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Computational Social Choice

Social choice theory studies mechanisms for collective decision making ,

such as voting procedures or protocols for fair division.

Computational social choice adds a computational perspective to this,

and also explores the use of concepts from social choice in computing.

• Part of wider trend of interdisciplinary research at the interface of

mathematical economics (social choice, game and decision theory)

and computer science (and artificial intelligence and logic);

• with an active research community, witness e.g. the COMSOC

workshops in Amsterdam (2006) and Liverpool (2008).

I will first give three examples of research in COMSOC, and then get

into the main topic for today (another such example) . . .
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Complexity as a Barrier against Manipulation

By the Gibbard-Satterthwaite Theorem, any voting rule for choosing

between ≥ 3 candidates can be manipulated (unless it is dictatorial).

Idea: So it’s always possible to manipulate, but maybe it’s difficult!

Tools from complexity theory can be used to make this idea precise.

• For the plurality rule this does not work: if I know all other ballots

and want X to win, it is easy to compute my best strategy.

• But for single transferable vote it does work. Bartholdi and Orlin

showed that manipulation of STV is NP-complete.

Recent work in COMSOC has expanded on this idea:

• NP is a worst-case notion. What about average complexity?

• Also: complexity of winner determination, control, bribery . . .

J.J. Bartholdi III and J.B. Orlin. Single Transferable Vote Resists Strategic Voting.

Social Choice and Welfare, 8(4):341–354, 1991.
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Logical Modelling of Social Choice Mechanisms

Logic has long been used to formally specify computer systems,

facilitating formal or even automatic verification of various properties.

Can we apply this methodology also to social choice mechanisms?

Recall Arrow’s Theorem: any preference aggregation mechanism for

≥ 3 alternatives that satisfies unanimity and IIA must be dictatorial .

Recent work by Lin and Tang shows that the “base case” of 2 agents

and 3 alternatives can be fully modelled in propositional logic:

• Automated theorem provers can verify Arrow(2, 3) to be correct

in < 1 second — that’s (3!)3!×3! ≈ 1028 SWFs to check

• Opens up opportunities for quick sanity checks of hypotheses

regarding new possibility and impossibility theorems.

F. Lin and P. Tang. Computer-aided Proofs of Arrow’s and other Impossibility

Theorems. Proc. AAAI-2008.
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Multiagent Systems and Fair Division

Multiagent Systems is an important research area in Computer Science:

• A multiagent system is a system consisting of several autonomous

software agents that interact with each other to further their own

interests (competition) or in pursuit of a joint goal (cooperation).

• Classical Artificial Intelligence addresses (specific aspects of) single

agents, MAS focusses on the interaction between different agents.

Problems studied include multiagent resource allocation. Social Choice

Theory and Welfare Economics have contributed new ideas:

• Look into alternative definitions of what makes a “good” allocation:

Rawlsian egalitarianism, envy-freeness, . . .

• Now “computational” treatment of these issues: algorithms, formal

analysis of protocols, complexity studies, . . .

U. Endriss, N. Maudet, F. Sadri, and F. Toni. Negotiating Socially Optimal Allo-

cations of Resources. Journal of Artificial Intelligence Research, 2006.
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Talk Overview: Part II

Now for the main topic of the talk:

Collective Decision Making in Combinatorial Domains

We will cover:

• What is the problem?

• Languages for compactly modelling preferences

• Examples for technical results

• Applications to collective decision making

• Conclusion
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Combinatorial Domains

Many social choice problems have a combinatorial structure:

• Elect a committee of k members from amongst n candidates.

• During a referendum (in Switzerland, California, places like that),

voters may be asked to vote on n different propositions.

• Find a good allocation of n indivisible goods to agents.

Seemingly small problems generate huge numbers of alternatives:

• Number of 3-member committees from 10 candidates:
(
10
3

)
= 120

(i.e. 120! ≈ 6.7× 10198 possible rankings)

• Allocating 10 goods to 5 agents: 510 = 9765625 allocations and

210 = 1024 bundles for each agent to think about

We need good languages for representing preferences!
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Preference Representation Languages

The following are relevant questions to consider when we have to

choose a preference representation language:

• Cognitive relevance: How close is a given language to the way in

which humans would express their preferences?

• Elicitation friendliness: How difficult is it to elicit the preferences

of an agent so as to represent them in the chosen language?

• Expressive power : Can the chosen language encode all the

preference structures we are interested in?

• Succinctness: Is the representation of (typical) structures

succinct? Is one language more succinct than the other?

• Complexity : What is the computational complexity of related

problems, such as comparing two alternatives?
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Combinatorial Domains

A combinatorial domain is a Cartesian product D = D1 × · · · ×Dn of

n finite domains. We want to represent utility functions over D.

Focus on allocation problems: set G of indivisible goods; each agent

has utility function u : 2G → R, mapping bundles of goods to the reals.

That is, here each Di is a binary domain, and n = |G|.
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Explicit Representation

The explicit form of representing a utility function u consists of a table

listing for every bundle S ⊆ G the utility u(S).

By convention, table entries with u(S) = 0 may be omitted.

• the explicit form is fully expressive:

any utility function u : 2G → R may be so described

• the explicit form is not succinct: it may require up to 2n entries

Even very simple utility functions may require exponential space: e.g.

the function u : S 7→ |S| mapping bundles to their cardinality.
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Weighted Propositional Formulas

A compact representation language for modelling utility functions over

products of binary domains —

Notation: finite set of propositional letters PS ; propositional language

LPS over PS to describe requirements, e.g.:

p, ¬p, p ∧ q, p ∨ q

A goalbase is a set G = {(ϕi, αi)}i of pairs, each consisting of a

(consistent) propositional formula ϕi ∈ LPS and a real number αi.

The utility function uG generated by G is defined by

uG(M) =
∑

{αi | (ϕi, αi) ∈ G and M |= ϕi}

for all models M ∈ 2PS . G is called the generator of uG.

Example: {(p ∨ q ∨ r, 7), (p ∧ q,−2), (¬s, 1)}
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A Family of Languages

By imposing different restrictions on formulas and/or weights we can

design different representation languages.

Regarding formulas, we may consider restrictions such as:

• positive formulas (no occurrence of ¬)

• clauses and cubes (disjunctions and conjunctions of literals)

• k-formulas (formulas of length ≤ k), e.g. 1-formulas = literals

• combinations of the above, e.g. k-pcubes

Regarding weights, interesting restrictions would be R+ or {0, 1}.

If H ⊆ LPS is a restriction on formulas and H ′ ⊆ R a restriction on

weights, then L(H,H ′) is the language conforming to H and H ′.
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Properties

We are interested in the following types of questions:

• Are there restrictions on goalbases such that the utility functions

they generate enjoy natural structural properties?

• Are some goalbase languages more succinct than others?

• What is the complexity of reasoning about preferences expressed

in a given language?

Y. Chevaleyre, U. Endriss, and J. Lang. Expressive Power of Weighted Proposi-

tional Formulas for Cardinal Preference Modelling. Proc. KR-2006.

J. Uckelman and U. Endriss. Preference Representation with Weighted Goals:

Expressivity, Succinctness, Complexity. Proc. AiPref-2007.
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Expressive Power

An example for a language that is fully expressive:

Theorem 1 (Expressivity of pcubes) L(pcubes, all), the language

of positive cubes, can express all utility functions.

Proof sketch: Show how to build a goalbase for any given function u:

(1) > must get weight u(∅). (2) Weights of longer formulas are

uniquely determined by the weights of their subformulas. X

In fact, L(pcubes, all) has a unique way of representing any given u.

L(cubes, all), for example, is also fully expressive, but not unique:

{(p ∧ q, 5), (p ∧ ¬q, 5), (¬p ∧ q, 3), (¬p ∧ ¬q, 3)} ≡ {(>, 3), (p, 2)}
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Expressive Power: Modular Functions

A function u : 2PS → R is modular if for all M1,M2 ⊆ 2PS we have:

u(M1 ∪M2) = u(M1) + u(M2)− u(M1 ∩M2)

Here’s a nice characterisation of the modular functions:

Theorem 2 (Expressivity of literals) L(literals, all), the language

of literals, can express all modular utility functions, and only those.
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Relative Succinctness

If two languages can express the same class of utility functions, which

should we use? An important criterion is succinctness.

Let L and L′ be two languages that can define all utility functions

belonging to some class U .

We say that L′ is at least as succinct as L over U if there exist a

mapping f : L → L′ and a polynomial function p such that for all

expressions G ∈ L with the corresponding function uG ∈ U :

• G ≡ f(G) (they both represent the same function); and

• size(f(G)) ≤ p(size(G)) (polysize reduction).
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Explicit Form v. Positive Cubes

Both the explicit form and L(pcubes, all), the language of positive

cubes, are fully expressive. Which is more succinct?

Theorem 3 (Explicit form and positve cubes) The explicit form

and L(pcubes, all) are incomparable in terms of succinctness.

Proof: These functions prove the mutual lack of a polysize reduction:

• u1(X) = |X|: requires n weighted 1-pcubes (linear); but 2n−1
non-zero values in the explicit form (exponential). X

• u2(X) = 1 for |X| = 1 and u2(X) = 0 otherwise: requires n

non-zero values in the explicit form (linear); but 2n−1 pcubes

(exponential) — all cubes of length k need weight (−1)k+1× k. X

But: interesting functions usually more succinct in L(pcubes, all)
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The Efficiency of Negation

If we allow negation in our language, we can do better than either one

of the two languages considered before:

Theorem 4 (Cubes and pcubes) The language L(cubes, all) is

strictly more succinct than the language L(pcubes, all).

Theorem 5 (Cubes and explicit form) The language L(cubes, all)
is strictly more succinct than the explicit form.
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Computational Complexity

Other interesting questions concern the complexity of reasoning about

preferences. Consider the following decision problem:

MaxUtil(H,H’)

Instance: Goalbase G ∈ L(H, H ′) and K ∈ Z
Question: Is there an M ∈ 2PS such that uG(M) ≥ K?

Complexity results include:

• MaxUtil(all, all) is NP-complete.

• Even MaxUtil(2-pcubes, all) is NP-complete.

• But MaxUtil(pos, pos) and MaxUtil(literals, all) are easy .

Also interesting: What is the complexity of finding an allocation that

maximises utilitarian or egalitarian social welfare (for language X)?
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Application: Distributed Negotiation

Scenario: indivisible goods; agents with valuation functions

Goal: Want to design negotiation protocols for agents with good

properties, ideally fast convergence to a socially optimal state.

Preference representation is one of several parameters in the model.

Explicit modelling of the language has several advantages:

• Can guide elicitation of preferences from agents.

• Can characterise special classes of preferences that avoid

impossibilities, allow for simpler protocols, etc.

• Permits complexity analysis.

Y. Chevaleyre, U. Endriss, S. Estivie, and N. Maudet. Multiagent Resource Allo-

cation in k-additive Domains. Annals of Operations Research, 2008.
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Application: Combinatorial Auctions

Combinatorial Auction: auction for simultaneously selling several items

(with complements and substitutes)

Example: CA for a pair of shoes v. 2 auctions for one shoe each

Bidding is the process of communicating one’s preferences to the

auctioneer (truthfully or otherwise). Can use goalbase languages!

Winner determination is the problem faced by the auctioneer to decide

which goods to award to which bidder.

• Winner determination is known to be NP-hard .

• Heuristic-guided search (AI technique) can often give optimal

solution in reasonable time.

J. Uckelman and U. Endriss. Winner Determination in Combinatorial Auctions

with Logic-based Bidding Languages. Proc. AAMAS-2008.
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Conclusion

• Combinatorial explosion ⇒ number of alternatives can get huge

⇒ collective choice mechanisms need to be adapted

• Logic-based languages are good candidates for modelling

preferences in combinatorial domains.

• Wider research area: computational social choice

• Papers are on my website (including surveys below), and you are

welcome to attend our seminar (Plantage Muidergracht 24):

http://www.illc.uva.nl/~ulle/seminar/

Y. Chevaleyre, U. Endriss, J. Lang, and N. Maudet. A Short Introduction to

Computational Social Choice. Proc. SOFSEM-2007.

Y. Chevaleyre, U. Endriss, J. Lang, and N. Maudet. Preference Handling in Com-

binatorial Domains: From AI to Social Choice. AI Magazine, Winter 2008.
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