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Multiagent Resource Allocation

A tentative definition would be the following:

Multiagent Resource Allocation (MARA) is the process of

distributing a number of items amongst a number of agents.

Now: What kind of items (resources) are being distributed? How are

they being distributed? And finally, why are they being distributed?

Why am I interested in this sort of stuff?

• Many applications: electronic commerce, industrial procurement,

satellite exploitation, grid computing, manufacturing, . . .

• Highly interdisciplinary: game theory, decision theory, social

choice, welfare economics, logic, complexity theory, algorithm

design, specification and verification, operations research, . . .
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Issues

• Preference representation: How do we represent the preferences of

individual agents? How should agents communicate their preferences?

• Preference aggregation (social welfare): How do we aggregate

individual preferences to decide what is a “good” allocation?

• Allocation procedures: How do we find a good allocation? —

options include (centralised) auctions and distributed negotiation.

• Algorithm design: How can we design fast algorithms for this?

• Complexity questions: What is the computational complexity of finding

an optimal allocation? What about communication complexity?

• Mechanism design: How do we provide incentives to individual agents

to play according to the rules (reveal their true preferences)?

• Simulation and experimentation: When theoretical tools fail us, how

can we use simulations to gain further insights?
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Talk Overview

• Some results on work in a distributed negotiation setting:

– Convergence to an optimal allocation

– Necessity of having to implement very complex deals

– Positive and negative results in restricted settings

• Brief glance over some other issues of interest:

– Complexity of negotiation

– Mechanism design (“inverse game theory”)

– Preference representation in combinatorial domains

– Fair division
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Negotiating Socially Optimal Allocations

• Multiagent systems may be thought of as “societies of agents”.

This suggests to use tools from microeconomics and social choice

theory to assess the performance of the overall system (“society”).

• Agents negotiate deals to exchange resources to benefit either

themselves or society as a whole (distributed approach).

• Agents may use very simple rationality criteria to decide what

deals to accept, but interaction patterns may be complex

(multilateral deals).

U. Endriss, N. Maudet, F. Sadri and F. Toni. Negotiating socially optimal alloca-

tions of resources. Journal of Artificial Intelligence Research, 25:315–348, 2006.
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Resource Allocation by Negotiation

• Finite set of agents A and finite set of indivisible resources R.

• An allocation A is a partitioning of R amongst the agents in A.

Example: A(i) = {r5, r7} — agent i owns resources r5 and r7

• Every agent i ∈ A has got a utility function ui : 2R → R.

Example: ui(A) = ui(A(i)) = 577.8 — agent i is pretty happy

• Agents may engage in negotiation to exchange resources in order

to benefit either themselves or society as a whole.

• A deal δ = (A,A′) is a pair of allocations (before/after).

• A deal may come with a number of side payments to compensate

some of the agents for a loss in utility. A payment function is a

function p : A → R with
∑
i∈A

p(i) = 0.

Example: p(i) = 5 and p(j) = −5 means that agent i pays �5,

while agent j receives �5.
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The Local/Individual Perspective

A rational agent (who does not plan ahead) will only accept deals that

improve its individual welfare:

Definition 1 (Rationality) A deal δ = (A,A′) is called rational iff

there exists a payment function p such that ui(A′)− ui(A) > p(i) for

all i ∈ A, except possibly p(i) = 0 for agents i with A(i) = A′(i).

That is, an agent will only accept a deal iff it results in a gain in utility

(or money) that strictly outweighs a possible loss in money (or utility).

The Global/Social Perspective

Definition 2 (Social welfare) The (utlitarian) social welfare of an

allocation of resources A is defined as follows:

sw(A) =
∑

i∈Agents

ui(A)
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Example

Let A = {ann, bob} and R = {chair , table} and suppose our agents

use the following utility functions:

uann({ }) = 0 ubob({ }) = 0

uann({chair}) = 2 ubob({chair}) = 3

uann({table}) = 3 ubob({table}) = 3

uann({chair , table}) = 7 ubob({chair , table}) = 8

Furthermore, suppose the initial allocation of resources is A0 with

A0(ann) = {chair , table} and A0(bob) = { }.

I Social welfare for allocation A0 is 7, but it could be 8. By moving

only a single resource from agent ann to agent bob, the former would

lose more than the latter would gain (not individually rational).

The only possible deal would be to move the whole set {chair , table}.
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Linking the Local and the Global Perspectives

It turns out that rational deals are exactly those deals that increase

social welfare:

Lemma 1 (Rationality and social welfare) A deal δ = (A,A′) with

side payments is rational iff sw(A) < sw(A′).

Proof. “⇒”: Rationality means that overall utility gains outweigh

overall payments (which are = 0). “⇐”: Using side payments, the

social surplus can be divided amongst all deal participants. 2

I We can now prove a first result on negotiation processes:

Lemma 2 (Termination) There can be no infinite sequence of

rational deals, i.e. negotiation must always terminate.

Proof. Follows from the first lemma and the observation that the

space of distinct allocations is finite. 2
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Convergence

It is now easy to prove the following convergence result (originally

stated by Sandholm in the context of distributed task allocation):

Theorem 3 (Sandholm, 1998) Any sequence of rational deals will

eventually result in an allocation with maximal social welfare.

I Agents can act locally and need not be aware of the global picture

(convergence towards a global optimum is guaranteed by the theorem).

T. Sandholm. Contract types for satisficing task allocation: I Theoretical results.

AAAI Spring Symposium 1998.
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Multilateral Negotiation

Optimal outcomes can only be guaranteed if the negotiation protocol

allows for deals involving any number of agents and resources:

Theorem 4 (Necessity of complex deals) Any deal δ = (A,A′)
may be necessary, i.e. there are utility functions and an initial

allocation such that any sequence of rational deals leading to an

allocation with maximal social welfare would have to include δ

(unless δ is “independently decomposable”).

The proof involves the systematic definition of utility functions such

that A′ is optimal and A is the second best allocation. Independently

decomposable deals (to which the result does not apply) are deals that

can be split into two subdeals concerning distinct sets of agents.
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Negotiation in Restricted Domains

Most work on negotiation in multiagent systems is concerned with

bilateral negotiation or auctions. ; Multilateral negotiation is difficult!

Maybe we can guarantee convergence to a socially optimal allocation

for structurally simpler types of deals if we restrict the range of utility

functions that agents can use? First, two negative results:

• Theorem 4 continues to hold even when all agents are required to

use monotonic utility functions. [R1 ⊆ R2 ⇒ ui(R1) ≤ ui(R2)]

• Theorem 4 continues to hold even when all agents are required to

use dichotomous utility functions. [ui(R) = 0 ∨ ui(R) = 1]
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Modular Domains

A utility function ui is called modular iff it satisfies the following

condition for all bundles R1, R2 ⊆ R:

ui(R1 ∪R2) = ui(R1) + ui(R2)− ui(R1 ∩R2)

That is, in a modular domain there are no synergies between items;

you can get the utility of a bundle by adding up the utilities of the

items in that bundle.

I Negotiation in modular domains is feasible:

Theorem 5 (Modular domains) If all utility functions are modular,

then rational 1-deals (involving just one resource) suffice to guarantee

outcomes with maximal social welfare.
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Sufficiency, Necessity, Maximality

• Theorem 5 says that the class of modular utility functions is

sufficient for successful 1-deal negotiation.

• Is it also necessary?

Answer: No. It’s easy to construct examples.

• Is there any class of functions that is sufficient and necessary?

Answer: No. Seems surprising at first, but for a proof it suffices to

find two sufficient classes the union of which is not sufficient.

• As there can be no unique class of utility functions characterising

all situations where 1-deal negotiation works, we have looked for

maximal classes . . .
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Maximality of Modular Utilities

We say that a class of utility functions F permits 1-deal negotiation iff

any sequence of rational 1-deals will converge to a socially optimal

allocation whenever all utility functions belong to F .

Another surprising result:

Theorem 6 (Maximality) Let M be the class of modular utility

functions. Then for any class of utility functions F such that M⊂ F ,

F does not permit 1-deal negotiation.

I Are there other (interesting) classes of functions that are maximal?

Y. Chevaleyre, U. Endriss and N. Maudet. On maximal classes of utility functions

for efficient one-to-one negotiation. IJCAI-2005.
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Complexity Issues

Finding an optimal allocation is generally intractable. First observed

for combinatorial auctions (easy reduction from Set Packing):

Theorem 7 (Complexity) Given K ∈ Z, checking whether there

exists an allocation A with sw(A) > K is NP-complete.

In the context of distributed negotiation schemes we may also ask

other kinds of questions. Example:

• How hard is it to decide whether a given negotiation scenario

permits 1-deal negotiation? (NP-hard, likely PSPACE-complete)

But neither of these are about the process of negotiation . . .

M.H. Rothkopf, A. Pekec̆, and R.M. Harstad. Computationally manageable com-

binational auctions. Management Science, 44(8):1131–1147, 1998.

P.E. Dunne, M. Wooldridge, and M. Laurence. The complexity of contract nego-

tiation. Artificial Intelligence, 164(1–2):23–46, 2005.
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Aspects of Complexity

(1) How many deals are required to reach an optimal allocation?

– communication complexity as number of individual deals

(2) How many dialogue moves are required to agree on one such deal?

– affects communication complexity as number of dialogue moves

(3) How expressive a communication language do we require?

– Minimum requirements: performatives propose, accept, reject

+ content language to specify multilateral deals

– affects communication complexity as number of bits exchanged

(4) How complex is the reasoning task faced by an agent when

deciding on its next dialogue move?

– computational complexity (local rather than global view)

U. Endriss and N. Maudet. On the communication complexity of multilateral

trading. Journal of Auton. Agents and Multiagent Systems, 11(1):91–107, 2005.
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Mechanism Design

Mechanism design is concerned with the design of mechanisms for

collective decision making that favour particular outcomes despite

agents pursuing their individual interests.

Mechanism design is sometimes referred to as reverse game theory .

While game theory analyses the strategic behaviour of rational agents

in a given game, mechanism design uses these insights to design

games inducing certain strategies (and hence outcomes).

Find out more tomorrow at Krzysztof’s talk in the

Computational Social Choice Seminar!
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Preference Representation

• In combinatorial domains, preference representation is not trivial:

– for instance, negotiation over n goods requires expressing

preferences over 2n bundles

– also: multi-criteria decision making; voting for assemblies; . . .

• Logic can help to design languages that allow for a succinct

representation of preferences. For instance:

– Model specific interests of agents as propositional formulas.

– Associate each such goal with a weight (importance).

Utility may then be defined as the sum of the weights of the

satisfied goals (other option: prioritised goals).
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Efficiency and Fairness

When assessing the quality of an allocation (or any other agreement)

we can distinguish (at least) two types of indicators of social welfare.

Aspects of efficiency (not in the computational sense) include:

• The chosen agreement should be such that there is no alternative

agreement that would be better for some and not worse for any of

the other agents (Pareto optimality).

• If preferences are quantitative, the sum of all payoffs should be as

high as possible (utilitarianism).

Aspects of fairness include:

• The agent that is going to be worst off should be as well off as

possible (egalitarianism).

• No agent should prefer to take the bundle allocated to one of its

peers rather than keeping their own (envy-freeness).
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Notions of Social Welfare

• Utilitarian: sum of utilities swu(A) =
∑

i∈A ui(A)

• Nash product: product of utilities swN (A) =
∏

i∈A ui(A)

• Egalitarian: utility of the weakest swe(A) = min{ui(A) | i ∈ A}

• Elitist: utility of the strongest swel(A) = max{ui(A) | i ∈ A}

• Pareto optimality : no other allocation is better for some agents

without being worse for any of the others

• Lorenz optimality : the sum of utilities of the k weakest agents

cannot be maintained for all and increased for some k ≤ |A|

• Envy-freeness: no agent would rather have the bundle allocated to

one of the other agents ui(A(i)) ≥ ui(A(j))

– envy-free allocations are not always possible

– could search for envy-reducing deals (for instance, with respect

to the number of envious agents or the average degree of envy)
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Conclusions

• Negotiation is a timely, exciting and fruitful area of research:

– Knowledge transfer from economics to computer science and AI

– Application of computational tools to problems in economics

– Game theory is all over the place

– Logic can and should play a bigger role

• Many open problems and scope for new directions of research

• For more information on the field in general, have a look at the

MARA (Multiagent Resource Allocation) website:

http://www.illc.uva.nl/∼ulle/MARA/

Y. Chevaleyre, P.E. Dunne, U. Endriss, J. Lang, M. Lemâıtre, N. Maudet, J. Pad-

get, S. Phelps, J.A. Rodŕıguez-Aguilar and P. Sousa. Issues in multiagent resource

allocation. Informatica, 30:3-31, 2006.
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