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Computational Social Choice

• Research at the interface of

– mathematical economics: social choice, game theory, decision theory

– computer science and AI, multiagent systems, logic

• Some examples:

– voting: computational hardness as a barrier against manipulation

– preference representation in combinatorial domains

– logic-based modelling of social choice procedures

– multiagent resource allocation and fair division

Y. Chevaleyre, U. Endriss, J. Lang and N. Maudet. A Short Introduction to

Computational Social Choice. Proc. SOFSEM-2007.
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Talk Overview

• Introduction to Multiagent Resource Allocation

• Preliminaries on Distributed Negotiation Framework

• A couple of examples for so-called convergence results. Issues:

– Under what circumstances can we hope that a system where

agents negotiate autonomously and locally will converge to a

state considered optimal from a global point of view?

– How should we actually define such a notion of global

optimality? ; “fairness and efficiency”
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Multiagent Resource Allocation (MARA)

A tentative definition would be the following:

MARA is the process of distributing a number of items

amongst a number of interested parties.

What items? This talk is about the allocation of indivisible goods.

Some questions to think about:

• How are these items being distributed (allocation procedure)?

• Why are they being distributed? What’s a “good” allocation?

Y. Chevaleyre, P.E. Dunne, U. Endriss, J. Lang, M. Lemâıtre, N. Maudet, J. Pad-

get, S. Phelps, J.A. Rodŕıguez-Aguilar and P. Sousa. Issues in Multiagent Resource

Allocation. Informatica, 30:3–31, 2006.
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Choice of Allocation Procedure

An allocation procedure to determine a suitable allocation of resources

may be either centralised or distributed:

• In the centralised case, a single entity decides on the final

allocation, possibly after having elicited the preferences of the

other agents. Example: combinatorial auctions

• In the distributed case, allocations emerge as the result of a

sequence of local negotiation steps. Such local steps may or may

not be subject to structural restrictions (say, bilateral deals).
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Distributed Negotiation Framework

• Set of agents A = {1..n} and finite set of indivisible resources R.

• An allocation A is a partitioning of R amongst the agents in A.

Example: A(i) = {r5, r7} — agent i owns resources r5 and r7

• Each agent i ∈ A has got a valuation function vi : 2R → R.

Example: vi(A) = vi(A(i)) = 577.8 — agent i is pretty happy

• Agents may engage in negotiation to exchange resources in order

to benefit either themselves or society as a whole.

• A deal δ = (A,A′) is a pair of allocations (before/after).

• A deal may come with a number of side payments to compensate

some of the agents for a loss in valuation. A payment function is a

function p : A → R with
∑
i∈A

p(i) = 0.

Example: p(i) = 5 and p(j) = −5 means that agent i pays $5,

while agent j receives $5.
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The Local/Individual Perspective

A rational agent (who does not plan ahead) will only accept deals that

improve its individual welfare:

Definition 1 (IR) A deal δ = (A,A′) is called individually rational iff

there exists a payment function p such that vi(A′)− vi(A) > p(i) for

all i ∈ A, except possibly p(i) = 0 for agents i with A(i) = A′(i).

That is, an agent will only accept a deal if it results in a gain in value

(or money) that strictly outweighs a possible loss in money (or value).

The Global/Social Perspective

Definition 2 (Social welfare) The (utilitarian) social welfare of an

allocation of resources A is defined as follows:

sw(A) =
∑

i∈Agents

vi(A)
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Example

Let A = {ann, bob} and R = {chair , table} and suppose our agents

use the following valuation functions:

vann({ }) = 0 vbob({ }) = 0

vann({chair}) = 2 vbob({chair}) = 3

vann({table}) = 3 vbob({table}) = 3

vann({chair , table}) = 7 vbob({chair , table}) = 8

Furthermore, suppose the initial allocation of goods is A0 with

A0(ann) = {chair , table} and A0(bob) = { }.

Social welfare for allocation A0 is 7, but it could be 8. By moving only

a single good from agent ann to agent bob, the former would lose

more than the latter would gain (not IR).

The only possible deal would be to move the whole set {chair , table}.
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Negotiating Socially Optimal Allocations

So, under what circumstances can we hope that agents may be able to

negotiate a socially optimal allocation?

If we do not impose any structural restrictions on deals, then we can

get a strong convergence result:

Theorem 1 (Sandholm, 1998) Any sequence of IR deals will

eventually result in an allocation with maximal social welfare.

How can we explain this positive result? . . .

T. Sandholm. Contract Types for Satisficing Task Allocation: I Theoretical Results.

AAAI Spring Symposium 1998.
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Linking the Local and the Global Perspective

IR deals turn out to be exactly those deals that increase social welfare:

Lemma 2 (Individual rationality and social welfare) A deal

δ = (A,A′) is IR iff sw(A) < sw(A′).

Proof: “⇒”: IR means that overall valuation gains outweigh overall

payments (which are = 0). “⇐”: Using side payments, the social

surplus can be divided amongst all deal participants. X

Convergence then follows from the fact that the overall space of

allocations is finite.

Remark: Lemma 2 also suggests that our notion of rationality is

somehow “appropriate” for agents living in a utilitarian society . . .

U. Endriss, N. Maudet, F. Sadri and F. Toni. Negotiating Socially Optimal Allo-

cations of Resources. Journal of Artif. Intelligence Research, 25:315–348, 2006.
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Efficiency and Fairness

When assessing the quality of an allocation we can distinguish

(at least) two types of indicators of social welfare.

Aspects of efficiency (not in the computational sense) include:

• The sum of payoffs should be as high as possible (utilitarianism).

• The chosen agreement should be such that there is no alternative

allocation that would be better for some and not worse for any of

the other agents (Pareto optimality).

Aspects of fairness include:

• The agent that is going to be worst off should be as well off as

possible (egalitarianism).

• No agent should prefer to take the bundle allocated to one of its

peers rather than keeping their own (envy-freeness).
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Research Agenda

Theorem 1 has been an example (the first) for a convergence result.

We would like to better understand under what circumstances

convergence is possible for different scenarios. Parameters:

• The class of valuation functions considered:

arbitrary or, say, only additive valuations

• The type of structural restrictions imposed on deals:

general multilateral deals, bilateral deals, 1-resource deals, . . .

• The rationality criterion used to define individual agent behaviour:

individual rationality or something else

• The social welfare criterion used to define the global goal:

utilitarian or egalitarian social welfare, envy-freeness, . . .

It’s particularly hard to achieve envy-freeness, because a local deal in

one part of society can make another agent somewhere else envious . . .
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Envy-free States

Unfortunately, there are cases where envy-free allocations do not exist.

Example: 2 agents, 1 good desired by both

We can try to circumvent this problem by taking the balance of past

side payments into account when defining envy-freeness:

• Associate each allocation A with a payment balance π : A → R,

mapping agents to the sum of payments they have made so far.

• A state (A, π) is a pair of an allocation and a payment balance.

• Each agent i ∈ A has got a (quasi-linear) utility function

ui : 2R × R → R, defined as follows: ui(R, x) = vi(R)− x.

• A state (A, π) is envy-free iff ui(A(i), π(i)) ≥ ui(A(j), π(j)) for

all agents i, j ∈ A. An efficient envy-free (EEF) state is an

envy-free state maximising utilitarian social welfare.
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Envy-freeness and Individual Rationality

By a known result from social choice theory, EEF states always exist

(in the presence of money). But we want to find them by means of

rational negotiation. Unfortunately, this is generally impossible.

Example: 2 agents, 1 item r with v1({r}) = 4 and v2({r}) = 7.

Agent 1 owns r to begin with; giving it to agent 2 would be efficient.

• An IR deal would require a payment within interval (4, 7).

• But to ensure envy-freeness, the payment should be in [2, 3.5].

Compromise: We shall enforce an initial equitability payment

π0(i) = vi(A0)− sw(A0)/n before beginning negotiation.
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Globally Uniform Payments

Because of the “non-local effects of local deals” in view of

envy-freeness, to have any chance of getting a convergence result for

EEF states, we will have to restrict the freedom of agents a little by

fixing a specific payment function (still IR!):

• Let δ = (A,A′) be an IR deal. The payments as given by the

globally uniform payment function (GUPF) are defined as follows:

p(i) = [vi(A′)− vi(A)] − [sw(A′)− sw(A)]/n.

That is, we distribute the (positive!) social surplus to all agents.
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Convergence to EEF States

A final restriction concerns agent valuations. Supermodular valuations

are valuations satisfying the following condition for all R1, R2 ⊆ R:

v(R1 ∪R2) ≥ v(R1) + v(R2)− v(R1 ∩R2)

We are now ready to state the result:

Theorem 3 (Convergence) If all valuations are supermodular and if

initial equitability payments have been made, then any sequence of IR

deals using the GUPF will eventually result in an EEF state.

Generalisation: if agents are nodes on a graph and can only envy and

negotiate with agents they a linked to, then we get a similar result.

Y. Chevaleyre, U. Endriss, S. Estivie and N. Maudet. Reaching Envy-free States

in Distributed Negotiation Settings. Proc. IJCAI-2007.

Y. Chevaleyre, U. Endriss and N. Maudet. Allocating Goods on a Graph to Elimi-

nate Envy. Proc. AAAI-2007.
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Conclusions

• Examples of recent work in Multiagent Resource Allocation

• Technical results about convergence to socially optimal states

• Two issues that are special about this line of work:

– distributed resource allocation via multilateral deals

– consideration of fairness criteria, not just efficiency

• Many open questions and topics for future work . . .

• Papers are available from my website:

http://www.illc.uva.nl/∼ulle/
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