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Social Choice Theory

SCT studies collective decision making: how should we aggregate the

preferences of the members of a group to obtain a “social preference”?

4 �1 # �1 �
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# �3 � �3 4

?

SCT is traditionally studied in Economics and Political Science, but

now also by “us”: Computational Social Choice.
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Talk Outline

• Computational Social Choice: research area and community

• Examples for typical research questions (mostly Amsterdam)

• Conclusions and how to find out more
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Computational Social Choice

Social choice theory studies mechanisms for collective decision making,

such as voting procedures or protocols for fair division.

• Precursors: Condorcet, Borda (18th century) and others

• serious scientific discipline since 1950s

• Classics: Black, Arrow, May, Sen, Gibbard, Satterthwaite, . . .

Computational social choice adds a computational perspective to this,

and also explores the use of concepts from social choice in computing.

• “classical” papers: ∼1990 (Bartholdi et al.)

• active research area with regular contributions since ∼2002

• name “COMSOC” and biannual workshop since 2006

Y. Chevaleyre, U. Endriss, J. Lang, and N. Maudet. A Short Introduction to

Computational Social Choice. Proc. SOFSEM-2007.
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The COMSOC Research Community

• International Workshop on Computational Social Choice:

– 1st edition: COMSOC-2006 in Amsterdam, December 2006

48 paper submissions and 80 participants (14 countries)

– 2nd edition; COMSOC-2008 in Liverpool, September 2008

55 paper submissions and ∼80 participants (∼20 countries)

– 3rd edition: COMSOC-2010 in Düsseldorf, September 2010

Paper submission deadline: 15 May 2010

• Special issues in international journals:

– Mathematical Logic Quarterly, vol. 55, no. 4, 2009

– Journal of Autonomous Agents and Multiagent Systems, 2010

• Journals and conferences in AI, MAS, TCS, Logic, Econ, . . .

• COMSOC website: http://www.illc.uva.nl/~ulle/COMSOC/

(workshop proceedings, related events, mailing list, etc.)

Ulle Endriss 5



Computational Social Choice ISIS Utrecht 2009

Example from Voting

Suppose the plurality rule is used to decide an election: the candidate

receiving the highest number of votes wins.

Assume the preferences of the people in, say, Florida are as follows:

49%: Bush � Gore � Nader

20%: Gore � Nader � Bush

20%: Gore � Bush � Nader

11%: Nader � Gore � Bush

So even if nobody is cheating, Bush will win this election. But:

• In a pairwise contest, Gore would have defeated anyone.

• It would have been in the interest of the Nader supporters to

manipulate, i.e., to misrepresent their preferences.

Is there a better voting procedure that avoids these problems?
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Some Voting Procedures

• Plurality : elect the candidate ranked first most often

• Borda: each voter gives m−1 points to the candidate they rank

first, m−2 to the candidate they rank second, etc., and the

candidate with the most points wins

• Copeland: award 1 point to a candidate for each pairwise majority

contest won and 1
2 points for each draw, and elect the candidate

with the most points

• Single Transferable Vote (STV): keep eliminating the plurality

loser until someone has an absolute majority

• Approval: voters can approve of as many candidates as they wish,

and the candidate with the most approvals wins
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Complexity as a Barrier against Manipulation

By the Gibbard-Satterthwaite Theorem, any voting rule for choosing

between ≥ 3 candidates can be manipulated (unless it is dictatorial).

Idea: So it’s always possible to manipulate, but maybe it’s difficult!

Tools from complexity theory can be used to make this idea precise.

• For the plurality rule this does not work: if I know all other ballots

and want X to win, it is easy to compute my best strategy.

• But for single transferable vote it does work. Bartholdi and Orlin

showed that manipulation of STV is NP-complete.

Recent work in COMSOC has expanded on this idea:

• NP is a worst-case notion. What about average complexity?

• Also: complexity of winner determination, control, bribery . . .

J.J. Bartholdi III and J.B. Orlin. Single Transferable Vote Resists Strategic Voting.

Social Choice and Welfare, 8(4):341–354, 1991.
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Preferences and Ballots

Two common assumptions in voting theory:

• Voters have preferences that are total orders over candidates.

• Voters vote by submitting a structure just like their preferences,

truthfully or not (ballots and preferences have the same structure).

We may want to drop these assumptions, because:

• For lack of information or processing resources, voters may be

unable to rank all candidates (in their mind or on the ballot sheet).

• To reduce complexity of communication, we may want to design

voting rules that work with ballots of bounded size.

• For approval voting , ballots cannot be encoded using total orders.
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Beyond Classical Voting Theory

In recent work we have proposed a model where:

• preferences and ballots can be different structures; and

• a notion of sincerity replaces the standard notion of truthfulness

(because the ballot language may not allow you to be truthful).

• Now you can get positive results for certain combinations:

– Under approval voting with standard preferences, you can

never benefit from not voting sincerely.

– If you have dichotomous preferences, you can never benefit

from not voting sincerely for a wide range of voting procedures.

– Voting sincerely and effectively is computationally tractable in

above scenarios.

U. Endriss, M.S. Pini, F. Rossi, and K.B. Venable. Preference Aggregation over

Restricted Ballot Languages: Sincerity and Strategy-Proofness. Proc. IJCAI-2009.
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Arrow’s Impossibility Theorem

It seems reasonable to require a social welfare function (SWF),

mapping profiles of individual preference orderings to a social

preference ordering, to satisfy the following axioms:

• Unanimity (UN): if every individual prefers alternative x over

alternative y, then so should society

• Independence of Irrelevant Alternatives (IIA): social preference of

x over y should only depend on individual pref’s over x and y

• Non-Dictatorship (ND): no single individual should be able to

impose a social preference ordering

Theorem 1 (Arrow, 1951) For three or more alternatives, there

exists no SWF that satisfies all of (UN), (IIA) and (ND).

K.J. Arrow. Social Choice and Individual Values. 2nd edition, Wiley, 1963.
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Formal Verification of Arrow’s Theorem

Logic has long been used to formally specify computer systems, facilitating

formal or even automatic verification of various properties. Can we apply

this methodology also to social choice mechanisms?

Tang and Lin (2009) show that the “base case” of Arrow’s Theorem with 2

agents and 3 alternatives can be fully modelled in propositional logic:

• Automated theorem provers can verify Arrow(2, 3) to be correct in

< 1 second — that’s (3!)3!×3! ≈ 1028 SWFs to check

• Opens up opportunities for quick sanity checks of hypotheses regarding

new possibility and impossibility theorems.

Our own work using first-order logic tries to go beyond such base cases.

P. Tang and F. Lin. Computer-aided Proofs of Arrow’s and other Impossibility

Theorems. Artificial Intelligence, 173(11):1041–1053, 2009

U. Grandi and U. Endriss. First-Order Logic Formalisation of Arrow’s Theorem.

Proc. LORI-2009.
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Social Choice in Combinatorial Domains

Many social choice problems have a combinatorial structure:

• Elect a committee of k members from amongst n candidates.

• Find a fair allocation of n indivisible goods to agents.

Seemingly small problems generate huge numbers of alternatives:

• Number of 3-member committees from 10 candidates:
(
10
3

)
= 120

(i.e., 120! ≈ 6.7× 10198 possible rankings)

• Allocating 10 goods to 5 agents: 510 = 9765625 allocations and

210 = 1024 bundles for each agent to think about

Conclusion: We need good languages for representing preferences!

Y. Chevaleyre, U. Endriss, J. Lang, and N. Maudet. Preference Handling in Com-

binatorial Domains: From AI to Social Choice. AI Magazine, Winter 2008.
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Weighted Goals

A compact representation language for modelling utility functions

(cardinal preferences) over products of binary domains —

Notation: finite set of propositional letters PS ; propositional language

LPS over PS to describe requirements, e.g.:

p, ¬p, p ∧ q, p ∨ q

A goalbase is a set G = {(ϕi, αi)}i of pairs, each consisting of a

(consistent) propositional formula ϕi ∈ LPS and a real number αi.

The utility function uG generated by G is defined by

uG(M) =
∑

{αi | (ϕi, αi) ∈ G and M |= ϕi}

for all models M ∈ 2PS . G is called the generator of uG.

Different syntactic restrictions give different representation languages.
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Some Results

Examples from our research on weighted goal languages:

• Expressivity : If all formulas and weights are positive, then we can

express all monotonic utility function, and only those.

• Succinctness: Conjunctions of literals can express the same

functions as general formulas, but do so strictly less succinctly.

• Complexity : Finding the most preferred model is NP-hard in

general, but in O(n log n) if all formulas are literals.

• Applications: combinatorial auctions and expressive voting

J. Uckelman. More than the Sum of its Parts: Compact Preference Representation

over Combinatorial Domains. PhD thesis, ILLC, University of Amsterdam, 2009.

J. Uckelman, Y. Chevaleyre, U. Endriss, and J. Lang. Representing Utility Func-

tions via Weighted Goals. Mathematical Logic Quarterly, 55(4):341–361, 2009.
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Judgment Aggregation

Preferences are not the only structures that we may wish to aggregate.

JA studies the aggregation of judgments on related propositions.

p p → q q

Agent 1: Yes Yes Yes

Agent 2: No Yes No

Agent 3: Yes No No

Majority: Yes Yes No

While each individual set of judgments is logically consistent, the

collective judgment produced by the majority rule is not.

Research issues: impossibility theorems; characterisation of admissible

agendas; proposals for “good” aggregation procedures; . . .

C. List and C. Puppe. Judgment Aggregation: A Survey. Handbook of Rational

and Social Choice. Oxford University Press, 2009.
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Complexity of Judgment Aggregation

What about computational considerations in JA?

In recent work we address the following questions:

• Safety of the Agenda: Given an agenda Φ (set of propositions),

can we guarantee that any aggregation procedure belonging to a

given class of procedures (characterised via some axioms) will

never “produce a paradox”?

• What is the computational complexity of deciding SoA?

(turns out to be Πp
2-complete for all interesting axioms)

U. Endriss, U. Grandi, and D. Porello. Complexity of Judgment Aggregation.

Working Paper, ILLC, University of Amsterdam, 2009.
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Other Topics

Social choice theory is not just about voting and preferences.

Aggregation also plays a role in other domains, e.g.:

• Multiagent Resource Allocation and Fair Division

• Mechansim Design

• Stable Matchings
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Computational Social Choice

We have seen several examples for work in COMSOC.

Research can be broadly classified along two dimensions —

The kind of social choice problem studied, e.g.:

• aggregating individual judgements into a collective verdict

• electing a winner given individual preferences over candidates

• fairly dividing a cake given individual tastes

The kind computational technique employed, e.g.:

• algorithm design to implement complex mechanisms

• complexity theory to understand limitations

• logical modelling to fully formalise intuitions

• knowledge representation techniques to compactly model problems

• deployment in a multiagent system
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Last Slide

• COMSOC is an exciting area of research bringing together ideas

from mathematical economics (particularly social choice theory)

and computer science (including logic, AI, MAS, TCS).

• COMSOC website: http://www.illc.uva.nl/~ulle/COMSOC/

• You are welcome to attend the COMSOC Seminar at the ILLC

(typically, every 2-3 Fridays at 4pm)

• There’s a Workshop on Preferences at the ILLC this Friday at 2pm

(speakers: Jérôme Lang, Francesca Rossi, Mike Wooldridge et al.)

• Papers are on my website (including the surveys below).

Y. Chevaleyre, U. Endriss, J. Lang, and N. Maudet. A Short Introduction to

Computational Social Choice. Proc. SOFSEM-2007.

Y. Chevaleyre, U. Endriss, J. Lang, and N. Maudet. Preference Handling in Com-

binatorial Domains: From AI to Social Choice. AI Magazine, Winter 2008.
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