Rationalisation of Profiles of Abstract Argumentation Frameworks

Ulle Endriss Institute for Logic, Language and Computation University of Amsterdam

joint work with Stéphane Airiau, Elise Bonzon, Nicolas Maudet, and Julien Rossit

Motivation

Central question in MAS research is how to aggregate diverse "views" of several agents. Also relevant: what diversity is actually possible? We consider this second, less commonly asked question:

- we model "views" as abstract argumentation frameworks
- individual view is mix of "facts" and "preferences"
- can we *rationalise* diverse observations by disentangling them?

S. Airiau, E. Bonzon, U. Endriss, N. Maudet, and J. Rossit. Rationalisation of Profiles of Abstract Argumentation Frameworks. Proc. AAMAS-2016.

Talk Outline

- Background: *value-based* variant of *abstract argumentation*
- Concept: formal definition of the *rationalisability problem*
- Results: *single-agent case* and *multiagent case*

Value-Based Argumentation

An argumentation framework $AF = \langle Arg, \rightarrow \rangle$ consists of a finite set of arguments Arg and a binary attack-relation \rightarrow .

An audience-specific value-based AF $\langle Arg, \rightarrow, Val, val, \geq \rangle$ consists of an AF $\langle Arg, \rightarrow \rangle$, a labelling val: $Arg \rightarrow Val$ of arguments with values, and a (reflexive and transitive) preference order \geq on Val.

Argument A defeats $B (A \Rightarrow B)$ if $A \rightarrow B$ but $val(B) \neq val(A)$. Note that $\langle Arg, \Rightarrow \rangle$ is itself just another AF.

P.M. Dung. On the Acceptability of Arguments and its Fundamental Role in NMR, LP and n-Person Games. *Artificial Intelligence*, 77(2):321–358, 1995.

T.J.M. Bench-Capon. Persuasion in Practical Argument Using Value-Based Argumentation Frameworks. *Journal of Logic and Computation*, 13(3):429–448, 2003.

The Rationalisability Problem

Given *n* agents and a profile of AF's $(\langle Arg_1, \Rightarrow_1 \rangle, \dots, \langle Arg_n, \Rightarrow_n \rangle)$ the rationalisability problem asks whether there exist:

- a master attack-relation \rightarrow on $Arg = Arg_1 \cup \cdots \cup Arg_n$
- a set of values Val and a value-labelling $val: Arg \rightarrow Val$
- a profile of preference orders (\geq_1, \ldots, \geq_n)

such that $A \Longrightarrow_i B \text{ iff } A \longrightarrow B$ but $val(B) >_i val(A)$ [for all i, A, B]. We may also wish to impose certain *constraints* on allowed solutions.

The Single-Agent Case: Example

Let $Arg = \{A, B, C\}$. Suppose the master attack-relation \rightarrow is fixed.

Can you rationalise \Rightarrow in terms of \rightarrow using ...

- up to *two* values?
- up to *three* values?
- up to *three* values and a *complete* preference order?

The Single-Agent Case: Results

Can you rationalise a given AF $\langle Arg, \Rightarrow \rangle$ by means of some master attack-relation \rightarrow , value-labelling $val : Arg \rightarrow Val$, and preference \geq ? Depends on the constraints:

- No constraints (or only on value-labelling): always yes!
 Just let (→) = (⇒), use whatever value-labelling, and let ≥ be indifferent between any two arguments.
- Fixed master attack-relation: easy polynomial algorithm

Assign unique value to each argument. Just need to check $(\Rightarrow) \subseteq (\rightarrow)$, removed part $(\rightarrow \ \Rightarrow)$ is acyclic, and preference does not cancel too many attacks: $(\Rightarrow) \cap (\rightarrow \ \Rightarrow)^+ = \emptyset$.

 Bound on values and complete preference: also polynomial Encode as integer program with 2 variables per inequality. »
 For (possibly) incomplete preferences this is an open problem.

Rationalisation with Bound on Number of Values

Can you rationalise $\langle Arg, \Rightarrow \rangle$ by means of master attack-relation \rightarrow , some $val : Arg \rightarrow Val$ with $|Val| \leq k$, and some *complete* \geq ?

Suppose master attack-relation \rightarrow is given [if not: $(\rightarrow) = (\Rightarrow)$ is best]. W.I.o.g., assume $(\Rightarrow) \subseteq (\rightarrow)$ [otherwise: not rationalisable].

W.I.o.g., let $Val = \{1, \ldots, k\}$ and let $\geq be \geq on$ the natural numbers.

For every $A \in Arg$, introduce *integer variable* x_A with $1 \leq x_A \leq k$. Construct an integer program with these inequalities:

- $x_A < x_B$ whenever $A \rightarrow B$ but not $A \Rightarrow B$
- $x_B \leq x_A$ whenever $A \Rightarrow B$ [and thus also $A \rightarrow B$]

Deciding feasibility of IP's with 2 variables per inequality is polynomial! <u>Crucial</u>: modelling $val(B) \neq val(A)$ as $x_B \leq x_A$ rather than $x_B \neq x_A$ is ok only due to the completeness requirement!

Multiagent Rationalisation: Example

Let $Arg = \{A, B, C\}$ and n = 2. Try to rationalise the following profile.

A few hints:

- Rationalisable if rationalisable with $(\rightarrow) = (\Rightarrow_1) \cup (\Rightarrow_2) = (\Rightarrow_1)$.
- Rationalisable if rationalisable with one value for each argument.
- Now try to build \geq_2 (preference order of second agent) ...

Multiagent Rationalisation: Easy Cases

In our example, it was *impossible to decompose* the problem and to consider rationalisability separately for each agent.

But when all constraints are of these types, then you *can decompose*:

- the master attack-relation \rightarrow is fixed
- the value-labelling $val: (Arg_1 \cup \cdots \cup Arg_n) \rightarrow Val$ is fixed^{*}

So multiagent rationalisability *reduces* to single-agent rationalisability! Thus, multiagent rationalisability is *polynomial* in these cases:

- no constraints
- only the master attack-relation is fixed
- only the value-labelling is fixed
- master attack-relation and value-labelling are fixed

*Single-agent rationalisability is also easy [case not discussed before].

Multiagent Rationalisation: Hard (and Easy) Cases

<u>Bad news</u>: Let $k \ge 3$. For constraint $|Val| \le k$, rationalisability is *NP-complete* (whether or not the master attack-relation is given).

- Proof by reduction from GRAPH COLOURING.
- Open problem whether also NP-complete for $Arg_1 = \cdots = Arg_n$.

<u>Good news:</u> for k = 2 there is a *polynomial* algorithm [not in paper]. <u>Good news:</u> for *"large" bounds* it's also *polynomial*: $k \in \Omega(|Arg|)$.

Last Slide

We have introduced the *rationalisability problem* for a given profile of argumentation frameworks, one for each agent in a multiagent system:

- identified various cases that admit *polynomial algorithms*
- but multiagent case with bound on values is *NP-complete*
- several open problems regarding complexity

Definition of the rationalisability problem in terms of Bench-Capon's *value-based* argumentation frameworks, but basic idea is general.

Possible *application* scenarios:

- to determine relevant profiles for research on aggregating AF's
- if rationalisable, we can use preference aggregation instead
- to spot inconsistencies in online debating platforms

S. Airiau, E. Bonzon, U. Endriss, N. Maudet, and J. Rossit. Rationalisation of Profiles of Abstract Argumentation Frameworks. Proc. AAMAS-2016.