Collective Decision Making in Combinatorial Domains

Ulle Endriss Institute for Logic, Language and Computation University of Amsterdam

Computational Social Choice

Social choice theory studies mechanisms for *collective decision making*, such as voting procedures or protocols for fair division.

Computational social choice adds a computational perspective to this, and also explores the use of concepts from social choice in computing.

- Part of wider trend of interdisciplinary research at the interface of mathematical economics (social choice, game and decision theory) and computer science (and artificial intelligence and logic);
- with an active research community, witness e.g. the COMSOC workshops in Amsterdam (2006) and Liverpool (2008).

I will first give *three examples* of research in COMSOC, and then get into the main topic for today (another such example) ...

Complexity as a Barrier against Manipulation

By the *Gibbard-Satterthwaite Theorem*, any voting rule for choosing between \geq 3 candidates can be manipulated (unless it is dictatorial).

<u>Idea:</u> So it's always *possible* to manipulate, but maybe it's *difficult!* Tools from *complexity theory* can be used to make this idea precise.

- For the *plurality rule* this does *not* work: if I know all other ballots and want X to win, it is *easy* to compute my best strategy.
- But for *single transferable vote* it does work. Bartholdi and Orlin showed that manipulation of STV is *NP-complete*.

Recent work in COMSOC has expanded on this idea:

- NP is a worst-case notion. What about average complexity?
- <u>Also:</u> complexity of winner determination, control, bribery ...

J.J. Bartholdi III and J.B. Orlin. Single Transferable Vote Resists Strategic Voting. *Social Choice and Welfare*, 8(4):341–354, 1991.

Logical Modelling of Social Choice Mechanisms

Logic has long been used to *formally specify* computer systems, facilitating formal or even *automatic verification* of various properties. Can we apply this methodology also to social choice mechanisms?

Recall Arrow's Theorem: any preference aggregation mechanism for ≥ 3 alternatives that satisfies *unanimity* and *IIA* must be *dictatorial*.

Recent work by Lin and Tang shows that the "base case" of 2 agents and 3 alternatives can be fully modelled in propositional logic:

- Automated theorem provers can verify ARROW(2,3) to be correct in <1 second that's $(3!)^{3!\times 3!}\approx 10^{28}$ SWFs to check
- Opens up opportunities for quick sanity checks of hypotheses regarding new possibility and impossibility theorems.

F. Lin and P. Tang. *Computer-aided Proofs of Arrow's and other Impossibility Theorems*. Proc. AAAI-2008.

Multiagent Systems and Fair Division

Multiagent Systems is an important research area in Computer Science:

- A multiagent system is a system consisting of several autonomous software agents that interact with each other to further their own interests (competition) or in pursuit of a joint goal (cooperation).
- Classical Artificial Intelligence addresses (specific aspects of) single agents, MAS focusses on the interaction between different agents.

Problems studied include *multiagent resource allocation*. Social Choice Theory and Welfare Economics have contributed new ideas:

- Look into alternative definitions of what makes a "good" allocation: Rawlsian egalitarianism, envy-freeness, ...
- Now "computational" treatment of these issues: algorithms, formal analysis of protocols, complexity studies, ...

U. Endriss, N. Maudet, F. Sadri, and F. Toni. Negotiating Socially Optimal Allocations of Resources. *Journal of Artificial Intelligence Research*, 2006.

Talk Overview: Part II

Now for the main topic of the talk:

Collective Decision Making in Combinatorial Domains

We will cover:

- What is the problem?
- Languages for compactly modelling preferences
- Examples for technical results
- Applications to collective decision making
- Conclusion

Combinatorial Domains

Many social choice problems have a *combinatorial structure*:

- Elect a *committee* of k members from amongst n candidates.
- During a *referendum* (in Switzerland, California, places like that), voters may be asked to vote on *n* different propositions.
- Find a good *allocation* of *n* indivisible goods to agents.

Seemingly small problems generate huge numbers of alternatives:

- Number of 3-member committees from 10 candidates: $\binom{10}{3} = 120$ (i.e. $120! \approx 6.7 \times 10^{198}$ possible rankings)
- Allocating 10 goods to 5 agents: $5^{10} = 9765625$ allocations and $2^{10} = 1024$ bundles for each agent to think about

We need good *languages* for representing preferences!

Preference Representation Languages

The following are relevant questions to consider when we have to choose a preference representation language:

- *Cognitive relevance:* How close is a given language to the way in which humans would express their preferences?
- *Elicitation friendliness:* How difficult is it to elicit the preferences of an agent so as to represent them in the chosen language?
- *Expressive power*: Can the chosen language encode all the preference structures we are interested in?
- *Succinctness:* Is the representation of (typical) structures succinct? Is one language more succinct than the other?
- *Complexity*: What is the computational complexity of related problems, such as comparing two alternatives?

Combinatorial Domains

A combinatorial domain is a Cartesian product $\mathcal{D} = D_1 \times \cdots \times D_n$ of n finite domains. We want to represent *utility functions* over \mathcal{D} .

Focus on allocation problems: set \mathcal{G} of indivisible goods; each agent has utility function $u: 2^{\mathcal{G}} \to \mathbb{R}$, mapping bundles of goods to the reals.

That is, here each D_i is a *binary domain*, and $n = |\mathcal{G}|$.

Explicit Representation

The *explicit form* of representing a utility function u consists of a table listing for every bundle $S \subseteq \mathcal{G}$ the utility u(S).

By convention, table entries with u(S) = 0 may be omitted.

- the explicit form is *fully expressive*: any utility function $u: 2^{\mathcal{G}} \to \mathbb{R}$ may be so described
- the explicit form is *not succinct*: it may require up to 2^n entries

Even very simple utility functions may require exponential space: e.g. the function $u: S \mapsto |S|$ mapping bundles to their cardinality.

Weighted Propositional Formulas

A compact representation language for modelling utility functions over products of binary domains —

<u>Notation</u>: finite set of propositional letters PS; propositional language \mathcal{L}_{PS} over PS to describe requirements, e.g.:

$$p, \neg p, p \land q, p \lor q$$

A goalbase is a set $G = \{(\varphi_i, \alpha_i)\}_i$ of pairs, each consisting of a (consistent) propositional formula $\varphi_i \in \mathcal{L}_{PS}$ and a real number α_i . The utility function u_G generated by G is defined by

$$u_G(M) = \sum \{ \alpha_i \mid (\varphi_i, \alpha_i) \in G \text{ and } M \models \varphi_i \}$$

for all models $M \in 2^{PS}$. G is called the *generator* of u_G .

Example: { $(p \lor q \lor r, 7), (p \land q, -2), (\neg s, 1)$ }

A Family of Languages

By imposing different restrictions on formulas and/or weights we can design different representation languages.

Regarding *formulas*, we may consider restrictions such as:

- *positive* formulas (no occurrence of ¬)
- *clauses* and *cubes* (disjunctions and conjunctions of literals)
- k-formulas (formulas of length $\leq k$), e.g. 1-formulas = literals
- combinations of the above, e.g. k-pcubes

Regarding *weights*, interesting restrictions would be \mathbb{R}^+ or $\{0, 1\}$. If $H \subseteq \mathcal{L}_{PS}$ is a restriction on formulas and $H' \subseteq \mathbb{R}$ a restriction on weights, then $\mathcal{L}(H, H')$ is the language conforming to H and H'.

Properties

We are interested in the following types of questions:

- Are there restrictions on goalbases such that the utility functions they generate enjoy natural structural properties?
- Are some goalbase languages more succinct than others?
- What is the complexity of reasoning about preferences expressed in a given language?

Y. Chevaleyre, U. Endriss, and J. Lang. *Expressive Power of Weighted Propositional Formulas for Cardinal Preference Modelling*. Proc. KR-2006.

J. Uckelman and U. Endriss. *Preference Representation with Weighted Goals: Expressivity, Succinctness, Complexity*. Proc. AiPref-2007.

Expressive Power

An example for a language that is fully expressive:

Theorem 1 (Expressivity of pcubes) $\mathcal{L}(pcubes, all)$, the language of positive cubes, can express all utility functions.

<u>Proof sketch</u>: Show how to build a goalbase for any given function u: (1) \top must get weight $u(\emptyset)$. (2) Weights of longer formulas are uniquely determined by the weights of their subformulas. \checkmark

In fact, $\mathcal{L}(pcubes, all)$ has a *unique* way of representing any given u. $\mathcal{L}(cubes, all)$, for example, is also fully expressive, but not unique: $\{(p \land q, 5), (p \land \neg q, 5), (\neg p \land q, 3), (\neg p \land \neg q, 3)\} \equiv \{(\top, 3), (p, 2)\}$

Expressive Power: Modular Functions

A function $u: 2^{PS} \to \mathbb{R}$ is *modular* if for all $M_1, M_2 \subseteq 2^{PS}$ we have:

 $u(M_1 \cup M_2) = u(M_1) + u(M_2) - u(M_1 \cap M_2)$

Here's a nice characterisation of the modular functions:

Theorem 2 (Expressivity of literals) $\mathcal{L}(literals, all)$, the language of literals, can express all modular utility functions, and only those.

Relative Succinctness

If two languages can express the same class of utility functions, which should we use? An important criterion is *succinctness*.

Let \mathcal{L} and \mathcal{L}' be two languages that can define all utility functions belonging to some class \mathcal{U} .

We say that \mathcal{L}' is at least as succinct as \mathcal{L} over \mathcal{U} if there exist a mapping $f : \mathcal{L} \to \mathcal{L}'$ and a *polynomial* function p such that for all expressions $G \in \mathcal{L}$ with the corresponding function $u_G \in \mathcal{U}$:

- $G \equiv f(G)$ (they both represent the same function); and
- $size(f(G)) \leq p(size(G))$ (polysize reduction).

Explicit Form v. Positive Cubes

Both the explicit form and $\mathcal{L}(pcubes, all)$, the language of positive cubes, are fully expressive. Which is more succinct?

Theorem 3 (Explicit form and positve cubes) The explicit form and $\mathcal{L}(pcubes, all)$ are incomparable in terms of succinctness.

<u>Proof:</u> These functions prove the mutual lack of a polysize reduction:

- u₁(X) = |X|: requires n weighted 1-pcubes (*linear*); but 2ⁿ−1 non-zero values in the explicit form (*exponential*). ✓
- u₂(X) = 1 for |X| = 1 and u₂(X) = 0 otherwise: requires n non-zero values in the explicit form (*linear*); but 2ⁿ−1 pcubes (exponential) all cubes of length k need weight (-1)^{k+1} × k. ✓

<u>But:</u> *interesting* functions usually more succinct in $\mathcal{L}(pcubes, all)$

The Efficiency of Negation

If we allow *negation* in our language, we can do better than either one of the two languages considered before:

Theorem 4 (Cubes and pcubes) The language $\mathcal{L}(cubes, all)$ is strictly more succinct than the language $\mathcal{L}(pcubes, all)$.

Theorem 5 (Cubes and explicit form) The language $\mathcal{L}(cubes, all)$ is strictly more succinct than the explicit form.

Computational Complexity

Other interesting questions concern the complexity of reasoning about preferences. Consider the following decision problem:

MAXUTIL(H, H') Instance: Goalbase $G \in \mathcal{L}(H, H')$ and $K \in \mathbb{Z}$ Question: Is there an $M \in 2^{PS}$ such that $u_G(M) \ge K$?

Complexity results include:

- MAXUTIL(*all*, *all*) is *NP-complete*.
- Even MAXUTIL(2-pcubes, all) is NP-complete.
- But MAXUTIL(*pos*, *pos*) and MAXUTIL(*literals*, *all*) are *easy*.

Also interesting: What is the complexity of finding an allocation that maximises *utilitarian* or *egalitarian social welfare* (for language X)?

Application: Distributed Negotiation

<u>Scenario</u>: indivisible goods; agents with valuation functions

<u>Goal</u>: Want to design negotiation protocols for agents with good properties, ideally fast convergence to a socially optimal state.

Preference representation is one of several parameters in the model. Explicit modelling of the language has several advantages:

- Can guide *elicitation* of preferences from agents.
- Can characterise special *classes of preferences* that avoid impossibilities, allow for simpler protocols, etc.
- Permits *complexity* analysis.

Y. Chevaleyre, U. Endriss, S. Estivie, and N. Maudet. Multiagent Resource Allocation in *k*-additive Domains. *Annals of Operations Research*, 2008.

Application: Combinatorial Auctions

Combinatorial Auction: auction for simultaneously selling several items (with complements and substitutes)

Example: CA for a pair of shoes v. 2 auctions for one shoe each

Bidding is the process of communicating one's preferences to the auctioneer (truthfully or otherwise). Can use *goalbase languages*!

Winner determination is the problem faced by the auctioneer to decide which goods to award to which bidder.

- Winner determination is known to be *NP-hard*.
- *Heuristic-guided search* (AI technique) can often give optimal solution in reasonable time.

J. Uckelman and U. Endriss. *Winner Determination in Combinatorial Auctions with Logic-based Bidding Languages*. Proc. AAMAS-2008.

Conclusion

- Combinatorial explosion ⇒ number of alternatives can get huge
 ⇒ collective choice mechanisms need to be adapted
- Logic-based languages are good candidates for modelling preferences in combinatorial domains.
- Wider research area: *computational social choice*
- *Papers* are on my website (including surveys below), and you are welcome to attend our *seminar* (Plantage Muidergracht 24):

http://www.illc.uva.nl/~ulle/seminar/

Y. Chevaleyre, U. Endriss, J. Lang, and N. Maudet. *A Short Introduction to Computational Social Choice*. Proc. SOFSEM-2007.

Y. Chevaleyre, U. Endriss, J. Lang, and N. Maudet. Preference Handling in Combinatorial Domains: From AI to Social Choice. *AI Magazine*, Winter 2008.