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Introduction

• Multiagent systems may be thought of as “societies of agents”.

• Agents negotiate deals to exchange resources to benefit either

themselves or society as a whole.

• Agents may use very simple rationality criteria to decide what

deals to accept, but interaction patterns may be complex

(multilateral deals).
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Talk Overview

• Definition of the basic negotiation framework

• Fundamental results linking individual interests and social welfare

• Efficient negotiation in restricted domains

• Complexity of negotiating socially optimal allocations

• Alternative social welfare measures

• Conclusions
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Definition of the Basic Negotiation Framework
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Resource Allocation by Negotiation

• Finite set of agents A and finite set of indivisible resources R.

• An allocation A is a partitioning of R amongst the agents in A.

Example: A(i) = {r5, r7} — agent i owns resources r5 and r7

• Every agent i ∈ A has got a utility function ui : 2R → R.

Example: ui(A) = ui(A(i)) = 577.8 — agent i is pretty happy

• Agents may engage in negotiation to exchange resources in order

to benefit either themselves or society as a whole.

• A deal δ = (A,A′) is a pair of allocations (before/after).

• A deal may come with a number of side payments to compensate

some of the agents for a loss in utility. A payment function is a

function p : A → R with
∑
i∈A

p(i) = 0.

Example: p(i) = 5 and p(j) = −5 means that agent i pays �5,

while agent j receives �5.
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Individual Rationality

A rational agent (who does not plan ahead) will only accept deals that

improve its individual welfare:

• A deal δ = (A,A′) is called individually rational iff there exists a

payment function p such that ui(A′)− ui(A) > p(i) for all i ∈ A,

except possibly p(i) = 0 for agents i with A(i) = A′(i).

That is, an agent will only accept a deal iff it results in a gain in utility

(or money) that strictly outweighs a possible loss in money (or utility).
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Utilitarian Social Welfare

The social welfare associated with an allocation of resources A is

defined as follows:

sw(A) =
∑

i∈Agents

ui(A)

This is the so-called utilitarian definition of social welfare, which

measures the “sum of all pleasures” (Jeremy Bentham, ∼1820).

I Observe that maximising this function amounts to maximising the

average utility enjoyed by agents in the system.
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Example

Let A = {ann, bob} and R = {chair , table} and suppose our agents

use the following utility functions:

uann({ }) = 0 ubob({ }) = 0

uann({chair}) = 2 ubob({chair}) = 3

uann({table}) = 3 ubob({table}) = 3

uann({chair , table}) = 7 ubob({chair , table}) = 8

Furthermore, suppose the initial allocation of resources is A0 with

A0(ann) = {chair , table} and A0(bob) = { }.

I Social welfare for allocation A0 is 7, but it could be 8. By moving

only a single resource from agent ann to agent bob, the former would

lose more than the latter would gain (not individually rational).

The only possible deal would be to move the whole set {chair , table}.
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Fundamental Results
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Linking the Local and the Global Perspectives

It turns out that individually rational deals are exactly those deals that

increase social welfare:

Lemma 1 (Rationality and social welfare) A deal δ = (A,A′) with

side payments is individually rational iff sw(A) < sw(A′).

Proof. “⇒”: Rationality means that overall utility gains outweigh

overall payments (which are = 0). “⇐”: Using side payments, the

social surplus can be divided amongst all deal participants. 2

I We can now prove a first result on negotiation processes:

Lemma 2 (Termination) There can be no infinite sequence of

individually rational deals, i.e. negotiation must always terminate.

Proof. Follows from the first lemma and the observation that the

space of distinct allocations is finite. 2
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Convergence

It is now easy to prove the following convergence result (originally

stated by Sandholm in the context of distributed task allocation):

Theorem 3 (Sandholm, 1998) Any sequence of individually rational

deals will eventually result in an allocation with maximal social welfare.

I Agents can act locally and need not be aware of the global picture

(convergence towards a global optimum is guaranteed by the theorem).

T. Sandholm. Contract types for satisficing task allocation: I Theoretical results.

AAAI Spring Symposium 1998.

U. Endriss, N. Maudet, F. Sadri and F. Toni. On optimal outcomes of negotiations

over resources. AAMAS-2003.
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Multilateral Negotiation

Optimal outcomes can only be guaranteed if the negotiation protocol

allows for deals involving any number of agents and resources:

Theorem 4 (Necessity of complex deals) Any deal δ = (A,A′)
may be necessary, i.e. there are utility functions and an initial

allocation such that any sequence of individually rational deals leading

to an allocation with maximal social welfare would have to include δ

(unless δ is “independently decomposable”).

The proof involves the systematic definition of utility functions such

that A′ is optimal and A is the second best allocation. Independently

decomposable deals (to which the result does not apply) are deals that

can be split into two subdeals concerning distinct sets of agents.
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Efficient Negotiation in Restricted Domains

Ulle Endriss 13



Negotiating Socially Optimal Allocations of Resources ILLC Seminar, 7 October 2005

Negotiation in Restricted Domains

Most work on negotiation in multiagent systems is concerned with

bilateral negotiation or auctions. ; Multilateral negotiation is difficult!

Maybe we can guarantee convergence to a socially optimal allocation

for structurally simpler types of deals if we restrict the range of utility

functions that agents can use? First, two negative results:

• Theorem 4 continues to hold even when all agents are required to

use monotonic utility functions. [R1 ⊆ R2 ⇒ ui(R1) ≤ ui(R2)]

• Theorem 4 continues to hold even when all agents are required to

use dichotomous utility functions. [ui(R) = 0 ∨ ui(R) = 1]
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Modular Domains

A utility function ui is called modular iff it satisfies the following

condition for all bundles R1, R2 ⊆ R:

ui(R1 ∪R2) = ui(R1) + ui(R2)− ui(R1 ∩R2)

That is, in a modular domain there are no synergies between items;

you can get the utility of a bundle by adding up the utilities of the

items in that bundle.

I Negotiation in modular domains is feasible:

Theorem 5 (Modular domains) If all utility functions are modular,

then individually rational 1-deals (involving just one resource) suffice

to guarantee outcomes with maximal social welfare.

U. Endriss, N. Maudet, F. Sadri and F. Toni. On optimal outcomes of negotiations

over resources. AAMAS-2003.
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Sufficiency, Necessity, Maximality

• Theorem 5 says that the class of modular utility functions is

sufficient for successful 1-deal negotiation.

• Is it also necessary?

Answer: No. It’s easy to construct examples.

• Is there any class of functions that is sufficient and necessary?

Answer: No. Seems surprising at first, but for a proof it suffices to

find two sufficient classes the union of which is not sufficient.

• As there can be no unique class of utility functions characterising

all situations where 1-deal negotiation works, we have looked for

maximal classes . . .
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Maximality of Modular Utilities

We say that a class of utility functions F permits 1-deal negotiation iff

any sequence of individually rational 1-deals will converge to a socially

optimal allocation whenever all utility functions belong to F .

Another surprising result:

Theorem 6 (Maximality) Let M be the class of modular utility

functions. Then for any class of utility functions F such that M⊂ F ,

F does not permit 1-deal negotiation.

I Are there other (interesting) classes of functions that are maximal?

Y. Chevaleyre, U. Endriss and N. Maudet. On maximal classes of utility functions

for efficient one-to-one negotiation. IJCAI-2005.
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Complexity Issues
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Complexity of Maximising Social Welfare

Theorem 7 (Complexity) Let K ∈ Z. For a given scenario, deciding

whether there exists an allocation A with sw(A) > K is NP-complete.

This is essentially a well-known result that is closely related to the

winner determination problem in combinatorial auctions, but there are

some interesting variations depending on how we represent utilities

(bundle enumeration, k-additive form, straight-line programs, . . . ).

M. H. Rothkopf, A. Pekec̆ and R. M. Harstad. Computationally manageable combi-

national auctions. Management Science, 44(8):1131–1147, 1998.

P. E. Dunne, M. Wooldridge and M. Laurence. The complexity of contract negoti-

ation. Artificial Intelligence, 164(1–2):23–46, 2005.

Y. Chevaleyre, U. Endriss, S. Estivie and N. Maudet. Multiagent resource allocation

with k-additive utility functions. DIMACS-LAMSADE Workshop 2004.

Ulle Endriss 19



Negotiating Socially Optimal Allocations of Resources ILLC Seminar, 7 October 2005

Proof of NP-completeness

NP-membership: We can check sw(A) > K in polynomial time. X

NP-hardness: The following problem is known to be NP-complete:

Weighted Set Packing

Instance: Collection C of finite sets with positive weights.

Solution: Collection of disjoint sets C′ ⊆ C.

Question: Does the sum of weights of the sets in C′ exceed K?

This can be reduced to our problem as follows:

• For every set R in C with weight x, introduce an agent i and

define ui(R) = x and ui(R′) = 0 for all bundles R′ 6= R.

• “Free disposal”: introduce an additional agent i∗ with ui∗≡ 0.

Now any allocation A with sw(A) > K corresponds to a set packing

C′ with a sum of weights exceeding K. Hence, our problem is at least

as hard as Weighted Set Packing. X
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Communication Complexity

• The NP-completeness result concerns the computational

complexity of an abstract problem: finding a socially optimal

allocation somehow (not necessarily by negotiation).

• What we are really interested in is the complexity of negotiation

processes in our multilateral trading framework.

• We therefore consider also the communication complexity of

negotiating socially optimal allocations of resources, i.e. we focus

on the length of negotiation processes and the amount of

information exchanged, rather than just on computational aspects.

U. Endriss and N. Maudet. On the communication complexity of multilateral trading.

Journal of Autonomous Agents and Multiagent Systems, 11(1):91–107, 2005.
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Aspects of Complexity

(1) How many deals are required to reach an optimal allocation?

– communication complexity as number of individual deals

– technical results to follow

(2) How many dialogue moves are required to agree on one such deal?

– affects communication complexity as number of dialogue moves

(3) How expressive a communication language do we require?

– Minimum requirements: performatives propose, accept, reject

+ content language to specify multilateral deals

– affects communication complexity as number of bits exchanged

(4) How complex is the reasoning task faced by an agent when

deciding on its next dialogue move?

– computational complexity (local rather than global view)
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Number of Deals

We have two results on upper bounds pertaining to the first variant of

our negotiation framework (with side payments, general utility

functions, and aiming at maximising utilitarian social welfare):

Theorem 8 (Shortest path) A single rational deal is sufficient to

reach an allocation with maximal social welfare.

Proof. Use Lemma 1 [δ = (A,A′) rational iff sw(A) < sw(A′)]. 2

Theorem 9 (Longest path) A sequence of rational deals can consist

of up to |A||R| − 1 deals, but not more.

Proof. No allocation can be visited twice (same lemma) and there are

|A||R| distinct allocations ⇒ upper bound follows X

To show that the upper bound is tight, we need to show that it is

possible that all allocations have distinct social welfare . . . 2

Ulle Endriss 23



Negotiating Socially Optimal Allocations of Resources ILLC Seminar, 7 October 2005

Path Length in Modular Domains

If all agents are using modular utility functions and only negotiate

1-deals, then we obtain the following bounds:

• Shortest path: ≤ |R|

• Longest path: ≤ |R| · (|A| − 1)
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Alternative Social Welfare Measures
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Negotiation without Side Payments

• Problem: Agents may require unlimited amounts of money to get

through a negotiation process.

• Without side payments, however, rational negotiation cannot

guarantee outcomes with maximal social welfare.

Example: Would you give me your bike just because I value it more

highly than you do? . . . note that this would be socially beneficial!

• It is possible to show that cooperatively rational deals (only one

agent requires a strictly positive payoff) without side payments

are sufficient to negotiate Pareto optimal allocations (and

multilateral deals are again necessary).

• Similar types of results as before on 1-deal negotiation and on

communication complexity . . .
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Egalitarian Agent Societies

• The utilitarian sw is not the only collective utility function . . .

• The egalitarian collective utility function swe, for instance,

measures social welfare as follows:

swe(A) = min{ui(A) | i ∈ Agents}

Maximising this function amounts to improving the situation of

the weakest members of society.

• We have defined a local rationality criterion (“equitable deals”) for

agents operating in egalitarian systems and proved convergence

and necessity theorems similar to those we have seen earlier.

U. Endriss, N. Maudet, F. Sadri and F. Toni. Resource allocation in egalitarian agent

societies. MFI-2003.
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Utilitarianism versus Egalitarianism

• In the MAS literature the utilitarian viewpoint (that is, social

welfare = sum of individual utilities) is usually taken for granted.

• In philosophy/sociology/economics not.

• John Rawls’ “veil of ignorance” (A Theory of Justice, 1971):

Without knowing what your position in society (class, race, sex, . . . )

will be, what kind of society would you choose to live in?

• Reformulating the veil of ignorance for multiagent systems:

If you were to send a software agent into an artificial society to negotiate

on your behalf, what would you consider acceptable principles for that

society to operate by?

• Conclusion: worthwhile to investigate egalitarian (and other) social

principles also in the context of multiagent systems.
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Notions of Social Welfare

• Utilitarian: sum of utilities swu(A) =
∑

i∈A ui(A)

• Nash product: product of utilities swN (A) =
∏

i∈A ui(A)

• Egalitarian: utility of the weakest swe(A) = min{ui(A) | i ∈ A}

• Elitist: utility of the strongest swel(A) = max{ui(A) | i ∈ A}

• Pareto optimality : no other allocation is better for some agents

without being worse for any of the others

• Lorenz optimality : the sum of utilities of the k weakest agents

cannot be maintained for all and increased for some k ≤ |A|

• Envy-freeness: no agent would rather have the bundle allocated to

one of the other agents ui(A(i)) ≥ ui(A(j))

– envy-free allocations are not always possible

– could search for envy-reducing deals (for instance, with respect

to the number of envious agents or the average degree of envy)
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Welfare Engineering

• Choice (and possibly design) of social welfare orderings that are

appropriate for specific agent-based applications.

– Example: The elitist collective utility function swel seems

unethical for human society, but may be appropriate for a

distributed application where each agent gets the same task.

– Slogan: “welfare economics for artificial agent societies”

• Design of suitable rationality criteria for agents participating in

negotiation in view of different notions of social welfare.

– Example: To achieve Lorenz optimal allocations in 0-1 domains

without money , ask agents to negotiate cooperatively rational

or inequality-reducing deals over one resource at a time.

– Slogan: “inverse welfare economics” (; mechanism design)

U. Endriss and N. Maudet. Welfare engineering in multiagent systems. ESAW-2003.
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Criteria for Social Welfare Choice

We have tried to identify criteria that determine what social welfare

ordering is appropriate for which application (work in progress):

• What does the income of the system provider depend on?

– Utility-dependent (“tax on gain”) ; utilitarian

– Membership-dependent (“joining fee”) ; “fair” approach

– Transaction-dependent (“pay as you go”) ; not clear

(but note the connections to communication complexity)

• Can agents join or leave the society during negotiation?

Yes: review definitions (e.g. utilitarian welfare as average utility)

• Can agents participate in more than one negotiation?

Yes: strong point for fair approaches (egalitarian, envy-reducing)

Y. Chevaleyre, U. Endriss, S. Estivie and N. Maudet. Welfare engineering in practice:

On the variety of multiagent resource allocation problems. ESAW-2004.
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Conclusions

• Negotiation is an exciting and fruitful area of research:

– Knowledge transfer from economics to computer science and AI

– Application of computational tools to problems in economics

• Many open problems and scope for new directions of research!

• For more information on the field in general, have a look at the

MARA (Multiagent Resource Allocation) website:

http://www.illc.uva.nl/∼ulle/MARA/

Y. Chevaleyre, P. E. Dunne, U. Endriss, J. Lang, M. Lemâıtre, N. Maudet, J. Padget,

S. Phelps, J. A. Rodŕıguez-Aguilar and P. Sousa. Issues in multiagent resource

allocation. Informatica (to appear).
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