Weighted Propositional Formulas for Preference **Representation in Combinatorial Domains**

Ulle Endriss Institute for Logic, Language and Computation University of Amsterdam

joint work with Yann Chevaleyre (Paris), Jérôme Lang (Toulouse) and Joel Uckelman (Amsterdam)

Talk Overview

We will take inspiration from the field of *collective decision making*. In particular, I shall mention two applications:

- multiagent resource allocation
- voting theory: electing a commitee

We will concentrate on relevant *knoweldge representation* issues, particularly on languages for describing *utility functions* over *combinatorial domains* (needed to represent agent preferences):

- the *explicit form* of representation (not very clever);
- the *k*-additive form (a lot more attractive);
- logic-based languages based on *weighted formulas* and their properties: *expressivity*, *succinctness*, *complexity*

Multiagent Resource Allocation

<u>Scenario</u>: several agents and a set \mathcal{R} of indivisible resources

<u>Task</u>: decide on an allocation of resources to agents, e.g. by means of negotiation or an auction; the quality of a solution can be measured in terms of a suitable aggregation of the individual preferences

Individual agents model their preferences in terms of *utility functions* $u: 2^{\mathcal{R}} \to \mathbb{R}$. In particular, the utility assigned to a bundle is *not* (necessarily) the sum of the utilities or the individual items.

► How should we *represent* the individual agent preferences?

Issues that matter for this kind of application:

- Can we *express* all the preference structures (utility functions) that we may come across?
- Can we express them in a *concise* manner?

Explicit Representation

The *explicit form* of representing a utility function u consists of a table listing for every bundle $X \subseteq \mathcal{R}$ the utility u(X). By convention, table entries with u(X) = 0 may be omitted.

- the explicit form is *fully expressive:* any utility function $u: 2^{\mathcal{R}} \to \mathbb{R}$ may be so described
- the explicit form is *not concise*: it may require up to 2^n entries

Even very simple utility functions may require exponential space: e.g. the additive function mapping bundles to their cardinality.

The *k*-additive Form

- A utility function is k-additive iff the utility assigned to a bundle X can be represented as the sum of marginal utilities for subsets of X with cardinality ≤ k (limited synergies).
- The *k*-additive form of representing utility functions:

$$u(X) = \sum_{T \subseteq X} \alpha^T$$
 with $\alpha^T = 0$ whenever $|T| > k$

Example: $u = 3.x_1 + 7.x_2 - 2.x_2.x_3$ is a 2-additive function

- That is, specifying a utility function in this language means specifying the *coefficients* α^T for bundles $T \subseteq \mathcal{R}$.
- In the context of resource allocation, the value α^T can be seen as the additional benefit incurred from owning the items in T together, i.e. beyond the benefit of owning all proper subsets.

Expressive Power

The k-additive form is *fully expressive*, if we choose k large enough:

Proposition 1 Any utility function is (uniquely) representable in k-additive form for some $k \leq |\mathcal{R}|$.

<u>Proof:</u> For any utility function u, we can define coefficients α^X :

$$\alpha^{\{\}} = u(\{\})$$

$$\alpha^X = u(X) - \sum_{T \subset X} \alpha^T \text{ for all } X \subseteq \mathcal{R} \text{ with } X \neq \{\}$$

Hence, $u(X) = \sum_{T \subseteq X} \alpha^T$, which is k-additive for $k = |\mathcal{R}|$. \checkmark

The k-additive form allows for a *parametrisation* of synergies:

- 1-additive = modular (no synergies)
- $|\mathcal{R}|$ -additive = general (any kind of synergies)
- ... and everything in between

Comparative Succinctness

If two languages can express the same class of utility functions, which should we use? An important criterion is *succinctness*.

Let L and L' be two languages for defining utilities. We say that L' is at least as succinct as L, denoted by $L \leq L'$, iff there exist a mapping $f: L \to L'$ and a *polynomial* function p such that:

- $u \equiv f(u)$ for all $u \in L$ (they represent the same functions); and
- $size(f(u)) \leq p(size(u))$ for all $u \in L$ (polysize reduction).

Write $L \prec L'$ (strictly less succinct) iff $L \preceq L'$ but not $L' \preceq L$.

Two languages can also be *incomparable* in view of succinctness.

Explicit vs. *k*-additive Form

Proposition 2 The explicit and the *k*-additive form are incomparable in view of succinctness.

<u>Proof:</u> The following two functions can be used to prove the mutual lack of a polysize reduction:

- u₁(X) = |X|: representing u₁ requires |R| non-zero coefficients in the k-additive form (*linear*); but 2^{|R|} − 1 non-zero values in the explicit form (*exponential*).
- $u_2(X) = 1$ for |X| = 1 and $u_2(X) = 0$ otherwise: requires $|\mathcal{R}|$ non-zero values in the explicit form (*linear*); but $2^{|\mathcal{R}|} - 1$ non-zero coefficients in the k-additive form (*exponential*): $\alpha^T = 1$ for |T| = 1, $\alpha^T = -2$ for |T| = 2, $\alpha^T = 3$ for |T| = 3, ...

<u>Remark</u>: Still, for most utility functions occurring in practice, the k-additive form can be expected to be more succinct.

Committee Elections

How should we elect a committee with k seats from amongst n candidates? The usual approach is to extend standard voting rules:

- *Plurality voting:* each voter can vote for their preferred candidate and the candidate receiving the most votes wins
- Approval voting: each voter can approve of as many canddiates as they wish and the candidate receiving the most approvals wins

A naïve way of extending each would be to make the top k candidates winners. But neither method is very expressive:

- Plurality ballots can only express preferences where one candidate has utility 1 and the rest utility 0.
- Approval ballots can only express preferences where a subset of candidates each has utility 1 and each candidate in the complement has utility 0.

Example

Suppose we have a voter with the following preferences:

```
Alice, Bob \succ neither \succ both
```

What ballot should this voter cast under plurality (approval) voting?

Observe that these preferences would be expressible using either the *explict form* or the k-additive form:

$$\begin{array}{|c|c|c|c|}\hline \{a\} & 1 \\ \{b\} & 1 \\ \{a,b\} & -1 \end{array} & a+b-3.a.b$$

▶ Besides having to express typical preferences in a *concise* way, we would also like to be able to do so in a *natural* manner ...

Weighted Propositional Formulas

An alternative approach to preference representation is based on weighted propositional formulas.

Let PS be a set of propositional symbols (resources, candidates) and let \mathcal{L}_{PS} be the propositional language over PS.

A goal base is a set $G = \{(\varphi_i, \alpha_i)\}_i$ of pairs, each consisting of a consistent propositional formula $\varphi_i \in \mathcal{L}_{PS}$ and a real number α_i . The utility function u_G generated by G is defined by

$$u_G(M) = \sum \{ \alpha_i \mid (\varphi_i, \alpha_i) \in G \text{ and } M \models \varphi_i \}$$

for all models $M \in 2^{PS}$. G is called the *generator* of u_G . Example: $\{(p \lor q \lor r, 5), (p \land q, 2)\}$

Question

We shall be interested in the following question:

Are there simple restrictions on goal bases such that the utility functions they generate enjoy simple structural properties?

Restrictions

Let $H \subseteq \mathcal{L}_{PS}$ be a restriction on the set of propositional formulas and let $H' \subseteq \mathbb{R}$ be a restriction on the set of weights allowed.

Regarding *formulas*, we consider the following restrictions:

- A *positive* formula is a formula with no occurrence of ¬; a *strictly positive* formula is a positive formula that is not a tautology.
- A *clause* is a (possibly empty) disjunction of literals; a *k*-*clause* is a clause of length ≤ k.
- A *cube* is a (possibly empty) conjunction of literals; a *k*-*cube* is a cube of length ≤ k.
- A k-formula is a formula φ with at most k propositional symbols.

Regarding *weights*, we consider only the restriction to *positive* reals.

Given two restrictions H and H', let $\mathcal{U}(H, H')$ be the class of functions that can be generated from goal bases conforming to H and H'.

Basic Results

Proposition 3 $\mathcal{U}(positive k-cubes, all)$ is equal to the class of k-additive utility functions.

Proposition 4 The following are also all equal to the class of k-additive utility functions: U(k-cubes, all), U(k-clauses, all), U(positive k-formulas, all) and U(k-formulas, all).

<u>Proof:</u> Use equivalence-preserving transformations of goal bases such as $G \cup \{(\varphi \land \neg \psi, \alpha)\} \equiv G \cup \{(\varphi, \alpha), (\varphi \land \psi, -\alpha)\}.$

Normalised Utility Functions

A utility function $u: 2^{PS} \to \mathbb{R}$ is called *normalised* iff $u(\{\}) = 0$.

Proposition 5 U(positive k-clauses, all) is equal to the class of normalised k-additive utility functions.

<u>Proof:</u> (\top, α) cannot be rewritten as a positive clause ... \checkmark

Monotonic Utility

A utility function $u: 2^{PS} \to \mathbb{R}$ is called *monotonic* iff $u(X) \le u(Y)$ whenever $X \subseteq Y$.

Proposition 6 $\mathcal{U}(strictly \ positive, \ positive)$ is equal to the class of normalised monotonic utility functions.

Example: Take the normalised monotonic function u with $u(\{p_1\}) = 2$, $u(\{p_2\}) = 5$ and $u(\{p_1, p_2\}) = 6$. We obtain the following goal base:

$$G = \{ (p_1 \lor p_2, 2), (p_2, 3), (p_1 \land p_2, 1) \}$$

Overview of Correspondence Results

Formulas	Weights		Utility Functions
cubes/clauses/all	general	=	all
positive cubes/formulas	general	=	all
positive clauses	general	=	normalised
strictly positive formulas	general	=	normalised
k-cubes/clauses/formulas	general	=	k-additive
positive k -cubes/formulas	general	=	k-additive
positive k -clauses	general	=	normalised k -additive
literals	general	=	modular
atoms	general	=	normalised modular
cubes/formulas	positive	=	non-negative
clauses	positive	\subset	non-negative
strictly positive formulas	positive	=	normalised monotonic
positive formulas	positive	=	non-negative monotonic
positive clauses	positive	\subset	normalised concave monotonic

Comparative Succinctness

Let L and L' be two sets of goal bases. We say that L' is at least as succinct as L, denoted by $L \leq L'$, iff there exist a mapping $f: L \to L'$ and a *polynomial* function p such that:

- $G \equiv f(G)$ for all $G \in L$ (they generate the same functions); and
- $size(f(G)) \leq p(size(G))$ for all $G \in L$ (polysize reduction).

An Incomparability Result

Let *complete cubes* $\subseteq \mathcal{L}_{PS}$ be the restriction to cubes of length n = |PS|, containing either p or $\neg p$ for every $p \in PS$.

<u>Fact:</u> $\mathcal{U}(complete \ cubes, all)$ is equal to the class of all utility functions (and corresponds to the "explicit form" of writing utility functions).

Proposition 7 $\mathcal{U}(complete \ cubes, all)$ and $\mathcal{U}(positive \ cubes, all)$ are incomparable in view of succinctness.

<u>Proof:</u> This is in fact equivalent to the earlier result on the incomparability of the explicit and the k-additive form. \checkmark

The Efficiency of Negation

Recall that both $\mathcal{U}(positive \ cubes, \ all)$ and $\mathcal{U}(cubes, \ all)$ are equal to the class of all utility functions. So which should we use?

Proposition 8 $\mathcal{U}(positive \ cubes, all) \prec \mathcal{U}(cubes, all)$. ["less succinct"]

<u>Proof:</u> Clearly, $\mathcal{U}(positive \ cubes, all) \preceq \mathcal{U}(cubes, all)$, because any positive cube is also a cube.

Now consider u with $u(\{\}) = 1$ and u(M) = 0 for all $M \neq \{\}$:

- $G = \{(\neg p_1 \land \cdots \land \neg p_n, 1)\} \in \mathcal{U}(cubes, all)$ has *linear* size and generates u.
- $G' = \{(\bigwedge X, (-1)^{|X|}) \mid X \subseteq PS\} \in \mathcal{U}(\text{positive cubes, all})$ has exponential size and also generates u.

On the other hand, the generator of u must be *unique* if only positive cubes are allowed (start with $(\top, 1) \in G_u \dots$).

Cubes and Clauses

Proposition 9 $\mathcal{U}(positive \ cubes, \ all)$ and $\mathcal{U}(positive \ clauses, \ all)$ are incomparable in view of succinctness (over normalised functions).

<u>Proof:</u> Need to find counterexamples for both directions: one language can express it succinctly and the other not. Need to appeal to uniqueness property for the latter (non-trivial for positive clauses). \checkmark

Proposition 10 $\mathcal{U}(cubes, all) \sim \mathcal{U}(clauses, all)$ ["equally succinct"]

<u>Proof:</u> Use equivalence-preserving transformastions of goal bases such as $G \cup \{(\varphi \lor \psi, \alpha)\} \equiv G \cup \{(\neg \varphi \land \neg \psi, -\alpha), (\top, \alpha)\}$. Given that weights labelling the same formula (here \top) can be combined, this increases the cardinality of the goal base by at most 1. \checkmark

Complexity

Other interesting questions concern the complexity of reasoning about preferences. Consider the following decision problem:

MAX-UTILITY(H, H')

Given: Goal base $G \in \mathcal{U}(H, H')$ and $K \in \mathbb{Z}$ **Question:** Is there an $M \in 2^{PS}$ such that $u_G(M) \ge K$?

Some basic results are straightforward:

- MAX-UTILITY(H, H') is in NP for any choice of H and H', because we can always check $u_G(M) \ge K$ in polynomial time.
- MAX-UTILITY(*all*, *all*) is *NP-complete* (reduction from SAT).

More interesting questions would be whether there are either (1) "large" sublanguages for which MAX-UTILITY is still polynomial, or (2) "small" sublanguages for which it is already NP-hard.

Three Complexity Results

Proposition 11 MAX-UTILITY(k-clauses, positive) is NP-complete, even for k = 2.

<u>Proof</u>: Reduction from MAX2SAT (NP-complete): "Given a set of 2-clauses, is there a satisfiable subset with cardinality $\geq K$?". \checkmark

Proposition 12 MAX-UTILITY(*literals*, *all*) is in P.

<u>Proof</u>: Assuming that G contains every literal exactly once (possibly with weight 0), making p true iff the weight of p is greater than the weight of $\neg p$ results in a model with maximal utility. \checkmark

Proposition 13 MAX-UTILITY(*positive*, *positive*) is in P.

<u>Proof:</u> Making *all* propositional symbols true yields maximal utility. \checkmark

Back to Voting

Some very simple languages correspond to the sets of legal ballots for two well-known voting rules (to elect a single candidate):

- *Plurality voting:* vote for your preferred candidate (the candidate receiving the most votes wins): $U(atom, \{1\})$
- Approval voting: approve of as many canddiates as you wish (the candidate receiving the most approvals wins): $U(atoms, \{1\})$

Propositional logic seem a suitable language for expressing voter preferences over commitees, so maybe this could be extended.

Winner determination could be modelled as MAX-UTILITY wrt. the sum of the goal bases sent by each voter, and a goal base encoding the constraints on the size of the committee (with very high weights).

Conclusion

Compact preference representation in combinatorial domains is relevant to a number of applications, and weighted goals are an interesting class of languages for doing this. Ongoing work:

- Fill in missing technical results on expressivity, succincness and complexity to get global picture
- Aggregation operators other than \sum (particularly max)
- Applications: committee elections, distributed negotiation, combinatorial auctions

Y. Chevaleyre, U. Endriss, and J. Lang. *Expressive Power of Weighted Propositional Formulas for Cardinal Preference Modelling*. Proc. KR-2006.

J. Uckelman and U. Endriss. *Preference Representation with Weighted Goals: Expressivity, Succinctness, Complexity.* Proc. AiPref-2007.