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Talk Outline

• Background: the Gibbard-Satterthwaite Theorem . . . and why
there is hope that it may not apply in all cases

• Background: Approval Voting (with multiple sincere ballots)

• Tie-Breaking and Preferences over Sets of Candidates

• Results: Manipulation in Approval Voting

• Automatic Derivation of Results using a Computer

• Conclusion
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The Gibbard-Satterthwaite Theorem

Theorem 1 (Gibbard-Satterthwaite) Every voting rule for
three or more candidates must be either dictatorial or manipulable.

Let C be a finite set of candidates and let P the set of all linear
orders over C. A voting rule for n voters is a function f : Pn → C,
selecting a single winner given the (reported) voter preferences.

A voting rule is dictatorial if the winner is always the top
candidate of a particular voter (the dictator).

A voting rule is manipulable if there are situations where a (single)
voter can force a preferred outcome by misreporting his preferences.

A. Gibbard. Manipulation of Voting Schemes: A General Result. Economet-

rica, 41(4):587–601, 1973.

M.A. Satterthwaite. Strategy-proofness and Arrow’s Conditions. Journal of

Economic Theory, 10:187–217, 1975.
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The Gibbard-Satterthwaite Theorem

Theorem 1 (Gibbard-Satterthwaite) Every voting rule for
three or more candidates must be either dictatorial or manipulable.

Despite its generality, the Gibbard-Satterthwaite Theorem may not
apply in all cases (at least not immediately):

• The theorem presupposes that a ballot is a full preference
ordering over all candidates. Plurality voting, for instance, does
not satisfy this condition (although it’s manipulable anyway).

• The theorem also presupposes that there is a unique way of
casting a sincere ballot for any given preference ordering.

We will concentrate on the second “loophole”. We can imagine
several situations in which there may be more than one way of
casting a sincere vote . . .
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Approval Voting

In approval voting, a ballot is a subset of the set of candidates.
These are the candidates the voter approves of. The candidate
receiving the most approvals wins (we’ll discuss tie-breaking later).

Approval voting has been used by several professional societies,
such as the American Mathematical Society (AMS).

We assume each voter has a preference ordering � over candidates
(which is antisymmetric, transitive and total).

A given voter’s ballot is called sincere if all the approved
candidates are ranked above all the disapproved candidates
according to that voter’s �.

Example: If A � B � C, then {A}, {A,B} and {A,B,C} are all
sincere ballots. The latter has the same effect as abstaining.
S.J. Brams and P.C. Fishburn. Approval Voting. American Political Science

Review, 72(3):831–847, 1978.
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Possible Tie-Breaking Rules

We call the candidates with the most approvals the pre-winners.

If there are two or more pre-winners, we have to use a suitable
tie-breaking rule to choose a winner. Examples:

• The election chair may have the power to break ties.

• A designated voter may have the power to break ties.

• We may pick a winner from the set of pre-winners using a
uniform probability distribution.

• We may pick a winner from the set of pre-winners using any
other probability distribution.

We will try to avoid making too many assumptions as to which
tie-breaking rule exactly is going to be used.
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Axioms for Preferences over Sets of Candidates

Tie-breaking is outside the control of voters (in general). So when
considering to manipulate, they have to do so in view of their
preferences over sets of pre-winners.

Given a voter’s preferences � over individual candidates, we assume
that his preferences � over sets of pre-winners meet these axioms:

• � is reflexive and transitive.

• (DOM) A � B if #A = #B and there exists a surjective mapping

f : A → B such that a � f(a) for all a ∈ A.

• (ADD) A � B if A ⊂ B and a � b for all a ∈ A and all b ∈ B \A.

• (REM) A � B if B ⊂ A and a � b for all a ∈ A \B and all b ∈ B.

Note: It isn’t impossible to conceive of tie-breaking rules that don’t
meet these axioms (e.g. when another agent chooses the winner).
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An Example for Successful Manipulation

Suppose all but one voter have voted. This final voter wants to
manipulate. His preferences are: 4 � 3 � 2 � 1.

Suppose 3 and 1 each got 10 votes so far (pivotal candidates);
4 and 2 each got 9 (subpivotal candidates). The final voter can

• force outcome 431 by voting [4];

• force outcome 3 by voting [43], [432], [3] or [32];

• force outcome 31 by voting [4321], [431], [321] or [31];

• force outcome 4321 by voting [42];

• force outcome 1 by voting [421], [41], [21] or [1]; or

• force outcome 321 by voting [2].

Outcomes 431, 3 and 4321 are undominated according to our
axioms. If (and only if) the final voter prefers 4321 amongst these,
he has an incentive to submit the insincere ballot [42].
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The Case of Optimistic Voters

We call a voter optimistic if his preferences over sets of pre-winners
is induced only by his top candidate in each set:

A � B iff top(A) � top(B) [top(C) ∈ {c∗ ∈ C | ∀c ∈ C : c � c∗}]

Examples: “the election chair will break ties in my favour”;
uniform tie-breaking + “extreme” utilities underlying �.

Theorem 2 (Optimistic voters) In approval voting, suppose
that all but one voter have cast their ballot. Then, if the final voter
is optimistic, he has no incentive to cast an insincere ballot.
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Proof of Theorem 2

After everyone else has voted, distinguish pivotal , subpivotal and
insignificant candidates. The final voter has two options:

(1) Make a subset of the pivotal candidates the pre-winners.

(2) Make a subset of the subpivotal candidates together with the
set of all pivotal candidates the pre-winners.

Case (1): The best option is to just approve of the most preferred
pivotal candidate. Making that ballot sincere won’t do any harm. X

Case (2a): If the most preferred pre-winner is pivotal, then our
voter should have actually chosen scenario (1). X

Case (2b): Now suppose the top pre-winner is subpivotal, i.e. our
voter approved of a set of subpivotal candidates. Only voting for
the top subpivotal pre-winner (+ insignificant candidates above
her, to make the ballot sincere) will remove some non-top
pre-winners. Under optimism, this does not affect the ranking. X
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The Case of Three Candidates

Recall that the Gibbard-Satterthwaite hits once we move from two
to three candidates. Our earlier example showed that approval
voting is certainly manipulable in the case of four candidates . . .

Theorem 3 (Three candidates) In approval voting with three
candidates, suppose that all but one voter have cast their ballot.
Then the final voter has no incentive to cast an insincere ballot.

This is a special case of a result by Brams and Fishburn (1978).

S.J. Brams and P.C. Fishburn. Approval Voting. American Political Science

Review, 72(3):831–847, 1978.
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Proof of Theorem 3
Check all possible cases. For each candidate, distinguish whether she is

pivotal (P), subpivotal (S) or insignificant (I). At least one has to be

pivotal, so there are 33−23 = 19 possible situations.

?- table(3).

-----------------------------------------------------

| | [100] [110] [111] | [001] [010] [011] [101] |

-----------------------------------------------------

| [... 9 obvious cases of the form P__ omitted] |

| SPP | 321 2 21 | 1 2 21 1 |

| SPS | 32 2 2 | 21 2 2 321 |

| SPI | 32 2 2 | 2 2 2 32 |

| SSP | 31 321 1 | 1 21 1 1 |

| SIP | 31 31 1 | 1 1 1 1 |

| IPP | 21 2 21 | 1 2 21 1 |

| IPS | 2 2 2 | 21 2 2 21 |

| IPI | 2 2 2 | 2 2 2 2 |

| ISP | 1 21 1 | 1 21 1 1 |

| IIP | 1 1 1 | 1 1 1 1 |

-----------------------------------------------------

X
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The Case of Four Candidates

We know that manipulation is possible with four candidates (see
earlier example). But how many problematic situations are there?

Answer: Just one!

Theorem 4 (Four candidates) In approval voting with four
candidates, suppose that all but one voter have cast their ballot.
Then the final voter has no incentive to cast an insincere ballot,
unless he strictly prefers 4321 over both 431 and 3.

Now we would have to check a table of size 65× 15:
there are 34−24 = 65 situation and 24−1 = 15 ballots.

Manual checking (though not really generation) would still be
possible. But there is a better way . . .
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Automatic Derivation of Theorem 4

We can also automatise the checking of the dominance relations:

?- theorem(4).

Theorem: In approval voting with 4 candidates,

suppose that all but one voter have cast their ballot.

Then the final voter has no incentive to cast an

insincere ballot, unless his preferences over sets

of candidates satisfy one of the following 1 conditions:

-- 4321 strictly dominates all of 431, 3.

For comparision, here’s the output for three candidates:

?- theorem(3).

Theorem: In approval voting with 3 candidates,

suppose that all but one voter have cast their ballot.

Then the final voter has no incentive to cast an

insincere ballot, unless his preferences over sets

of candidates satisfy one of the following 0 conditions:
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The Case of Five Candidates

?- theorem(5).

Theorem: In approval voting with 5 candidates,

suppose that all but one voter have cast their ballot.

Then the final voter has no incentive to cast an

insincere ballot, unless his preferences over sets

of candidates satisfy one of the following 10 conditions:

-- 54321 strictly dominates all of 5431, 4.

-- 54321 strictly dominates all of 5421, 4.

-- 54321 strictly dominates all of 542, 4.

-- 5432 strictly dominates all of 542, 4.

-- 54321 strictly dominates all of 541, 4.

-- 5431 strictly dominates all of 541, 4.

-- 5421 strictly dominates all of 541, 4.

-- 54321 strictly dominates all of 531, 5431, 3.

-- 5321 strictly dominates all of 531, 3.

-- 4321 strictly dominates all of 431, 3.
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Implementation

The results have been generated using a program witten in Prolog.
Much of it is routine, but writing the module that checks whether
one set of pre-winners dominates another has been quite interesting.

This required writing a theorem prover for our axiom system for �.

Here are again the axioms:

• � is reflexive and transitive.

• (DOM) A � B if #A = #B and there exists a surjective mapping

f : A → B such that a � f(a) for all a ∈ A.

• (ADD) A � B if A ⊂ B and a � b for all a ∈ A and all b ∈ B \A.

• (REM) A � B if B ⊂ A and a � b for all a ∈ A \B and all b ∈ B.
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Implementing the Theorem Prover

Problem: Check whether Bad � Good follows from the axioms.

Idea: Treat this as a (breadth-first) search problem:

• Bad is the initial state; Good is the goal state.

• More precisely: any set dominated by Good using only (DOM)
is a goal state. Note that (DOM) implies reflexivity .

• Axioms (ADD) and (REM) are used to move between states
(from worse to better states).

Observe that transitivity is used implicitly (sequence of moves).

Note that, strictly speaking, our approach requires proof that any
theorem can be derived using only a single application of (DOM) at
the very end. An alternative would have been to implement
(DOM) also as a move and to use just reflexivity for the goal
condition (more complex).

Ulle Endriss 17



Multiple Sincere Ballots 1 March 2007

Implementing the Theorem Prover (cont.)

Representation of states (sets of pre-winners): [5,3,2], [4] etc.

Move from a bad to a good state (knowing the number of candidates C):

move(C, Bad, Good) :- add(C, Bad, Good) ; rem(Bad, Good).

add(C, [H|T], [X,H|T]) :- Min is H + 1, between(Min, C, X).

rem(Bad, Good) :- append(Good, [_], Bad), \+ empty(Good).

The goal is reached when (DOM) becomes applicable:

goal(CurrState, GoalState) :- dom(CurrState, GoalState).

dom([H1|Bad], [H2|Good]) :- H1 =< H2, dom(Bad, Good).

dom([], []).

Initiate the proof calling breadth-first search (carrying along C):

dominated(C, Bad, Good) :- solve_breadthfirst(C, Good, Bad, _).

The implementation of solve_breadthfirst/4 is standard. The second

argument specifies the goal; the third the initial state; the fourth would

return the solution path (proof), about which we don’t care here.
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Implementation of Breadth-first Search

solve_breadthfirst(C, Goal, Node, Path) :-

breadthfirst(C, Goal, [[Node]], RevPath),

reverse(RevPath, Path).

breadthfirst(_, Goal, [[Node|Path]|_], [Node|Path]) :-

goal(Node, Goal).

breadthfirst(C, Goal, [Path|Paths], SolutionPath) :-

expand_breadthfirst(C, Path, ExpPaths),

append(Paths, ExpPaths, NewPaths),

breadthfirst(C, Goal, NewPaths, SolutionPath).

expand_breadthfirst(C, [Node|Path], ExpPaths) :-

findall([NewNode,Node|Path],

move_cyclefree(C, Path,Node,NewNode), ExpPaths).

move_cyclefree(C, Visited, Node, NextNode) :-

move(C, Node, NextNode),

\+ member(NextNode, Visited).
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Examples

We can use the predicate dominated/3 to check whether one given
set of pre-winners is definitely dominated by another set of
pre-winners according to our axioms for �.

Here are a few examples:

?- dominated(5, [4,2,1], [5,3]).

Yes

?- dominated(4, [3], [4,3,2,1]).

No

?- dominated(4, [4,3,2,1], [3]).

No
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Back to the Case of Four Candidates

Does our theorem on four candidates matter in practice?
The following corollary shows that it does:

Corollary 1 (Four candidates, uniform tie-breaking)
In approval voting with four candidates and uniform tie-breaking,
suppose that all but one voter have cast their ballot. Then, if the
final voter is an expected-utility maximiser, he has no incentive to
cast an insincere ballot.
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Proof of Corollary 1

The reason is that the only exception to our theorem reduces to an
inconsistent set of constraints under the additional assumptions of
uniform tie-breaking and expected-utility maximisation.

Theorem 4 says: no incentive to manipulate unless our voter
strictly prefers 4321 over both 431 and 3.

Suppose our voter’s utilities for the four candidates are u4, u3, u2

and u1, respectively, satisfying:

u4 ≥ u3 ≥ u2 ≥ u1 (1)

So we get these constraints (comparing expected utilities):

1
4 · (u4 + u3 + u2 + u1) > 1

3 · (u4 + u3 + u1) (2)
1
4 · (u4 + u3 + u2 + u1) > u3 (3)

Constraints (1)–(3) are easily seen to be inconsistent. X
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Conclusion

• Basic idea: The presence of multiple sincere ballots may allow
us to circumvent the Gibbard-Satterthwaite Theorem in the
sense that some sincere ballot may always be optimal.

• Results: For approval voting , it turns out that this is indeed
the case for several interesting scenarios:

– If all voters are optimistic (or pessimistic btw).

– If there are at most three candidates.

– If there are at most four candidates, uniform tie-breaking is
used, and all voters are expected-utility maximisers.

– More?

• Next: Automatise constraint solving to see which of the
exceptions for scenarios with more than four candidates matter
under uniform tie-breaking with expected-utility maximisers.

Ulle Endriss 23


