Collective Annotation: From Crowdsourcing to Social Choice

Ulle Endriss
Institute for Logic, Language and Computation
University of Amsterdam

joint work with Raquel Fernández, Justin Kruger and Ciyang Qing

Outline

This will be an introduction to collective annotation:

- Annotation and Crowdsourcing (not only in Linguistics)
- Proposal: Use Social Choice Theory
- Formal Framework: Axiomatics of Collective Annotation
- Three Concrete Methods of Aggregation
- Results from Three Case Studies in Linguistics

This talk is based on the two papers cited below, as well as unpublished work with Raquel Fernández, Justin Kruger and Ciyang Qing.

- U. Endriss and R. Fernández. Collective Annotation of Linguistic Resources: Basic Principles and a Formal Model. Proc. ACL-2013.
- J. Kruger, U. Endriss, R. Fernández, and C. Qing. Axiomatic Analysis of Aggregation Methods for Collective Annotation. Proc. AAMAS-2014.

Annotation and Crowdsourcing

Disciplines such as computer vision and computational linguistics require large corpora of annotated data.

Examples from linguistics: grammaticality, word senses, speech acts

People need corpora with gold standard annotations:

- set of *items* (e.g., text fragment with one utterance highlighted)
- assignment of a category to each item (e.g., it's a question)

Classical approach: ask a handful of experts (who hopefully agree).

Modern approach is to use *crowdsourcing* (e.g., Mechanical Turk) to collect annotations: fast, cheap, more judgments from more speakers.

But: how to aggregate individual annotations into a gold standard?

- some work using machine learning approaches
- dominant approach: for each item, adopt the *majority* choice

Social Choice Theory

Aggregating information from individuals is what *social choice theory* is all about. Example: aggregation of preferences in an election.

F: vector of individual preferences \mapsto election winner F: vector of individual annotations \mapsto collective annotation

Research agenda:

- develop a variety of aggregation methods for collective annotation
- analyse those methods in a principled manner, as in SCT
- understand features specific to applications via *empirical studies*

Formal Model

An annotation task has three components:

- infinite set of agents N
- finite set of items J
- finite set of *categories K*

A finite subset of agents annotate some of the items with categories (one each), resulting is a *group annotation* $A \subseteq N \times J \times K$.

 $(i, j, k) \in A$ means that agent i annotates item j with category k.

An aggregator F is a mapping from group annotations to annotations:

$$F: 2^{N \times J \times K}_{<\omega} \to 2^{J \times K}$$

Axioms

In social choice theory, an axiom is a formal rendering of an intuitively desirable property of an aggregator F. Examples:

- *Nontriviality*: $|A \upharpoonright j| > 0$ should imply $|F(A) \upharpoonright j| > 0$
- Groundedness: $cat(F(A) \upharpoonright j)$ should be a subset of $cat(A \upharpoonright j)$
- Item-Independence: $F(A) \upharpoonright j$ should be equal to $F(A \upharpoonright j)$
- Agent-Symmetry: $F(\sigma(A)) = F(A)$ for all $\sigma: N \to N$
- Category-Symmetry: $F(\sigma(A)) = \sigma(F(A))$ for all $\sigma: K \to K$
- Positive Responsiveness: $k \in \text{cat}(F(A) \upharpoonright j)$ and $(i, j, k) \not\in A$ should imply $\text{cat}(F(A \cup (i, j, k)) \upharpoonright j) = \{k\}$

Reminder: annotation A, agents $i \in N$, items $j \in J$, categories $k \in K$

Characterisation Results

• A generalisation of *May's Theorem* for our model:

Theorem 1 An aggregator is nontrivial, item-independent, agent-symmetric, category-symmetric, and positively responsive iff it is the simple plurality rule:

$$SPR: A \mapsto \{(j, k^*) \in J \times K \mid k^* \in \underset{k \in cat(A \upharpoonright j)}{\operatorname{argmax}} |A \upharpoonright j, k|\}$$

An argument for describing rules in terms of weights:

Theorem 2 An aggregator is nontrivial and grounded iff it is a weighted rule (fully defined in terms of weights $w_{i,j,k}$).

K.O. May. A Set of Independent Necessary and Sufficient Conditions for Simple Majority Decisions. *Econometrica*, 20(4):680–684, 1952.

Proposal 1: Bias-Correcting Rules

If an annotator appears to be *biased* towards a particular category, then we could try to correct for this bias during aggregation.

- $\operatorname{Freq}_i(k)$: relative frequency of annotator i choosing category k
- Freq(k): relative frequency of k across the full profile

 $\operatorname{Freq}_i(k) > \operatorname{Freq}(k)$ suggests that i is biased towards category k.

A bias-correcting rule tries to account for this by varying the weight given to k-annotations provided by annotator i:

- **Diff** (difference-based): $1 + \operatorname{Freq}(k) \operatorname{Freq}_i(k)$
- Rat (ratio-based): $\operatorname{Freq}_i(k) / \operatorname{Freq}_i(k)$
- Com (complement-based): $1 + 1/|K| \text{Freq}_i(k)$
- Inv (inverse-based): $1 / \operatorname{Freq}_i(k)$

For comparison: the simple majority rule SPR always assigns weight 1.

Proposal 2: Greedy Consensus Rules

If there is (near-)consensus on an item, we should adopt that choice. And: we might want to classify annotators who disagree as unreliable.

The greedy consensus rule $GreedyCR^t$ (with tolerance threshold t) repeats two steps until all items are decided:

- (1) Lock in the majority decision for the item with the strongest majority not yet locked in.
- (2) Eliminate any annotator who disagrees with more than t decisions.

Variations are possible: any nondecreasing function from disagreements with locked-in decisions to annotator weight might be of interest.

Greedy consensus rules appar to be good at recognising item difficulty.

Proposal 3: Agreement-Based Rule

Suppose each item has a *true* category (its *gold standard*). If we knew it, we could compute each annotator i's accuracy acc_i .

If we knew acc_i , we could compute annotator i's optimal weight w_i (using maximum likelihood estimation, under certain assumptions):

$$w_i = \log \frac{(|K| - 1) \cdot \mathrm{acc}_i}{1 - \mathrm{acc}_i}$$

But we don't know acc_i . However, we can try to *estimate* it as annotator i's *agreement* agr_i with the plurality outcome:

$$\operatorname{agr}_i \quad = \quad \frac{|\{j \in J \mid i \text{ agrees with SPR on } j\}| + 0.5}{|\{j \in J \mid i \text{ annotates } j\}| + 1}$$

The agreement rule **Agr** thus uses weights $w_i' = \log \frac{(|K|-1) \cdot \operatorname{agr}_i}{1 - \operatorname{agr}_i}$.

Case Study 1: Recognising Textual Entailment

In RTE tasks you try to develop algorithms to decide whether a given piece of text entails a given hypothesis. Examples:

Техт	Hypothesis	GS
Eyeing the huge market potential, currently led by Google, Yahoo took over search company Overture Services Inc last year.	Yahoo bought Overture.	1
The National Institute for Psychobiology in Israel was established in May 1971 as the Israel Center for Psychobiology.	Israel was established in May 1971.	0

We used a dataset collected by Snow et al. (2008):

- Gold standard: 800 items (T-H pairs) with an 'expert' annotation
- Crowdsourced data: 10 AMT annotations per item (164 people)

R. Snow, B. O'Connor, D. Jurafsky, and A.Y. Ng. Cheap and fast—but is it good? Evaluating non-expert annotations for natural language tasks. Proc. EMNLP-2008.

Example

An example where GreedyCR 15 correctly overturns a 7-3 majority against the gold standard (0, i.e., T does *not* entail H):

T: The debacle marked a new low in the erosion of the SPD's popularity, which began after Mr. Schröder's election in 1998.

H: The SPD's popularity is growing.

The item ends up being the 631st to be considered:

Annotator	Сноісе	DISAGR'S	In/Out
AXBQF8RALCIGV	1	83	×
A14JQX7IFAICP0	1	34	×
A1Q4VUJBMY78YR	1	81	×
A18941IO2ZZWW6	1	148	×
AEX5NCH03LWSG	1	19	×
A3JEUXPU5NEHXR	0	2	\checkmark
A11GX90QFWDLMM	1	143	×
A14WWG6NKBDWGF	1	1	\checkmark
A2CJUR18C55EF4	0	2	\checkmark
AKTL5L2PJ2XCH	0	1	\checkmark

Ulle Endriss

Case Study 2: Preposition Sense Disambiguation

The PSD task is about choosing the sense of the preposition "among" in a given sentence, out of three possible senses from the ODE:

- (1) situated more or less centrally in relation to several other things, e.g., "There are flowers hidden among the roots of the trees."
- (2) being a member or members of a larger set, e.g., "Snakes are among the animals most feared by man."
- (3) occurring in or shared by some members of a group or community, e.g., "Members of the government bickered among themselves."

We crowdsourced data for a corpus with an existing GS annotation:

- Gold standard: 150 items (sentences) from SemEval 2007
- Crowdsourced data: 10 AMT annotations per item (45 people)

Case Study 3: Question Dialogue Acts

The QDA task consists in selecting a *question dialogue act*, for a highlighted utterance in a dialogue fragment, out of four possibilities:

- (1) **Yes-No:** Questions with a standard form that could be answered with yes or no, e.g., "Is that the only pet that you have?"
- (2) Wh: Questions with a standard form that ask for specific information using wh-words, e.g., "What kind of pet do you have?"
- (3) **Declarative:** Questions with a statement-like form that nevertheless ask for an answer, e.g., "You have how many pets."
- (4) **Rhetorical:** Questions that do not need to be answered, but are asked only to make a point, e.g., "If I had a pet, how could I work?"

We crowdsourced data for a corpus with an existing GS annotation:

- Gold standard: 300 questions from the Switchboard Corpus
- Crowdsourced data: 10 AMT annotations per item (63 people)

Case Studies: Results

How well did we do? Observed *agreement* with the gold standard annotation (any ties are counted as instances of disagreement):

- Recognising Textual Entailment (two categories):
 - SPR: 85.6%
 - Best BCR's: Com 91.6%, Diff 91.5%
 - Agr: 93.3%
 - GreedyCR⁰: 86.6%, GreedyCR¹⁵: 92.5%
- Preposition Sense Disambiguation (three categories):
 - SPR: 81.3%
 - Best BCR: Rat 84%, Diff 83.3%
 - Agr: 82.7%
- Question Dialogue Acts (four categories):
 - SPR: 85.7%
 - Best BCR: Inv 87.7%
 - Agr: 86.7%

Last Slide

- Took inspiration from *social choice theory* to formulate model for aggregating expertise of speakers in *annotation projects*.
- Proposed three families of aggregation methods that are more sophisticated than the standard majority rule, by accounting for the reliability of individual annotators.
- Empirical results show small but *robust improvements* over the simple plurality/majority rule (also requiring *fewer annotators*).
- Our broader aim is to reflect on the methods used to aggregate annotation information: social choice theory can help.
- U. Endriss and R. Fernández. Collective Annotation of Linguistic Resources: Basic Principles and a Formal Model. Proc. ACL-2013.
- J. Kruger, U. Endriss, R. Fernández, and C. Qing. Axiomatic Analysis of Aggregation Methods for Collective Annotation. Proc. AAMAS-2014.