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The Approach

To prove an impossibility in your favourite area of economic theory . . .

• Prove base case: theorem holds for some fixed domain size (“k”).

Try to express statement in propositional logic (typically requiring

a few million clauses). Check satisfiability with a SAT solver .

Ideal: human-readable proof from minimal unsatisfiable subset

• Prove inductive step: claim for “n” implies claim for “n+ 1”.

Requires engagement with axioms just as for a classical proof.

Proof might be technically demanding, but result never surprising!

Ideal: general lemma covering all axioms of some given type

S. Chatterjee and A. Sen. Automated Reasoning in Social Choice Theory: Some

Remarks. Mathematics in Computer Science, 2014.

C. Geist and D. Peters. Computer-Aided Methods for Social Choice Theory. In

U. Endriss (ed.), Trends in Computational Social Choice. AI Access, 2017.
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Talk Outline

My plan for this talk is to demonstrate how this approach can be

applied to the axiomatic analysis of matching mechanisms.

• Model: one-to-one matching

• Preservation Theorem for axioms expressed in a formal language

• Approach to proving impossibility theorems via SAT solving

• Application: two impossibility theorems for matching
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The Model: One-to-One Matching

Two groups of agents: An = {a1, . . . , an} and Bn = {b1, . . . , bn}.
Each agent ranks all the agents on the opposite side of the market.

Need mechanism to return one-to-one matching given such a profile.

Examples: job markets, marriage markets, . . .

Would like a mechanism with good normative properties (axioms):

• Stability : no ai and bj prefer one another over assigned partners

• Strategyproofness: best strategy is to truthfully report preferences

• Fairness: (for example) no advantage for one side of the market

Gale-Shapley (1962): stable (3); strategyproof for left side (3) but

not right side (7) of the market; unfair advantage for left side (7).

D. Gale and L.S. Shapley. College Admissions and the Stability of Marriage. Amer-

ican Mathematical Monthly, 69:9–15, 1962.
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Expressing Axioms in Two-Sorted Logic

Would like to have formal language with clear semantics (i.e., a logic)

to express axioms, to be able to get results for entire families of axioms.

First-order logic with sorts, one for profiles and one for agent indices,

with these basic ingredients:

• p . (i, j) — in profile p, agents ai and bj will get matched

• j �a
p,i j

′ — in profile p, agent ai prefers bj to bj′ (also for b)

• topa
p,i = j — in profile p, agent ai most prefers bj (also for b)

• p ∼a
i p
′ — profiles p and p′ are ai-variants (also for b)

• p� p′ — swapping sides in profile p yields profile p′

• ∀p and ∀n — universal quantifiers for variables of two sorts

Recall that axioms describe properties of mechanisms. So truth of a

sentence ϕ in our logic is defined relative to a mechanism µ.
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Example

∀pp.∀pp′.∀ni.∀nj.∀nj′ .
[
(j �a

p,i j
′ ∧ p ∼a

i p
′)→ ¬(p . (i, j′) ∧ p′ . (i, j))

]
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Another Example

∀pp.∀ni.∀nj .
[

(topa
p,i = j ∧ topb

p,j = i) → (p . (i, j))
]
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The Preservation Theorem

Call a mechanism top-stable if it always matches all mutual favourites.

Call an axiom universal if it can be written in the form ∀~x.ϕ(~x).

Similar to (one direction of) the  Loś-Tarski Theorem in model theory

(about preservation of first-order ∀1-formulas in substructures):

Theorem 1 Let µ+ be a top-stable mechanism of dimension n that

satisfies a given set Φ of universal axioms. If n > 1, then there also

exists a top-stable mechanism µ of dimension n− 1 that satisfies Φ.

Proof idea: Construct larger profile in which extra agents most prefer

each other and are least liked by everybody else.

Corollary: enough to prove impossibility theorems for smallest n!
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Counterexample

Preservation Theorem might look trivial. Doesn’t this always hold?

No: some axioms we can satisfy for large but not for small domains.

Suppose we want to design a mechanism under which at least one

agent in each group gets assigned to their most preferred partner:

∀pp.∃ni.∀nj.[ (topa
p,i = j) → (p . (i, j)) ] ∧

∀pp.∃nj.∀ni.[ (topb
p,j = i) → (p . (i, j)) ]

This is not universal! Mechanism exists for n = 3 but not for n = 2.
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Proving Impossibility Theorems

Suppose we want to prove an impossibility theorem of this form:

“for n ≥ k, no matching mechanism satisfies all the axioms in Φ”

Our Preservation Theorem permits us to proceed as follows:

• Check all axioms in Φ indeed are universal axioms.

• Check Φ includes (or implies) top-stability.

• Express all axioms for special case of n = k in propositional CNF.

• Using a SAT solver, confirm that this CNF is unsatisfiable.

• Using an MUS extractor, find a short proof of unsatisfiability.

For example, stability for n = 3 can be expressed in CNF like this:∧
p∈B3!3×A3!3

∧
i∈{1,2,3}

∧
j∈{1,2,3}

∧
i′s.t. p has
ai�bj

a
i′

∧
j′s.t. p has
bj�ai

b
j′

(
¬xp.(i,j′) ∨ ¬xp.(i′,j)

)
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Application: A Variant of Roth’s Theorem

Recall this classic result:

Theorem 2 (Roth, 1982) For n ≥ 2, no matching mechanism for

incomplete preferences is both stable and two-way strategyproof.

Remark: In our model (with complete preferences) true only for n ≥ 3.

We can use our approach to prove this stronger variant:

Theorem 3 For n ≥ 3, no matching mechanism is both top-stable

and two-way strategyproof (even in our model).

By the Preservation Theorem, we are done if the claim holds for n = 3.

SAT solver says it does, and MUS provides human-readable proof (↪→).

A.E. Roth. The Economics of Matching: Stability and Incentives. Mathematics

of Operations Research, 7:617–628, 1982.

Ulle Endriss 11



Analysis of Matching Mechanisms via SAT Solving COMSOC Seminar 2020

Proof of Base Case


312 123

132 123

312 213




123 123

132 123

312 213




321 123

132 123

312 213




213 123

132 123

312 213




321 123

132 123

312 123




321 213

132 123

312 213




312 123

132 123

312 231




123 123

132 123

312 231




312 123

312 123

312 231




312 123

132 123

312 312


a1

a1

a1

b3

b1

b3

a1

a2

b3

Ulle Endriss 12



Analysis of Matching Mechanisms via SAT Solving COMSOC Seminar 2020

Application: Stability vs. Gender-Indifference

Call a mechanism gender-indifferent if swapping the two sides of the

market (“genders”) yields the corresponding swap in the outcome:

∀pp.∀pp′.∀ni.∀nj . [ (p� p′) → ( p . (i, j) → p′ . (j, i) ) ]

Bad news:

Theorem 4 For n ≥ 3, there exists no matching mechanism that is

both stable and gender-indifferent.

Here the MUS extractor finds a particularly simple proof: it identifies a

“swap-symmetric” profile for which there exists no admissible outcome

(two matchings are ruled out by G-I and the other four by stability).

F. Masarani and S.S. Gokturk. On the Existence of Fair Matching Algorithms.

Theory and Decision, 26(3):305–322, 1989.
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Beyond Impossibility Results

What else can we use SAT solving for? Some ideas:

• Satisfiability of a given set of axioms suggests a possibility result

(but: only for the problem dimension actually tested!).

Note: Can also be used to prove independence of axioms.

• Inspection of models for satisfiable sets of axioms as a method to

design mechanisms with a good properties (but: huge!).

• Computing justifications for outcomes in terms of axioms.

Example: “Given this profile p, every mechanism satisfying all

axioms in Φ would assign a4 to b2 (and here’s why: . . . ).”

Corresponds to showing that Φ ∪ {¬(p . (4, 2))} is unsatisfiable.

MUS would provide a concrete explanation.
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Last Slide

I have shown how to use modern SAT solving technology to largely

automate proving impossibility theorems for matching.

Methodological result:

• Provided you are interested in top-stable mechanisms and all your

axioms are universal, everything can be automated.

Specific results for one-to-one matching:

• Impossible to get top-stability and two-way strategyproofness.

• Impossible to get stability and gender-indifference.

Future: beyond just one-to-one; other assumptions on preferences.

Also: potential of SAT for economic theory beyond impossibilities.

Paper and full code available here: tinyurl.com/satmatching

U. Endriss. Analysis of One-to-One Matching Mechanisms via SAT Solving: Im-

possibilities for Universal Axioms. Proc. AAAI-2020.
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