Analysis of Matching Mechanisms via SAT Solving

Ulle Endriss Institute for Logic, Language and Computation University of Amsterdam

The Approach

To prove an impossibility in your favourite area of economic theory ...

- Prove base case: theorem holds for some fixed domain size ("k"). Try to express statement in propositional logic (typically requiring a few million clauses). Check satisfiability with a SAT solver.
 <u>Ideal:</u> human-readable proof from minimal unsatisfiable subset
- Prove *inductive step:* claim for "n" implies claim for "n + 1".
 Requires engagement with axioms just as for a classical proof.
 Proof might be technically demanding, *but* result never surprising!
 <u>Ideal:</u> general lemma covering all axioms of some given type

S. Chatterjee and A. Sen. Automated Reasoning in Social Choice Theory: Some Remarks. *Mathematics in Computer Science*, 2014.

C. Geist and D. Peters. Computer-Aided Methods for Social Choice Theory. In U. Endriss (ed.), *Trends in Computational Social Choice*. AI Access, 2017.

Talk Outline

My plan for this talk is to demonstrate how this approach can be applied to the axiomatic analysis of matching mechanisms.

- Model: one-to-one matching
- Preservation Theorem for axioms expressed in a formal language
- Approach to proving impossibility theorems via SAT solving
- Application: two impossibility theorems for matching

The Model: One-to-One Matching

Two groups of *agents*: $A_n = \{a_1, \ldots, a_n\}$ and $B_n = \{b_1, \ldots, b_n\}$. Each agent *ranks* all the agents on the opposite side of the market. Need *mechanism* to return one-to-one *matching* given such a *profile*. <u>Examples</u>: job markets, marriage markets, ...

Would like a mechanism with good normative properties (axioms):

- Stability: no a_i and b_j prefer one another over assigned partners
- *Strategyproofness:* best strategy is to truthfully report preferences
- Fairness: (for example) no advantage for one side of the market

Gale-Shapley (1962): stable (\checkmark); strategyproof for left side (\checkmark) but not right side (\checkmark) of the market; unfair advantage for left side (\checkmark).

D. Gale and L.S. Shapley. College Admissions and the Stability of Marriage. *American Mathematical Monthly*, 69:9–15, 1962.

Expressing Axioms in Two-Sorted Logic

Would like to have formal language with clear semantics (i.e., a logic) to express axioms, to be able to get results for entire families of axioms. First-order logic with *sorts*, one for *profiles* and one for agent *indices*, with these basic ingredients:

- $p \triangleright (i, j)$ in profile p, agents a_i and b_j will get matched
- $j \succ_{p,i}^{A} j'$ in profile p, agent a_i prefers b_j to $b_{j'}$ (also for B)
- $top_{p,i}^{A} = j$ in profile p, agent a_i most prefers b_j (also for B)
- $p \sim_i^{A} p'$ profiles p and p' are a_i -variants (also for B)
- $p \rightleftharpoons p'$ swapping sides in profile p yields profile p'
- $\bullet~\forall_{\rm P}~\text{and}~\forall_{\rm N}~$ universal quantifiers for variables of two sorts

Recall that axioms describe properties of mechanisms. So *truth* of a sentence φ in our logic is defined relative to a mechanism μ .

Example

 $\forall_{\mathbf{P}} p. \forall_{\mathbf{P}} p'. \forall_{\mathbf{N}} i. \forall_{\mathbf{N}} j. \forall_{\mathbf{N}} j' . \left[(j \succ_{p,i}^{\mathbf{A}} j' \land p \sim_{i}^{\mathbf{A}} p') \rightarrow \neg (p \triangleright (i,j') \land p' \triangleright (i,j)) \right]$

Another Example

 $\forall_{\mathbf{P}} p. \forall_{\mathbf{N}} i. \forall_{\mathbf{N}} j. \left[\left(top_{p,i}^{\mathbf{A}} = j \land top_{p,j}^{\mathbf{B}} = i \right) \rightarrow \left(p \triangleright (i,j) \right) \right]$

The Preservation Theorem

Call a mechanism *top-stable* if it always matches all mutual favourites. Call an axiom *universal* if it can be written in the form $\forall \vec{x}. \varphi(\vec{x})$.

Similar to (one direction of) the Łoś-Tarski Theorem in model theory (about preservation of first-order \forall_1 -formulas in substructures):

Theorem 1 Let μ^+ be a top-stable mechanism of dimension n that satisfies a given set Φ of universal axioms. If n > 1, then there also exists a top-stable mechanism μ of dimension n - 1 that satisfies Φ .

<u>Proof idea:</u> Construct larger profile in which extra agents most prefer each other and are least liked by everybody else.

<u>Corollary</u>: enough to prove impossibility theorems for smallest n!

Counterexample

Preservation Theorem might look trivial. *Doesn't this always hold?* <u>No:</u> some axioms we can satisfy for large but not for small domains. Suppose we want to design a mechanism under which at least one

agent in each group gets assigned to their most preferred partner:

$$\forall_{\mathbf{P}} p. \exists_{\mathbf{N}} i. \forall_{\mathbf{N}} j. [(top_{p,i}^{\mathbf{A}} = j) \rightarrow (p \triangleright (i,j))] \land$$

$$\forall_{\mathbf{P}} p. \exists_{\mathbf{N}} j. \forall_{\mathbf{N}} i. [(top_{p,j}^{\mathbf{B}} = i) \rightarrow (p \triangleright (i,j))]$$

This is *not* universal! Mechanism exists for n = 3 but not for n = 2.

Proving Impossibility Theorems

Suppose we want to prove an impossibility theorem of this form:

"for $n \geq k$, no matching mechanism satisfies all the axioms in Φ "

Our Preservation Theorem permits us to proceed as follows:

- Check all axioms in Φ indeed are universal axioms.
- Check Φ includes (or implies) top-stability.
- Express all axioms for special case of n = k in propositional CNF.
- Using a SAT solver, confirm that this CNF is unsatisfiable.
- Using an MUS extractor, find a short proof of unsatisfiability.

For example, *stability* for n = 3 can be expressed in CNF like this:

$$\bigwedge_{p \in B_3!^3 \times A_3!^3} \bigwedge_{i \in \{1,2,3\}} \bigwedge_{j \in \{1,2,3\}} \bigwedge_{\substack{i' \text{s.t. } p \text{ has} \\ a_i \succ_{b_j} a_{i'}}} \bigwedge_{\substack{j' \text{s.t. } p \text{ has} \\ b_j \succ_{a_i} b_{j'} \neq a_i b_{j'}}} (\neg x_{p \triangleright (i,j')} \lor \neg x_{p \triangleright (i',j)})$$

Application: A Variant of Roth's Theorem

Recall this classic result:

Theorem 2 (Roth, 1982) For $n \ge 2$, no matching mechanism for incomplete preferences is both stable and two-way strategyproof.

<u>Remark</u>: In our model (with complete preferences) true only for $n \ge 3$. We can use our approach to prove this stronger variant:

Theorem 3 For $n \ge 3$, no matching mechanism is both top-stable and two-way strategyproof (even in our model).

By the Preservation Theorem, we are done if the claim holds for n = 3. SAT solver says it does, and MUS provides human-readable proof (\hookrightarrow).

A.E. Roth. The Economics of Matching: Stability and Incentives. *Mathematics of Operations Research*, 7:617–628, 1982.

Proof of Base Case

Application: Stability vs. Gender-Indifference

Call a mechanism *gender-indifferent* if swapping the two sides of the market ("genders") yields the corresponding swap in the outcome:

$$\forall_{\mathsf{P}} p. \forall_{\mathsf{P}} p'. \forall_{\mathsf{N}} i. \forall_{\mathsf{N}} j. [(p \rightleftharpoons p') \rightarrow (p \triangleright (i, j) \rightarrow p' \triangleright (j, i))]$$

Bad news:

Theorem 4 For $n \ge 3$, there exists no matching mechanism that is both stable and gender-indifferent.

Here the MUS extractor finds a particularly simple proof: it identifies a "swap-symmetric" profile for which there exists no admissible outcome (two matchings are ruled out by G-I and the other four by stability).

F. Masarani and S.S. Gokturk. On the Existence of Fair Matching Algorithms. *Theory and Decision*, 26(3):305–322, 1989.

Beyond Impossibility Results

What else can we use SAT solving for? Some ideas:

- Satisfiability of a given set of axioms suggests a *possibility result* (<u>but:</u> only for the problem dimension actually tested!).
 <u>Note:</u> Can also be used to prove *independence of axioms*.
- Inspection of models for satisfiable sets of axioms as a method to *design mechanisms* with a good properties (<u>but:</u> huge!).
- Computing justifications for outcomes in terms of axioms.
 <u>Example:</u> "Given this profile p, every mechanism satisfying all axioms in Φ would assign a₄ to b₂ (and here's why: ...)."
 Corresponds to showing that Φ ∪ {¬(p ▷ (4, 2))} is unsatisfiable. MUS would provide a concrete explanation.

Last Slide

I have shown how to use modern SAT solving technology to largely automate proving impossibility theorems for matching.

Methodological result:

• Provided you are interested in top-stable mechanisms and all your axioms are universal, everything can be automated.

Specific results for one-to-one matching:

- Impossible to get top-stability and two-way strategyproofness.
- Impossible to get stability and gender-indifference.

<u>Future:</u> beyond just one-to-one; other assumptions on preferences. <u>Also:</u> potential of SAT for economic theory beyond impossibilities.

Paper and full code available here: tinyurl.com/satmatching

U. Endriss. Analysis of One-to-One Matching Mechanisms via SAT Solving: Impossibilities for Universal Axioms. Proc. AAAI-2020.