Rationalisation of Profiles of Abstract Argumentation Frameworks

Ulle Endriss
Institute for Logic, Language and Computation
University of Amsterdam

joint work with Stéphane Airiau, Elise Bonzon, Nicolas Maudet, and Julien Rossit
Motivation

Central question in MAS research is how to aggregate diverse “views” of several agents. Also relevant: what diversity is actually possible?

We consider this second, less commonly asked question:

- we model “views” as abstract argumentation frameworks
- individual view is mix of “facts” and “preferences”
- can we rationalise diverse observations by disentangling them?

Talk Outline

• Background: value-based variant of abstract argumentation
• Concept: formal definition of the rationalisability problem
• Results: single-agent case and multiagent case
Value-Based Argumentation

An argumentation framework \(AF = \langle \text{Arg}, \rightarrow \rangle \) consists of a finite set of arguments \(\text{Arg} \) and a binary attack-relation \(\rightarrow \).

An audience-specific value-based AF \(\langle \text{Arg}, \rightarrow, \text{Val}, \text{val}, \geq \rangle \) consists of an AF \(\langle \text{Arg}, \rightarrow \rangle \), a labelling \(\text{val} : \text{Arg} \rightarrow \text{Val} \) of arguments with values, and a (reflexive and transitive) preference order \(\geq \) on \(\text{Val} \).

Argument \(A \) defeats \(B \) (\(A \Rightarrow B \)) if \(A \rightarrow B \) but \(\text{val}(B) \geq \text{val}(A) \).

Note that \(\langle \text{Arg}, \rightarrow \rangle \) is itself just another AF.

The Rationalisability Problem

Given n agents and a profile of AF’s $(\langle Arg_1, \Rightarrow_1 \rangle, \ldots, \langle Arg_n, \Rightarrow_n \rangle)$ the rationalisability problem asks whether there exist:

- a master attack-relation \rightarrow on $Arg = Arg_1 \cup \cdots \cup Arg_n$
- a set of values Val and a value-labelling $val : Arg \rightarrow Val$
- a profile of preference orders $(\succeq_1, \ldots, \succeq_n)$

such that $A \Rightarrow_i B$ iff $A \rightarrow B$ but $val(B) \succ_i val(A)$ [for all i, A, B].

We may also wish to impose certain constraints on allowed solutions.
The Single-Agent Case: Example

Let $\text{Arg} = \{A, B, C\}$. Suppose the master attack-relation \rightarrow is fixed.

observed defeat-relation \Rightarrow fixed master attack-relation \rightarrow

Can you rationalise \Rightarrow in terms of \rightarrow using . . .

- up to two values?
- up to three values?
- up to three values and a complete preference order?
The Single-Agent Case: Results

Can you rationalise a given AF $\langle \text{Arg}, \Rightarrow \rangle$ by means of some master attack-relation \rightarrow, value-labelling $\text{val} : \text{Arg} \rightarrow \text{Val}$, and preference \geq?

Depends on the constraints:

- **No constraints** (or only on value-labelling): always yes!

 Just let $(\rightarrow) = (\Rightarrow)$, use whatever value-labelling, and let \geq be indifferent between any two arguments.

- **Fixed master attack-relation**: easy *polynomial* algorithm

 Assign unique value to each argument. Just need to check $(\Rightarrow) \subseteq (\rightarrow)$, removed part $(\rightarrow \setminus \Rightarrow)$ is acyclic, and preference does not cancel too many attacks: $(\Rightarrow) \cap (\rightarrow \setminus \Rightarrow)^+ = \emptyset$.

- **Bound on values and complete preference**: also polynomial

 Encode as integer program with 2 variables per inequality.

For (possibly) *incomplete* preferences this is an *open problem*.
Rationalisation with Bound on Number of Values

Can you rationalise $\langle \text{Arg}, \Rightarrow \rangle$ by means of master attack-relation \rightarrow, some $val: \text{Arg} \rightarrow \text{Val}$ with $|\text{Val}| \leq k$, and some complete \geq?

Suppose master attack-relation \rightarrow is given [if not: $(\rightarrow) = (\Rightarrow)$ is best].
W.l.o.g., assume $(\Rightarrow) \subseteq (\rightarrow)$ [otherwise: not rationalisable].
W.l.o.g., let $\text{Val} = \{1, \ldots, k\}$ and let \geq be \geq on the natural numbers.

For every $A \in \text{Arg}$, introduce integer variable x_A with $1 \leq x_A \leq k$.

Construct an integer program with these inequalities:

- $x_A < x_B$ whenever $A \rightarrow B$ but not $A \Rightarrow B$
- $x_B \leq x_A$ whenever $A \Rightarrow B$ [and thus also $A \rightarrow B$]

Deciding feasibility of IP’s with 2 variables per inequality is polynomial!

Crucial: modelling $val(B) \succ val(A)$ as $x_B \leq x_A$ rather than $x_B \succ x_A$ is ok only due to the completeness requirement!
Multiagent Rationalisation: Example

Let \(\text{Arg} = \{A, B, C\} \) and \(n = 2 \). Try to rationalise the following profile.

- First defeat-relation \(\models_1 \)
- Second defeat-relation \(\models_2 \)

A few hints:

- Rationalisable if rationalisable with \((\rightarrow) = (\models_1) \cup (\models_2) = (\models_1) \).
- Rationalisable if rationalisable with one value for each argument.
- Now try to build \(\succeq_2 \) (preference order of second agent) \ldots
Multiagent Rationalisation: Easy Cases

In our example, it was *impossible to decompose* the problem and to consider rationalisability separately for each agent.

But when all constraints are of these types, then you *can decompose*:

- the master attack-relation \rightarrow is fixed
- the value-labelling $\text{val} : (\text{Arg}_1 \cup \cdots \cup \text{Arg}_n) \rightarrow \text{Val}$ is fixed

So multiagent rationalisability *reduces* to single-agent rationalisability! Thus, multiagent rationalisability is *polynomial* in these cases:

- no constraints
- only the master attack-relation is fixed
- only the value-labelling is fixed
- master attack-relation and value-labelling are fixed

*Single-agent rationalisability is also easy [case not discussed before].
Multiagent Rationalisation: Hard (and Easy) Cases

Bad news: Let $k \geq 3$. For constraint $|Val| \leq k$, rationalisability is \textit{NP-complete} (whether or not the master attack-relation is given).

- Proof by reduction from \textsc{Graph Colouring}.
- Open problem whether also \textit{NP-complete} for $Arg_1 = \cdots = Arg_n$.

Good news: for $k = 2$ there is a \textit{polynomial} algorithm [not in paper].

Good news: for “large” \textit{bounds} it’s also \textit{polynomial}: $k \in \Omega(|Arg|)$.

Ulle Endriss
Last Slide

We have introduced the *rationalisability problem* for a given profile of argumentation frameworks, one for each agent in a multiagent system:

- identified various cases that admit *polynomial algorithms*
- but multiagent case with bound on values is *NP-complete*
- several *open problems* regarding complexity

Definition of the rationalisability problem in terms of Bench-Capon’s *value-based* argumentation frameworks, but basic idea is general.

Possible *application* scenarios:

- to determine relevant profiles for research on aggregating AF’s
- if rationalisable, we can use preference aggregation instead
- to spot inconsistencies in online debating platforms