Introduction to Computational Social Choice

Ulle Endriss Institute for Logic, Language and Computation University of Amsterdam

Social Choice Theory

SCT studies collective decision making: how should we aggregate the preferences of the members of a group to obtain a "social preference"?

SCT is traditionally studied in Economics and Political Science, but now also by "us": *Computational Social Choice*.

Talk Outline

- Computational Social Choice: *research area* and *community*
- Examples for typical research questions (mostly Amsterdam)
- Conclusions and how to find out more

Computational Social Choice

Social choice theory studies mechanisms for collective decision making, such as voting procedures or protocols for fair division.

- Precursors: Condorcet, Borda (18th century) and others
- serious scientific discipline since 1950s
- Classics: Black, Arrow, May, Sen, Gibbard, Satterthwaite, ...

Computational social choice adds a computational perspective to this, and also explores the use of concepts from social choice in computing.

- "classical" papers: \sim 1990 (Bartholdi et al.)
- active research area with regular contributions since ${\sim}2002$
- name "COMSOC" and biannual workshop since 2006

Y. Chevaleyre, U. Endriss, J. Lang, and N. Maudet. *A Short Introduction to Computational Social Choice*. Proc. SOFSEM-2007.

The COMSOC Research Community

- International Workshop on Computational Social Choice:
 - 1st edition: COMSOC-2006 in Amsterdam, December 2006
 48 paper submissions and 80 participants (14 countries)
 - 2nd edition; COMSOC-2008 in Liverpool, September 2008 55 paper submissions and \sim 80 participants (\sim 20 countries)
 - 3rd edition: COMSOC-2010 in Düsseldorf, September 2010
 Paper submission deadline: 15 May 2010
- Special issues in international journals:
 - Mathematical Logic Quarterly, vol. 55, no. 4, 2009
 - Journal of Autonomous Agents and Multiagent Systems, 2010
- Journals and conferences in AI, MAS, TCS, Logic, Econ, ...
- COMSOC website: http://www.illc.uva.nl/~ulle/COMSOC/ (workshop proceedings, related events, mailing list, etc.)

Example from Voting

Suppose the *plurality rule* is used to decide an election: the candidate receiving the highest number of votes wins.

Assume the preferences of the people in, say, Florida are as follows:

49%:Bush \succ Gore \succ Nader20%:Gore \succ Nader \succ Bush20%:Gore \succ Bush \succ Nader11%:Nader \succ Gore \succ Bush

So even if nobody is cheating, Bush will win this election. <u>But:</u>

- In a *pairwise contest*, Gore would have defeated anyone.
- It would have been in the interest of the Nader supporters to *manipulate*, i.e., to misrepresent their preferences.

Is there a better voting procedure that avoids these problems?

Some Voting Procedures

- *Plurality:* elect the candidate ranked first most often
- Borda: each voter gives m−1 points to the candidate they rank first, m−2 to the candidate they rank second, etc., and the candidate with the most points wins
- Copeland: award 1 point to a candidate for each pairwise majority contest won and $\frac{1}{2}$ points for each draw, and elect the candidate with the most points
- *Single Transferable Vote (STV)*: keep eliminating the plurality loser until someone has an absolute majority
- Approval: voters can approve of as many candidates as they wish, and the candidate with the most approvals wins

Complexity as a Barrier against Manipulation

By the *Gibbard-Satterthwaite Theorem*, any voting rule for choosing between \geq 3 candidates can be manipulated (unless it is dictatorial).

<u>Idea:</u> So it's always *possible* to manipulate, but maybe it's *difficult!* Tools from *complexity theory* can be used to make this idea precise.

- For the *plurality rule* this does *not* work: if I know all other ballots and want X to win, it is *easy* to compute my best strategy.
- But for *single transferable vote* it does work. Bartholdi and Orlin showed that manipulation of STV is *NP-complete*.

Recent work in COMSOC has expanded on this idea:

- NP is a worst-case notion. What about average complexity?
- <u>Also:</u> complexity of winner determination, control, bribery ...

J.J. Bartholdi III and J.B. Orlin. Single Transferable Vote Resists Strategic Voting. *Social Choice and Welfare*, 8(4):341–354, 1991.

Preferences and Ballots

Two common assumptions in voting theory:

- Voters have *preferences* that are *total orders* over candidates.
- Voters vote by submitting a structure just like their preferences, truthfully or not (*ballots* and preferences have *the same* structure).

We may want to drop these assumptions, because:

- For lack of information or processing resources, voters may be *unable to rank* all candidates (in their mind or on the ballot sheet).
- To reduce *complexity of communication*, we may want to design voting rules that work with ballots of bounded size.
- For *approval voting*, ballots cannot be encoded using total orders.

Beyond Classical Voting Theory

In recent work we have proposed a model where:

- *preferences* and *ballots* can be different structures; and
- a notion of *sincerity* replaces the standard notion of *truthfulness* (because the ballot language may *not allow* you to be truthful).
- Now you can get positive results for certain combinations:
 - Under *approval voting* with standard preferences, you can never benefit from not voting sincerely.
 - If you have *dichotomous preferences*, you can never benefit from not voting sincerely for a wide range of voting procedures.
 - Voting sincerely and effectively is *computationally tractable* in above scenarios.

U. Endriss, M.S. Pini, F. Rossi, and K.B. Venable. *Preference Aggregation over Restricted Ballot Languages: Sincerity and Strategy-Proofness*. Proc. IJCAI-2009.

Arrow's Impossibility Theorem

It seems reasonable to require a *social welfare function* (SWF), mapping profiles of individual preference orderings to a social preference ordering, to satisfy the following axioms:

- Unanimity (UN): if every individual prefers alternative x over alternative y, then so should society
- Independence of Irrelevant Alternatives (IIA): social preference of x over y should only depend on individual pref's over x and y
- *Non-Dictatorship* (ND): no single individual should be able to impose a social preference ordering

Theorem 1 (Arrow, 1951) For three or more alternatives, there exists no SWF that satisfies all of (UN), (IIA) and (ND).

K.J. Arrow. Social Choice and Individual Values. 2nd edition, Wiley, 1963.

Formal Verification of Arrow's Theorem

Logic has long been used to *formally specify* computer systems, facilitating formal or even *automatic verification* of various properties. Can we apply this methodology also to *social choice* mechanisms?

Tang and Lin (2009) show that the *"base case"* of Arrow's Theorem with 2 agents and 3 alternatives can be fully modelled in *propositional logic*:

- Automated theorem provers can verify ARROW(2,3) to be correct in <1 second that's $(3!)^{3!\times 3!}\approx 10^{28}$ SWFs to check
- Opens up opportunities for quick sanity checks of hypotheses regarding new possibility and impossibility theorems.

Our own work using *first-order logic* tries to go beyond such base cases.

P. Tang and F. Lin. Computer-aided Proofs of Arrow's and other Impossibility Theorems. *Artificial Intelligence*, 173(11):1041–1053, 2009

U. Grandi and U. Endriss. *First-Order Logic Formalisation of Arrow's Theorem*. Proc. LORI-2009.

Social Choice in Combinatorial Domains

Many social choice problems have a *combinatorial structure*:

- Elect a *committee* of k members from amongst n candidates.
- Find a fair *allocation* of n indivisible goods to agents.

Seemingly small problems generate huge numbers of alternatives:

- Number of 3-member committees from 10 candidates: $\binom{10}{3} = 120$ (i.e., $120! \approx 6.7 \times 10^{198}$ possible rankings)
- Allocating 10 goods to 5 agents: $5^{10} = 9765625$ allocations and $2^{10} = 1024$ bundles for each agent to think about

<u>Conclusion</u>: We need good *languages* for representing preferences!

Y. Chevaleyre, U. Endriss, J. Lang, and N. Maudet. Preference Handling in Combinatorial Domains: From AI to Social Choice. *AI Magazine*, Winter 2008.

Weighted Goals

A compact representation language for modelling utility functions (cardinal preferences) over products of binary domains —

<u>Notation</u>: finite set of propositional letters PS; propositional language \mathcal{L}_{PS} over PS to describe requirements, e.g.:

$$p, \neg p, p \land q, p \lor q$$

A goalbase is a set $G = \{(\varphi_i, \alpha_i)\}_i$ of pairs, each consisting of a (consistent) propositional formula $\varphi_i \in \mathcal{L}_{PS}$ and a real number α_i . The utility function u_G generated by G is defined by

$$u_G(M) = \sum \{ \alpha_i \mid (\varphi_i, \alpha_i) \in G \text{ and } M \models \varphi_i \}$$

for all models $M \in 2^{PS}$. G is called the *generator* of u_G .

Different syntactic restrictions give different representation languages.

Some Results

Examples from our research on weighted goal languages:

- *Expressivity*: If all formulas and weights are positive, then we can express all monotonic utility function, and only those.
- *Succinctness:* Conjunctions of literals can express the same functions as general formulas, but do so strictly less succinctly.
- Complexity: Finding the most preferred model is NP-hard in general, but in $O(n \log n)$ if all formulas are literals.
- Applications: combinatorial auctions and expressive voting

J. Uckelman. More than the Sum of its Parts: Compact Preference Representation over Combinatorial Domains. PhD thesis, ILLC, University of Amsterdam, 2009.

J. Uckelman, Y. Chevaleyre, U. Endriss, and J. Lang. Representing Utility Functions via Weighted Goals. *Mathematical Logic Quarterly*, 55(4):341–361, 2009.

Judgment Aggregation

Preferences are not the only structures that we may wish to aggregate. JA studies the aggregation of judgments on related propositions.

	p	$p \to q$	q
Agent 1:	Yes	Yes	Yes
Agent 2:	No	Yes	No
Agent 3:	Yes	No	No
Majority:	Yes	Yes	No

While each individual set of judgments is logically consistent, the collective judgment produced by the majority rule is not.

<u>Research issues:</u> impossibility theorems; characterisation of admissible agendas; proposals for "good" aggregation procedures; ...

C. List and C. Puppe. Judgment Aggregation: A Survey. *Handbook of Rational and Social Choice*. Oxford University Press, 2009.

Complexity of Judgment Aggregation

What about computational considerations in JA?

In recent work we address the following questions:

- Safety of the Agenda: Given an agenda Φ (set of propositions), can we guarantee that any aggregation procedure belonging to a given class of procedures (characterised via some axioms) will never "produce a paradox"?
- What is the computational complexity of deciding SoA? (turns out to be Π^p₂-complete for all interesting axioms)

U. Endriss, U. Grandi, and D. Porello. *Complexity of Judgment Aggregation*. Working Paper, ILLC, University of Amsterdam, 2009.

Other Topics

Social choice theory is not just about voting and preferences. Aggregation also plays a role in other domains, e.g.:

- Multiagent Resource Allocation and Fair Division
- Mechansim Design
- Stable Matchings

Computational Social Choice

We have seen several examples for work in COMSOC. Research can be broadly classified along two dimensions —

The kind of *social choice problem* studied, e.g.:

- aggregating individual judgements into a collective verdict
- electing a winner given individual preferences over candidates
- fairly dividing a cake given individual tastes

The kind *computational technique* employed, e.g.:

- algorithm design to implement complex mechanisms
- complexity theory to understand limitations
- logical modelling to fully formalise intuitions
- knowledge representation techniques to compactly model problems
- deployment in a multiagent system

Last Slide

- COMSOC is an exciting area of research bringing together ideas from mathematical economics (particularly social choice theory) and computer science (including logic, AI, MAS, TCS).
- COMSOC website: http://www.illc.uva.nl/~ulle/COMSOC/
- You are welcome to attend the COMSOC Seminar at the ILLC (typically, every 2-3 Fridays at 4pm)
- There's a Workshop on Preferences at the ILLC *this* Friday at 2pm (speakers: Jérôme Lang, Francesca Rossi, Mike Wooldridge et al.)
- Papers are on my website (including the surveys below).

Y. Chevaleyre, U. Endriss, J. Lang, and N. Maudet. *A Short Introduction to Computational Social Choice*. Proc. SOFSEM-2007.

Y. Chevaleyre, U. Endriss, J. Lang, and N. Maudet. Preference Handling in Combinatorial Domains: From AI to Social Choice. *AI Magazine*, Winter 2008.