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Talk Overview

We will take inspiration from the field of collective decision making .

In particular, I shall mention two applications:

• multiagent resource allocation

• voting theory: electing a commitee

We will concentrate on relevant knoweldge representation issues,

particularly on languages for describing utility functions over

combinatorial domains (needed to represent agent preferences):

• the explicit form of representation (not very clever);

• the k-additive form (a lot more attractive);

• logic-based languages based on weighted formulas and their

properties: expressivity , succinctness, complexity
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Multiagent Resource Allocation

Scenario: several agents and a set R of indivisible resources

Task: decide on an allocation of resources to agents, e.g. by means of

negotiation or an auction; the quality of a solution can be measured in

terms of a suitable aggregation of the individual preferences

Individual agents model their preferences in terms of utility functions

u : 2R → R. In particular, the utility assigned to a bundle is not

(necessarily) the sum of the utilities or the individual items.

I How should we represent the individual agent preferences?

Issues that matter for this kind of application:

• Can we express all the preference structures (utility functions)

that we may come across?

• Can we express them in a concise manner?
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Explicit Representation

The explicit form of representing a utility function u consists of a table

listing for every bundle X ⊆ R the utility u(X). By convention, table

entries with u(X) = 0 may be omitted.

• the explicit form is fully expressive:

any utility function u : 2R → R may be so described

• the explicit form is not concise: it may require up to 2n entries

Even very simple utility functions may require exponential space: e.g.

the additive function mapping bundles to their cardinality.
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The k-additive Form

• A utility function is k-additive iff the utility assigned to a bundle

X can be represented as the sum of marginal utilities for subsets

of X with cardinality ≤ k (limited synergies).

• The k-additive form of representing utility functions:

u(X) =
∑

T⊆X

αT with αT = 0 whenever |T | > k

Example: u = 3.x1 + 7.x2 − 2.x2.x3 is a 2-additive function

• That is, specifying a utility function in this language means

specifying the coefficients αT for bundles T ⊆ R.

• In the context of resource allocation, the value αT can be seen as

the additional benefit incurred from owning the items in T

together , i.e. beyond the benefit of owning all proper subsets.
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Expressive Power

The k-additive form is fully expressive, if we choose k large enough:

Proposition 1 Any utility function is (uniquely) representable in

k-additive form for some k ≤ |R|.

Proof: For any utility function u, we can define coefficients αX :

α{ } = u({ })
αX = u(X)−

∑
T⊂X αT for all X ⊆ R with X 6= { }

Hence, u(X) =
∑

T⊆X αT , which is k-additive for k = |R|. X

The k-additive form allows for a parametrisation of synergies:

• 1-additive = modular (no synergies)

• |R|-additive = general (any kind of synergies)

• . . . and everything in between
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Comparative Succinctness

If two languages can express the same class of utility functions, which

should we use? An important criterion is succinctness.

Let L and L′ be two languages for defining utilities. We say that L′ is

at least as succinct as L, denoted by L � L′, iff there exist a mapping

f : L→ L′ and a polynomial function p such that:

• u ≡ f(u) for all u ∈ L (they represent the same functions); and

• size(f(u)) ≤ p(size(u)) for all u ∈ L (polysize reduction).

Write L ≺ L′ (strictly less succinct) iff L � L′ but not L′ � L.

Two languages can also be incomparable in view of succinctness.
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Explicit vs. k-additive Form

Proposition 2 The explicit and the k-additive form are incomparable

in view of succinctness.

Proof: The following two functions can be used to prove the mutual

lack of a polysize reduction:

• u1(X) = |X|: representing u1 requires |R| non-zero coefficients in

the k-additive form (linear); but 2|R| − 1 non-zero values in the

explicit form (exponential).

• u2(X) = 1 for |X| = 1 and u2(X) = 0 otherwise: requires |R|
non-zero values in the explicit form (linear); but 2|R| − 1 non-zero

coefficients in the k-additive form (exponential): αT =1 for

|T |=1, αT =−2 for |T |=2, αT =3 for |T |=3, . . .

Remark: Still, for most utility functions occurring in practice, the

k-additive form can be expected to be more succinct.
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Committee Elections

How should we elect a committee with k seats from amongst n

candidates? The usual approach is to extend standard voting rules:

• Plurality voting: each voter can vote for their preferred candidate

and the candidate receiving the most votes wins

• Approval voting: each voter can approve of as many canddiates as

they wish and the candidate receiving the most approvals wins

A näıve way of extending each would be to make the top k candidates

winners. But neither method is very expressive:

• Plurality ballots can only express preferences where one candidate

has utility 1 and the rest utility 0.

• Approval ballots can only express preferences where a subset of

candidates each has utility 1 and each candidate in the

complement has utility 0.
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Example

Suppose we have a voter with the following preferences:

Alice, Bob � neither � both

What ballot should this voter cast under plurality (approval) voting?

Observe that these preferences would be expressible using either the

explict form or the k-additive form:

{a} 1

{b} 1

{a, b} −1

a+ b− 3.a.b

I Besides having to express typical preferences in a concise way, we

would also like to be able to do so in a natural manner . . .
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Weighted Propositional Formulas

An alternative approach to preference representation is based on

weighted propositional formulas.

Let PS be a set of propositional symbols (resources, candidates) and

let LPS be the propositional language over PS .

A goal base is a set G = {(ϕi, αi)}i of pairs, each consisting of a

consistent propositional formula ϕi ∈ LPS and a real number αi.

The utility function uG generated by G is defined by

uG(M) =
∑

{αi | (ϕi, αi) ∈ G and M |= ϕi}

for all models M ∈ 2PS . G is called the generator of uG.

Example: {(p ∨ q ∨ r, 5), (p ∧ q, 2)}
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Question

We shall be interested in the following question:

Are there simple restrictions on goal bases such that the utility

functions they generate enjoy simple structural properties?
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Restrictions

Let H ⊆ LPS be a restriction on the set of propositional formulas and

let H ′ ⊆ R be a restriction on the set of weights allowed.

Regarding formulas, we consider the following restrictions:

• A positive formula is a formula with no occurrence of ¬; a strictly

positive formula is a positive formula that is not a tautology.

• A clause is a (possibly empty) disjunction of literals; a k-clause is

a clause of length ≤ k.

• A cube is a (possibly empty) conjunction of literals; a k-cube is a

cube of length ≤ k.

• A k-formula is a formula ϕ with at most k propositional symbols.

Regarding weights, we consider only the restriction to positive reals.

Given two restrictions H and H ′, let U(H,H’) be the class of functions

that can be generated from goal bases conforming to H and H ′.
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Basic Results

Proposition 3 U(positive k-cubes, all) is equal to the class of

k-additive utility functions.

Proposition 4 The following are also all equal to the class of

k-additive utility functions: U(k-cubes, all), U(k-clauses, all),
U(positive k-formulas, all) and U(k-formulas, all).

Proof: Use equivalence-preserving transformations of goal bases such

as G ∪ {(ϕ ∧ ¬ψ, α)} ≡ G ∪ {(ϕ, α), (ϕ ∧ ψ,−α)}. X
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Normalised Utility Functions

A utility function u : 2PS → R is called normalised iff u({ }) = 0.

Proposition 5 U(positive k-clauses, all) is equal to the class of

normalised k-additive utility functions.

Proof: (>, α) cannot be rewritten as a positive clause . . . X
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Monotonic Utility

A utility function u : 2PS → R is called monotonic iff u(X) ≤ u(Y )
whenever X ⊆ Y .

Proposition 6 U(strictly positive, positive) is equal to the class of

normalised monotonic utility functions.

Example: Take the normalised monotonic function u with u({p1}) = 2,

u({p2}) = 5 and u({p1, p2}) = 6. We obtain the following goal base:

G = {(p1 ∨ p2, 2), (p2, 3), (p1 ∧ p2, 1)}
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Overview of Correspondence Results

Formulas Weights Utility Functions

cubes/clauses/all general = all

positive cubes/formulas general = all

positive clauses general = normalised

strictly positive formulas general = normalised

k-cubes/clauses/formulas general = k-additive

positive k-cubes/formulas general = k-additive

positive k-clauses general = normalised k-additive

literals general = modular

atoms general = normalised modular

cubes/formulas positive = non-negative

clauses positive ⊂ non-negative

strictly positive formulas positive = normalised monotonic

positive formulas positive = non-negative monotonic

positive clauses positive ⊂ normalised concave monotonic

Ulle Endriss 17



Weighted Propositional Formulas Leipzig: 9 May 2007

Comparative Succinctness

Let L and L′ be two sets of goal bases. We say that L′ is at least as

succinct as L, denoted by L � L′, iff there exist a mapping

f : L→ L′ and a polynomial function p such that:

• G ≡ f(G) for all G ∈ L (they generate the same functions); and

• size(f(G)) ≤ p(size(G)) for all G ∈ L (polysize reduction).
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An Incomparability Result

Let complete cubes ⊆ LPS be the restriction to cubes of length

n = |PS |, containing either p or ¬p for every p ∈ PS .

Fact: U(complete cubes, all) is equal to the class of all utility functions

(and corresponds to the “explicit form” of writing utility functions).

Proposition 7 U(complete cubes, all) and U(positive cubes, all) are

incomparable in view of succinctness.

Proof: This is in fact equivalent to the earlier result on the

incomparability of the explicit and the k-additive form. X
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The Efficiency of Negation

Recall that both U(positive cubes, all) and U(cubes, all) are equal to

the class of all utility functions. So which should we use?

Proposition 8 U(positive cubes, all) ≺ U(cubes, all). [“less succinct”]

Proof: Clearly, U(positive cubes, all) � U(cubes, all), because any

positive cube is also a cube.

Now consider u with u({ }) = 1 and u(M) = 0 for all M 6= { }:

• G = {(¬p1 ∧ · · · ∧ ¬pn, 1)} ∈ U(cubes, all) has linear size and

generates u.

• G′ = {(
∧
X, (−1)|X|) | X ⊆ PS} ∈ U(positive cubes, all) has

exponential size and also generates u.

On the other hand, the generator of u must be unique if only

positive cubes are allowed (start with (>, 1) ∈ Gu . . . ). X
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Cubes and Clauses

Proposition 9 U(positive cubes, all) and U(positive clauses, all) are

incomparable in view of succinctness (over normalised functions).

Proof: Need to find counterexamples for both directions: one language

can express it succinctly and the other not. Need to appeal to

uniqueness property for the latter (non-trivial for positive clauses). X

Proposition 10 U(cubes, all) ∼ U(clauses, all) [“equally succinct”]

Proof: Use equivalence-preserving transformastions of goal bases such

as G ∪ {(ϕ ∨ ψ, α)} ≡ G ∪ {(¬ϕ ∧ ¬ψ,−α), (>, α)}. Given that

weights labelling the same formula (here >) can be combined, this

increases the cardinality of the goal base by at most 1. X
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Complexity

Other interesting questions concern the complexity of reasoning about

preferences. Consider the following decision problem:

Max-Utility(H,H’)
Given: Goal base G ∈ U(H,H’) and K ∈ Z
Question: Is there an M ∈ 2PS such that uG(M) ≥ K?

Some basic results are straightforward:

• Max-Utility(H,H’) is in NP for any choice of H and H ′,

because we can always check uG(M) ≥ K in polynomial time.

• Max-Utility(all, all) is NP-complete (reduction from Sat).

More interesting questions would be whether there are either

(1) “large” sublanguages for which Max-Utility is still polynomial,

or (2) “small” sublanguages for which it is already NP-hard.
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Three Complexity Results

Proposition 11 Max-Utility(k-clauses, positive) is NP-complete,

even for k = 2.

Proof: Reduction from Max2Sat (NP-complete): “Given a set of

2-clauses, is there a satisfiable subset with cardinality ≥ K?”. X

Proposition 12 Max-Utility(literals, all) is in P.

Proof: Assuming that G contains every literal exactly once (possibly

with weight 0), making p true iff the weight of p is greater than the

weight of ¬p results in a model with maximal utility. X

Proposition 13 Max-Utility(positive, positive) is in P.

Proof: Making all propositional symbols true yields maximal utility. X
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Back to Voting

Some very simple languages correspond to the sets of legal ballots for

two well-known voting rules (to elect a single candidate):

• Plurality voting: vote for your preferred candidate (the candidate

receiving the most votes wins): U(atom, {1})

• Approval voting: approve of as many canddiates as you wish (the

candidate receiving the most approvals wins): U(atoms, {1})

Propositional logic seem a suitable language for expressing voter

preferences over commitees, so maybe this could be extended.

Winner determination could be modelled as Max-Utility wrt. the

sum of the goal bases sent by each voter, and a goal base encoding

the constraints on the size of the committee (with very high weights).
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Conclusion

Compact preference representation in combinatorial domains is

relevant to a number of applications, and weighted goals are an

interesting class of languages for doing this. Ongoing work:

• Fill in missing technical results on expressivity, succincness and

complexity to get global picture

• Aggregation operators other than
∑

(particularly max)

• Applications: committee elections, distributed negotiation,

combinatorial auctions
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