational (CR) for graph property P if,

whenever all individual graphs Ei satisfy P, so does the outcome F (E).

I Which aggregegatirs are CR for which graph properties?

Remark: Same question is studied in preference aggregation (CR wrt

transitivity) and judgment aggregation (CR wrt logical consistency).
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Example

Three agents each provide a graph on the same set of four vertices:
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If we aggregate using the majority rule, we obtain this graph:

•
��
•
��
•
��

•

Observations:

• Majority rule not collectively rational for seriality .

• But symmetry is preserved.

• So is reflexivity (easy: individuals violate it).
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Axioms

Want to study collective rationality for classes of aggregators rather

than specific aggregators (such as the majority rule).

We may want to impose certain axioms on F : (2V×V )n → 2V×V, e.g.:

• Anonymous: F (E1, . . . , En) = F (Eσ(1), . . . , Eσ(n))

• Nondictatorial : for no i? ∈ N you always get F (E) = Ei?

• Unanimous: F (E) ⊇ E1 ∩ · · · ∩ En

• Grounded: F (E) ⊆ E1 ∪ · · · ∪ En

• Neutral : NE
e = NE

e′ implies e ∈ F (E)⇔ e′ ∈ F (E)

• Independent: NE
e = NE′

e implies e ∈ F (E)⇔ e ∈ F (E′)

For technical reasons, we’ll restrict some axioms to nonreflexive edges

(x, y) ∈ V ×V with x 6= y (NR-neutral, NR-nondictatorial).

Notation: NE
e = {i ∈ N | e ∈ Ei} = coalition accepting edge e in E
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Basic Results

Proposition 1 Every unanimous aggregator is CR for reflexivity.

Proof: If every individual graph includes edge (x, x), then unanimity

ensures the same for the collective outcome graph. X

Proposition 2 Every grounded aggregator is CR for irreflexivity.

Proof: Similar. X

Proposition 3 Every neutral aggregator is CR for symmetry.

Proof: If the input is not symmetric, we are done. So suppose it is.

Thus, (x, y) and (y, x) must have the same support. Then, by CR,

either both or neither will get accepted. X
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Arrow’s Theorem

Our formulation in graph aggregation:

For |V | > 3, there exists no NR-nondictatorial, unanimous,

grounded, and independent aggregator that is CR for

reflexivity, transitivity and completeness.

This implies the standard formulation, because:

• weak preference orders = reflexive, transitive, complete graphs

• (weak) Pareto + CR ⇒ unanimous + grounded

• nondictatorial = NR-nondictatorial for reflexive graphs

• CR for reflexivity is vacuous (implied by unanimity)

We wanted to know:

I For what other classes of graphs does this go through?
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Our General Impossibility Theorem

Our main result:

For |V | > 3, there exists no NR-nondictatorial, unanimous,

grounded, and independent aggregator that is CR for any

graph property that is contagious, implicative and disjunctive.

where:

• Implicative ≈ [
∧

S+ ∧ ¬
∨
S−]→ [e1 ∧ e2 → e3]

• Disjunctive ≈ [
∧
S+ ∧ ¬

∨
S−]→ [e1 ∨ e2]

• Contagious ≈ for every accepted edge, there are some conditions

under which also one of its “neighbouring” edges is accepted

Examples:

• Transitivity is contagious and implicative

• Completeness is disjunctive

• Connectedness [xEy ∧ xEz → (yEz ∨ zEy)] has all 3 properties

}
⇒ Arrow’s Theorem
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Winning Coalitions

If an aggregator F is independent, then for every edge e there exists a

set of winning coalitions We ⊆ 2N such that e ∈ F (E) ⇔ NE
e ∈ We.

Furthermore:

• If F is unanimous, then N ∈ We for all edges e.

• If F is grounded , then ∅ 6∈ We for all edges e.

• If F is neutral , then there is one W with W =We for all edges e.
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Proof Plan

Given: Arrovian aggregator F (unanimous, grounded , independent)

Want: Impossibility for collective rationality for graph property P

This will work if P is contagious, implicative, and disjunctive.

Lemma: CR for contagious P ⇒ F is NR-neutral .

⇒ F characterised by some W: (x, y) ∈ F (E) ⇔ NE
(x,y) ∈ W [x 6= y]

Lemma: CR for implicative & disjunctive P ⇒ W is an ultrafilter , i.e.:

(i) ∅ 6∈ W [this is immediate from groundedness]

(ii) C1, C2 ∈ W implies C1 ∩ C2 ∈ W (closure under intersection)

(iii) C or N \C is in W for all C ⊆ N (maximality)

N is finite ⇒ W is principal : ∃ i? ∈ N s.t. W = {C ∈ 2N | i? ∈ C}
But this just means that i? is a dictator: F is NR-dictatorial . X
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Graph Aggregation Séminaire D.R.I. @ ENS, February 2016

Neutrality Lemma

Consider any Arrovian aggregator (unanimous, grounded, independent).

Call a property P xy/zw-contagious if there exist sets S+, S− ⊆ V ×V s.t.

every graph E ∈ P satisfies [
∧

S+ ∧ ¬
∨

S−]→ [xEy → zEw].

CR for xy/zw-contagious P implies: coalition C ∈ W(x,y) ⇒ C ∈ W(z,w)

Call P contagious if it satisfies (at least) one of the three conditions below:

(i) P is xy/yz-contagious for all x, y, z ∈ V.

(ii) P is xy/zx-contagious for all x, y, z ∈ V.

(iii) P is xy/xz-contagious and xy/zy-contagious for all x, y, z ∈ V.

Example: Transitivity ([yEz]→ [xEy → xEz] and [zEx]→ [xEy → zEy])

Contagiousness allows us to reach every NR edge from every other NR edge.

Thus, CR for contagious P implies We =We′ for all NR edges e, e′.

So: Collective rationality for a contagious property implies NR-neutrality .
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Ultrafilter Lemma
Let F be unanimous, grounded , independent, NR-neutral , and CR for P .

So there exists a family of winning coalitions W s.t. e ∈ F (E) ⇔ NE
e ∈ W.

Show that W is an ultrafilter (under certain assumptions on P ):

(ii) Closure under intersections: C1, C2 ∈ W ⇒ C1 ∩ C2 ∈ W
Call P implicative if there exist S+, S− ⊆ V ×V and e1, e2, e3 ∈ V ×V
s.t. all graphs E ∈ P satisfy [

∧
S+ ∧ ¬

∨
S−]→ [e1 ∧ e2 → e3].

Example: transitivity

CR for implicative P ⇒ closure under intersections

Proof: consider profile where C1 accept e1, C2 acc. e2, C1 ∩C2 acc. e3

(iii) Maximality : C or N \C in W for all C ⊆ N
Call P disjunctive if there exist S+, S− ⊆ V ×V and e1, e2 ∈ V ×V
s.t. all graphs E ∈ P satisfy [

∧
S+ ∧ ¬

∨
S−]→ [e1 ∨ e2].

Example: completeness

CR for disjunctive P ⇒ maximality

Proof: consider profile where C accept e1, N \ C accept e2
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Instantiating the General Impossibility Theorem

I have sketched a proof for the following theorem:

For |V | > 3, there exists no NR-nondictatorial, unanimous,

grounded, and independent aggregator that is CR for any

graph property that is contagious, implicative and disjunctive.

Many combinations of properties have our meta-properties:
c/i/d

Transitivity ∀xyz.(xEy ∧ yEz → xEz) + +−
Right Euclidean ∀xyz.(xEy ∧ xEz → yEz) + +−
Left Euclidean ∀xyz.(xEy ∧ zEy → zEx) + +−
Seriality ∀x.∃y.xEy −−+

Completeness ∀xy.[x 6= y → (xEy ∨ yEx)] −−+

Connectedness ∀xyz.[xEy ∧ xEz → (yEz ∨ zEy)] + + +

Negative Transitivity ∀xyz.[xEy → (xEz ∨ zEy)] +−+
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Application: Preference Aggregation

As an immediate corollary to our theorem, we get Arrow’s Theorem

(both for weak orders and for strict linear orders).

Arrow’s Theorem does not hold for for partial-order preferences, as the

intersection rule has all the required properties. But:

Theorem 4 (Pini et al., 2009) Every preference aggregation rule for

preorders with maximal elements for three or more alternatives that is

Arrovian must be a dictatorship.

Proof: Preorders are reflexive and transitive. Having a maximal

element means that at least one alternative is as good as any other.

Transitivity is contagious and implicative. Property of existence of a

maximal element is disjunctive. Reflexivity of the input together with

unanimity means that any NR-dictator is actually a full dictator. X

M.S. Pini, F. Rossi, K.B. Venable, and T. Walsh. Aggregating Partially Ordered

Preferences. Journal of Logic and Computation, 19(3):475–502, 2009.
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Application: Consensus Clustering

Clustering algorithms try to partition data points into clusters.

Output is an equivalence relation (equivalent = in same cluster).

Don’t want a trivial clustering: every point is its own cluster.

Consensus clustering is about finding a compromise between the

solutions suggetsed by several algorithms: use aggregation.

Theorem 5 Every aggregator for nontrivial equivalence relations on

three or more points that is Arrovian must be a dictatorship.

Proof: Transitivity is both contagious and implicative, while the

nontriviality condition is disjunctive (disjunction over all edges).

Reflexivity of the input together with unanimity means that any

NR-dictator is actually a full dictator. X
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Graph Aggregation and Modal Logic

Idea: think of graphs 〈V,E〉 as Kripke frames and describe graph

properties using modal formulas ϕ.

Suggests natural hierarchy of collective rationality requirements:

• F is frame-CR wrt formula ϕ if 〈V,Ei〉 |= ϕ for all i ∈ N implies

〈V, F (E)〉 |= ϕ. [same as notion of CR used so far]

• F is model-CR wrt formula ϕ if, for every valuation Val : Φ→ 2V ,

〈〈V,Ei〉,Val 〉 |= ϕ for all i ∈ N implies 〈〈V, F (E)〉,Val 〉 |= ϕ.

• F is world-CR wrt formula ϕ if, for every Val : Φ→ 2V and world

x ∈ V , 〈〈V,Ei〉,Val 〉, x |=ϕ for all i implies 〈〈V, F (E)〉,Val 〉, x |=ϕ.

Proposition 6 This holds for for all aggregators F and all formulas ϕ:

F is world-CR wrt ϕ ⇒ F is model-CR wrt ϕ ⇒ F is frame-CR wrt ϕ.

Example: majority rule is frame-CR but not world-CR wrt p→ 3p.
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World Collective Rationality

Recall that world-CR is our most demanding CR requirement.

Suppose all formulas are in NNF.

Proposition 7 Any F for which, for every profile E, F (E) ⊆ Ei? for

some agent i? is world-CR for all 2-formulas (not including any 3’s).

Proposition 8 Any F for which, for every profile E, F (E) ⊇ Ei? for

some agent i? is world-CR for all 3-formulas (not including any 2’s).

Proposition 9 Any representative-voter rule F is world-CR for all

formulas (means: there exists r : (V ×V )n → N s.t. F (E) = Er(E)).

The converse would hold as well if formulas were fully expressive, but

modal formulas cannot distinguish bisimilar models.
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Last Slide

I have introduced a simple framework for graph aggregation and then

considered the concept of collective rationality .

• impossibility result: Arrovian aggregation impossible if you require

CR wrt a contagious, implicative, disjunctive graph property

• modal logic perspective suggests different levels of CR

• applications in preference aggregation, abstract argumentation,

clustering, social network analysis, epistemology, . . .

U. Endriss and U. Grandi. Collective Rationality in Graph Aggregation. Proc. 21st

European Conference on Artificial Intelligence (ECAI-2014).
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