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Social Choice Theory

SCT studies collective decision making: how should we aggregate the

preferences of the members of a group to obtain a “social preference”?

Agent 1: 4 � # � �
Agent 2: # � � � 4
Agent 3: � � 4 � #

Agent 4: � � 4 � #

Agent 5: # � � � 4

?

SCT is traditionally studied in Economics and Political Science, but

now also by “us”: Computational Social Choice.
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Outline

• Why social choice and AI?

• Some voting rules and an example

• Main topic for today: Strategic voting

• Research topics in Computational Social Choice
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Social Choice and AI (1)

Social choice theory has natural applications in AI:

• Multiagent Systems: to aggregate the beliefs + to coordinate the

actions of groups of autonomous software agents

• Search Engines: to determine the most important sites based on

links (“votes”) + to aggregate the output of several search engines

• Recommender Systems: to recommend a product to a user based

on earlier ratings by other users

• AI Competitions: to determine who has developed the best

trading agent / SAT solver / RoboCup team

But not all of the classical assumptions will fit these new applications.

So AI needs to develop new models and ask new questions.
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Social Choice and AI (2)

Vice versa, techniques from AI, and computational techniques in

general, are useful for advancing the state of the art in social choice:

• Algorithms and Complexity : to develop algorithms for (complex)

voting procedures + to understand the hardness of “using” them

• Knowledge Representation: to compactly represent the preferences

of individual agents over large spaces of alternatives

• Logic and Automated Reasoning: to formally model problems in

social choice + to automatically verify (or discover) theorems

Indeed, you will find many papers on social choice at AI conferences

(e.g., IJCAI, ECAI, AAAI, AAMAS) and many AI researchers

participate in events dedicated to social choice (e.g., COMSOC).

F. Brandt, V. Conitzer, and U. Endriss. Computational Social Choice. In G. Weiss

(ed.), Multiagent Systems, pages 213–283. MIT Press, 2013.
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Three Voting Rules

How should n voters choose from a set of m alternatives?

Here are three voting rules (there are many more):

• Plurality : elect the alternative ranked first most often

(i.e., each voter assigns 1 point to an alternative of her choice,

and the alternative receiving the most points wins)

• Plurality with runoff : run a plurality election and retain the two

front-runners; then run a majority contest between them

• Borda: each voter gives m−1 points to the alternative she ranks

first, m−2 to the alternative she ranks second, etc.; and the

alternative with the most points wins
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Example: Choosing a Beverage for Lunch

Consider this election with nine voters having to choose from three

alternatives (namely what beverage to order for a common lunch):

2 Germans: Beer � Wine � Milk

3 Frenchmen: Wine � Beer � Milk

4 Dutchmen: Milk � Beer � Wine

Which beverage wins the election for

• the plurality rule?

• plurality with runoff?

• the Borda rule?
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Example: Electing a President

Remember Florida 2000 (simplified):

49%: Bush � Gore � Nader

20%: Gore � Nader � Bush

20%: Gore � Bush � Nader

11%: Nader � Gore � Bush

Questions:

• Who wins?

• Is that a fair outcome?

• What would your advice to the Nader-supporters have been?
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Notation and Terminology

Finite set of n voters (or individuals or agents) N = {1, . . . , n}.
Finite set of m alternatives (or candidates) X .

Each voter expresses a preference over the alternatives by providing a

linear order on X (her ballot). L(X ) is the set of all such linear orders.

A profile R = (R1, . . . , Rn) fixes one preference/ballot for each voter.

A (resolute) voting rule or is a function F mapping any given profile

to a (single) winning alternative:

F : L(X )n → X
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Strategy-Proofness

Notation: (R−i, R
′
i) is the profile obtained by replacing Ri in R by R′i.

F is strategy-proof (or immune to manipulation) if for no individual

i ∈ N there exist a profile R (including the “truthful preference” Ri

of i) and a linear order R′i (representing the “untruthful” ballot of i)

such that F (R−i, R
′
i) is ranked above F (R) according to Ri.

In other words: under a strategy-proof voting rule no voter will ever

have an incentive to misrepresent her preferences.

Note: Strategy-proofness is a very desirable property! We have seen that

plurality is not strategy-proof . From the lecture on mechanism design, you

know that, e.g., strategy-proof auction mechanisms do exist.
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The Gibbard-Satterthwaite Theorem

Two more properties of resolute voting rules F :

• F is surjective if for every candidate x ∈ X there exists a

profile R such that F (R) = x.

• F is a dictatorship if there exists a voter i ∈ N (the dictator)

such that F (R) = top(Ri) for any profile R.

Gibbard (1973) and Satterthwaite (1975) independently proved:

Theorem 1 (Gibbard-Satterthwaite) Any resolute voting rule for

> 3 candidates that is surjective and strategy-proof is a dictatorship.

A. Gibbard. Manipulation of Voting Schemes: A General Result. Econometrica,

41(4):587–601, 1973.

M.A. Satterthwaite. Strategy-proofness and Arrow’s Conditions. Journal of Eco-

nomic Theory, 10:187–217, 1975.
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Remarks

The G-S Theorem says that for > 3 candidates, any resolute voting

rule F that is surjective and strategy-proof is a dictatorship.

• a surprising result + not applicable in case of two candidates

• The opposite direction is clear: dictatorial ⇒ strategy-proof

• Random procedures don’t count (but might be “strategy-proof”).

We will now prove the theorem under two additional assumptions:

• F is neutral , i.e., candidates are treated symmetrically.

[Note: neutrality ⇒ surjectivity; so we won’t make use of surjectivity.]

• There are exactly 3 candidates.

For a full proof, using a similar approach, see, e.g.:

U. Endriss. Logic and Social Choice Theory. In A. Gupta and J. van Benthem

(eds.), Logic and Philosophy Today, College Publications, 2011.
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Proof (1): Independence and Blocking Coalitions

Notation: NR
x�y is the set of voters who rank x above y in profile R.

Claim: If F (R)=x and NR
x�y=NR′

x�y, then F (R′) 6=y. [independence]

Proof: From strategy-proofness, by contradiction. Assume F (R′) = y.

Moving from R to R′, there must be a first voter to affect the winner.

So w.l.o.g., assume R and R′ differ only w.r.t. voter i. Two cases:

• i ∈ NR
x�y: Suppose i’s true preferences are as in profile R′

(i.e., i prefers x to y). Then i has an incentive to vote as in R. X

• i 6∈ NR
x�y: Suppose i’s true preferences are as in profile R

(i.e., i prefers y to x). Then i has an incentive to vote as in R′. X

Some more terminology:

Call C ⊆ N a blocking coalition for (x, y) if C=NR
x�y ⇒ F (R) 6=y.

Thus: If F (R) = x, then C := NR
x�y is blocking for (x, y) [for any y].
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Proof (2): Ultrafilters

From neutrality : all (x, y) must have the same blocking coalitions.

For any C ⊆ N , C or C := N \C must be blocking.

Proof: Assume C is not blocking; i.e., C is not blocking for (x, y).

Then there exists a profile R with NR
x�y = C but F (R) = y.

But we also have NR
y�x = C. Hence, C is blocking for (y, x).

If C1 and C2 are blocking, then so is C1 ∩ C2. [now we’ll use |X | = 3]

Proof: Consider a profile R with C1 = NR
x�y, C2 = NR

y�z, and

C1 ∩ C2 = NR
x�z. As C1 is blocking, y cannot win. As C2 is

blocking, z cannot win. So x wins and C1 ∩ C2 must be blocking.

The empty coalition is not blocking.

Proof: Omitted (but not at all surprising).

Above properties (+ finiteness of N ) imply that there’s a singleton {i}
that is blocking. But that just means that i is a dictator ! X

Ulle Endriss 14



Computational Social Choice Autonomous Agents 2014

Relationship to Mechanism Design

So why does this work for auctions and not for voting?

Recall that the Vickrey Auction is strategy-proof:

One item on auction. Each bidder makes a bid (offering a price).

The highest bidder wins, but pays the second highest price. No

incentive to misrepresent true price.

We could think of this as an election:

• Candidates = set of all pairs of the form (winner , price).

• Preference order determined by bid. E.g., if Alice has valuation €5:

· · · � (Alice, 3) � (Alice, 4) � (Alice, 5) ∼ (Bob, 17) ∼ · · ·

· · · ∼ (Carla, 2) � · · · � (Alice, 6) � (Alice, 7) � · · ·

That is: very specific preferences (“quasi-linear utilities”)

This domain restriction is the underlying reason why we can turn the general

impossibility (Gibbard-Satterthwaite) into a specific possibility (Vickrey).
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Single-Peakedness

The G-S Thm shows that no “reasonable” voting rule is strategy-proof.

Another important domain restriction is due to Black (1948):

• Definition: A profile is single-peaked if there exists a

“left-to-right” ordering � on the candidates such that any voter

ranks x above y if x is between y and her top candidate w.r.t. �.

Think of spectrum of political parties.

• Result: Fix a dimension �. Assuming that all profiles are

single-peaked w.r.t. �, the median-voter rule is strategy-proof.

D. Black. On the Rationale of Group Decision-Making. The Journal of Political

Economy, 56(1):23–34, 1948.
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Complexity as a Barrier against Manipulation

By the Gibbard-Satterthwaite Theorem, any voting rule for > 3

candidates can be manipulated (unless it is dictatorial).

Idea: So it’s always possible to manipulate, but maybe it’s difficult!

Tools from complexity theory can be used to make this idea precise.

• For some procedures this does not work: if I know all other ballots

and want X to win, it is easy to compute my best strategy.

• But for others it does work: manipulation is NP-complete.

Recent work in COMSOC has expanded on this idea:

• NP is a worst-case notion. What about average complexity?

• Also: complexity of winner determination, control, bribery, . . .

J.J. Bartholdi III, C.A. Tovey, and M.A. Trick. The Computational Difficulty of

Manipulating an Election. Soc. Choice and Welfare, 6(3):227–241, 1989.

P. Faliszewski, E. Hemaspaandra, and L.A. Hemaspaandra. Using Complexity to

Protect Elections. Communications of the ACM, 553(11):74–82, 2010.
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Automated Reasoning for Social Choice Theory

Logic has long been used to formally specify computer systems, facilitating

verification of properties. Can we apply this methodology also here? Yes:

• Verification of a (known) proof of the Gibbard-Satterthwaite Theorem

in the HOL proof assistant Isabelle (Nipkow, 2009).

• Fully automated proof of Arrow’s Theorem for 3 candidates via a SAT

solver or constraint programming (Tang and Lin, 2009).

• Automated search for new impossibility theorems in ranking sets of

objects using a SAT solver (Geist and Endriss, 2011).

T. Nipkow. Social Choice Theory in HOL. Journal of Automated Reasoning,

43(3):289–304, 2009.

P. Tang and F. Lin. Computer-aided Proofs of Arrow’s and other Impossibility

Theorems. Artificial Intelligence, 173(11):1041–1053, 2009.

C. Geist and U. Endriss. Automated Search for Impossibility Theorems in Social

Choice Theory: Ranking Sets of Objects. JAIR, 40:143-174, 2011.
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Social Choice in Combinatorial Domains

Suppose 13 voters are asked to each vote yes or no on three issues;

and we use the plurality rule for each issue independently:

• 3 voters each vote for YNN, NYN, NNY.

• 1 voter each votes for YYY, YYN, YNY, NYY.

• No voter votes for NNN.

But then NNN wins: 7 out of 13 vote no on each issue (paradox!).

What to do instead? The number of candidates is exponential in the

number of issues (e.g., 23 = 8), so even just representing the voters’

preferences is a challenge (; knowledge representation).

S.J. Brams, D.M. Kilgour, and W.S. Zwicker. The Paradox of Multiple Elections.

Social Choice and Welfare, 15(2):211–236, 1998.

Y. Chevaleyre, U. Endriss, J. Lang, and N. Maudet. Preference Handling in Com-

binatorial Domains: From AI to Social Choice. AI Magazine, 29(4):37–46, 2008.
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Last Slide

This has been an introduction to computational social choice: the study of

collective decision making using computational (and other) methods.

We have focussed on strategic behaviour in elections:

• Gibbard-Satterthwaite Thm: no voting rules can prevent manipulation

• But ok for certain domain restrictions: quasi-linearity, single-peakedness

• Computational complexity might also provide protection

COMSOC is a fast moving research area with many opportunities for AI.

To find out more:

• Read our chapter in the MAS book (it’s on my website)

• Take my course (starts in February):

http://www.illc.uva.nl/~ulle/teaching/comsoc/

F. Brandt, V. Conitzer, and U. Endriss. Computational Social Choice. In G. Weiss

(ed.), Multiagent Systems, pages 213–283. MIT Press, 2013.
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