The Problem of the Safety of the Agenda in Judgment Aggregation

Ulle Endriss Institute for Logic, Language and Computation University of Amsterdam

joint work with Umberto Grandi and Daniele Porello

Social Choice Theory

SCT studies collective decision making: how should we aggregate the preferences of the members of a group to obtain a "social preference"?

SCT is traditionally studied in Economics and Political Science, but now also by "us": *Computational Social Choice*.

Talk Outline

- Introduction to Judgment Aggregation
- A new problem: Safety of the Agenda
- Some Results: Characterisation and Complexity

U. Endriss, U. Grandi, and D. Porello. Complexity of Judgment Aggregation: Safety of the Agenda. Proc. AAMAS-2010.

The Doctrinal Paradox

Story: three judges have to decide whether the defendant is guilty

	p	$p \to q$	q
Judge 1:	Yes	Yes	Yes
Judge 2:	No	Yes	No
Judge 3:	Yes	No	No
Majority:	Yes	Yes	No

<u>Paradox</u>: each *individual* judgment set is *consistent*, but the *collective* judgment arrived at using the *majority rule* is not

L.A. Kornhauser and L.G. Sager. The One and the Many: Adjudication in Collegial Courts. *California Law Review*, 81(1):1–59, 1993.

Formal Framework

An agenda Φ is a finite nonempty set of propositional formulas not containing any double negations such that $\alpha \in \Phi \implies \sim \alpha \in \Phi$.

A judgment set J on an agenda Φ is a subset of Φ . We call J:

- complete if $\alpha \in J$ or $\sim \alpha \in J$ for all $\alpha \in \Phi$
- complement-free if $\alpha \notin J$ or $\sim \alpha \notin J$ for all $\alpha \in \Phi$
- consistent if there exists an assignment satisfying all $\alpha \in J$

Let $J(\Phi)$ be the set of all complete and consistent subsets of Φ . Now a finite set of *individuals* $N = \{1, \ldots, n\}$ with $n \ge 3$ express judgments on Φ , giving rise to a *profile* $\mathbf{J} = (J_1, \ldots, J_n)$.

An aggregation procedure for agenda Φ and a set of n individuals is a function mapping a profile of complete and consistent individual judgment sets to a single collective judgment set: $F: J(\Phi)^n \to 2^{\Phi}$.

Axioms

Use *axioms* to express desiderata for F. Examples:

Anonymity (A): For any profile J and any permutation $\sigma : N \to N$ we have $F(J_1, \ldots, J_n) = F(J_{\sigma(1)}, \ldots, J_{\sigma(n)})$.

- **Neutrality** (N): For any φ , ψ in the agenda Φ and profile $\mathbf{J} \in J(\Phi)$, if for all i we have $\varphi \in J_i \Leftrightarrow \psi \in J_i$, then $\varphi \in F(\mathbf{J}) \Leftrightarrow \psi \in F(\mathbf{J})$.
- **Independence** (I): For any φ in the agenda Φ and profiles **J** and **J'** in $J(\Phi)$, if $\varphi \in J_i \Leftrightarrow \varphi \in J'_i$ for all i, then $\varphi \in F(\mathbf{J}) \Leftrightarrow \varphi \in F(\mathbf{J}')$.

Systematicity (S) = (N) + (I)

C. List and C. Puppe. Judgment Aggregation: A Survey. *Handbook of Rational and Social Choice*. Oxford University Press, 2009.

Impossibility Theorem

We have seen that the majority rule is not consistent.

Is there a reasonable procedure that is?

Theorem 1 (List and Pettit, 2002) If the agenda contains at least P, Q and $P \land Q$, then no aggregation procedure producing consistent and complete judgment sets satisfies both (A) and (S).

Ch. List and Ph. Pettit. Aggregating Sets of Judgments: An Impossibility Result. *Economics and Philosophy*, 18(1):89–110, 2002.

Weak Rationality

Instead of always requiring consistent outcomes, use this axiom:

Weak Rationality (WR): $F(\mathbf{J})$ is complete and complement-free for all profiles \mathbf{J} , and $F(\mathbf{J})$ includes no contradictions for some \mathbf{J}

<u>Remark 1:</u> the second condition ("non-nullity") is a minor technicality (always satisfied if Φ includes no tautologies) — please ignore <u>Remark 2:</u> the majority rule does satisfy all of (WR), (A), (S)

Monotonicity Axioms

Two monotonicity axioms, one for independent rules (inter-profile) and one for neutral rules (intra-profile):

- **I-Monotonicity** (M^I): For any φ in the agenda Φ and profiles $\mathbf{J} = (J_1, \dots, J_i, \dots, J_n)$ and $\mathbf{J}' = (J_1, \dots, J'_i, \dots, J_n)$ in $J(\Phi)$, if $\varphi \notin J_i$ and $\varphi \in J'_i$, then $\varphi \in F(\mathbf{J}) \Rightarrow \varphi \in F(\mathbf{J}')$.
- **N-Monotonicity** (M^N): For any φ, ψ in the agenda Φ and profile **J** in $J(\Phi)$, if $\varphi \in J_i \Rightarrow \psi \in J_i$ for all i and $\varphi \notin J_k$ and $\psi \in J_k$ for some k, then $\varphi \in F(\mathbf{J}) \Rightarrow \psi \in F(\mathbf{J})$.

<u>Remark</u>: only (M^{I}) seems to show up in the literature

Classes of Aggregation Procedures

Given an agenda Φ and a list of axioms AX, let $\mathcal{F}_{\Phi}[\mathsf{AX}]$ be the set of procedures $F: J(\Phi)^n \to 2^{\Phi}$ that satisfy all axioms in AX.

Proposition 2 $\mathcal{F}_{\Phi}[WR,A,S,M^{I}] = \mathcal{F}_{\Phi}[WR,A,N,M^{N}]$ is empty if n is even and it is a set including only the majority rule if n is odd.

Further interesting combinations of axioms:

- dropping monotonicity: $\mathcal{F}_{\Phi}[WR,A,S]$, $\mathcal{F}_{\Phi}[WR,A,N]$, $\mathcal{F}_{\Phi}[WR,A,I]$
- $\mathcal{F}_{\Phi}[A,S,M^{I}]$, the *uniform quota rules* (Dietrich and List, 2007)

F. Dietrich and Ch. List. Judgment Aggregation by Quota Rules: Majority Voting Generalized. *Theoretical Politics*, 19(4):529–565, 2007.

Safety of the Agenda

A new concept in JA, practice-inspired:

Definition 1 An agenda Φ is safe wrt. a class of procedures \mathcal{F} , if $F(\mathbf{J})$ is consistent for every $F \in \mathcal{F}$ and every $\mathbf{J} \in J(\Phi)$.

<u>Goal</u>: We want to be able to check the safety of a given agenda for a given class of procedures (characterised in terms of a set of axioms).

We approach this by proving *characterisation results*:

all $F \in \mathcal{F}_{\Phi}[\mathsf{AX}]$ are consistent $\Leftrightarrow \Phi$ has such-and-such property

This is similar to *possibility results* proven in the JA literature:

some $F \in \mathcal{F}_{\Phi}[\mathsf{AX}]$ is consistent $\Leftrightarrow \Phi$ has such-and-such property

K. Nehring and C. Puppe. The Structure of Strategy-proof Social Choice. *Journal* of *Economic Theory*, 135(1):269–305, 2007.

C. List and C. Puppe. Judgment Aggregation: A Survey. *Handbook of Rational and Social Choice*. Oxford University Press, 2009.

Agenda Properties

Call a set of formulas *nontrivially inconsistent* if it is inconsistent but does not contain an inconsistent formula. An agenda Φ satisfies

- the *median property* (MP), if every nontrivially inconsistent subset of Φ has itself an inconsistent subset of size 2.
- the simplified MP (SMP), if every nontrivially inconsistent subset of Φ has itself an inconsistent subset $\{\varphi, \psi\}$ with $\models \varphi \leftrightarrow \neg \psi$;
- the syntactic SMP (SSMP), if every nontrivially inconsistent subset of Φ has itself an inconsistent subset {φ, ¬φ}.
- the k-median property (kMP) for k≥ 2, if every inconsistent subset of Φ has itself an incons. subset of size ≤ k (2MP=MP);

$$\mathsf{SSMP} \Rightarrow \mathsf{SMP} \Rightarrow \mathsf{MP} \Rightarrow k\mathsf{MP}$$

Characterisation Theorems I

The first is a known result (Nehring and Puppe, 2007):

Theorem 3 Φ is safe for $\mathcal{F}_{\Phi}[WR,A,S,M^{I}]$ iff it satisfies the MP.

<u>Remark:</u> $\mathcal{F}_{\Phi}[WR,A,S,M^{I}]$ includes just one rule (the majority rule), thus possibility theorem and characterisation theorem coincide.

K. Nehring and C. Puppe. The Structure of Strategy-proof Social Choice. *Journal of Economic Theory*, 135(1):269–305, 2007.

Characterisation Theorems II

Three new characterisation results:

Theorem 4 Φ is safe for $\mathcal{F}_{\Phi}[WR,A,S]$ iff it satisfies the SMP.

Theorem 5 Φ is safe for $\mathcal{F}_{\Phi}[WR,A,N]$ iff it satisfies the SMP and does not contain a contradictory formula.

Theorem 6 Φ is safe for $\mathcal{F}_{\Phi}[WR,A,I]$ iff it satisfies the SSMP.

Reformulation of a result by Dietrich and List (2007):

Theorem 7 Let $k \ge 2$. Φ is safe for the class of uniform quota rules with a quota m satisfying $m > n - \frac{n}{k}$ iff Φ satisfies the kMP.

F. Dietrich and Ch. List. Judgment Aggregation by Quota Rules: Majority Voting Generalized. *Theoretical Politics*, 19(4):529–565, 2007.

Complexity Results

For a given agenda, how hard is it to check safety?

Theorem 8 Checking the safety of the agenda is Π_2^p -complete for any of the classes of aggregation procedures considered.

Approach:

• the typical Π_2^p -complete problem is SAT for QBFs of the form

$$\forall x_1 \cdots x_r \exists y_1 \cdots y_s \varphi(x_1, \dots, x_r, y_1, \dots, y_s)$$

- reduce that problem to the problem of checking the SSMP, to establish Π_2^p -hardness of the latter (similarly for SMP, MP, kMP)
- prove that checking the SSMP, SMP, MP, $k\mathsf{MP}$ are all in Π^p_2
- apply the characterisation theorems

Last Slide

- New problem in JA: Safety of the Agenda
- *Characterisation results* for safe agendas for classes of aggregation procedures induced by natural axioms
- *Complexity results* showing how hard it is to check safety: second level of the polynomial hierarchy (probably worse than NP)
- <u>Conclusion</u>: ensuring safety requires simplistic agendas; checking that those simplistic properties hold is hard (but not impossible)
- The technical results are from a paper due to be presented at AAMAS-2010 and available from my website:

```
http://www.illc.uva.nl/~ulle/pubs/
```

U. Endriss, U. Grandi, and D. Porello. Complexity of Judgment Aggregation: Safety of the Agenda. Proc. AAMAS-2010.