
Computational Social Choice Moscow, 27 May 2014

Computational Social Choice: Lecture 1

Ulle Endriss

Institute for Logic, Language and Computation

University of Amsterdam

Ulle Endriss 1

Computational Social Choice Moscow, 27 May 2014

Outline

Social choice theory is the study of collective decision making (as in

voting, fair division, matching, . . .). Over the past decade or so, this

has become a major topic also in computer science. Important:

computational 6= using a computer

We’ll focus on some of the methodologies used in COMSOC research:

• Computational complexity (specifically of strategic behaviour)

• Analysis of communication and information requirements

• Working with alternatives with a combinatorial structure [Friday]

But first, some examples for social choice problems . . .

F. Brandt, V. Conitzer, and U. Endriss. Computational Social Choice. In G. Weiss

(ed.), Multiagent Systems, MIT Press, 2013.

Ulle Endriss 2

Computational Social Choice Moscow, 27 May 2014

Three Voting Rules

How should n voters choose from a set of m alternatives?

Here are three voting rules (there are many more):

• Plurality : elect the alternative ranked first most often

(i.e., each voter assigns 1 point to an alternative of her choice,

and the alternative receiving the most points wins)

• Plurality with runoff : run a plurality election and retain the two

front-runners; then run a majority contest between them

• Borda: each voter gives m−1 points to the alternative she ranks

first, m−2 to the alternative she ranks second, etc.; and the

alternative with the most points wins

Ulle Endriss 3

Computational Social Choice Moscow, 27 May 2014

Example: Choosing a Beverage for Lunch

Consider this election with nine voters having to choose from three

alternatives (namely what beverage to order for a common lunch):

4 Dutchmen: Milk � Beer � Wine

3 Frenchmen: Wine � Beer � Milk

2 Germans: Beer � Wine � Milk

Which beverage wins the election for

• the plurality rule?

• plurality with runoff?

• the Borda rule?

Ulle Endriss 4

Computational Social Choice Moscow, 27 May 2014

Example: Voting in Multi-issue Elections

Suppose 13 voters are asked to each vote yes or no on three issues;

and we use the plurality rule for each issue independently:

• 3 voters each vote for YNN, NYN, NNY.

• 1 voter each votes for YYY, YYN, YNY, NYY.

• No voter votes for NNN.

But then NNN wins: 7 out of 13 vote no on each issue (paradox!).

What to do instead? The number of (combinatorial) alternatives is

exponential in the number of issues (e.g., 23 = 8), so even just

representing the voters’ preferences is a challenge . . .

S.J. Brams, D.M. Kilgour, and W.S. Zwicker. The Paradox of Multiple Elections.

Social Choice and Welfare, 15(2):211–236, 1998.

Ulle Endriss 5

Computational Social Choice Moscow, 27 May 2014

Judgment Aggregation

Preferences are not the only structures we may wish to aggregate.

In JA we aggregate people’s judgments regarding complex propositions.

p p→ q q

Judge 1: Yes Yes Yes

Judge 2: Yes No No

Judge 3: No Yes No

?

Ulle Endriss 6

Computational Social Choice Moscow, 27 May 2014

Fair Division

Fair division is the problem of dividing one or several goods amongst

two or more agents in a way that satisfies a suitable fairness criterion.

One instance of this problem is cake cutting .

For two agents, we can use the cut-and-choose procedure:

I One agent cuts the cake in two pieces (she considers to be of equal

value), and the other chooses one of them (the piece she prefers).

The cut-and-choose procedure is proportional :

I Each agent is guaranteed at least one half (general: 1/n)

according to her own valuation.

What if there are more than two agents? Is proportionality the best

way of measuring fairness? What about other types of goods?

Ulle Endriss 7

Computational Social Choice Moscow, 27 May 2014

Computational Social Choice

Research can be broadly classified along two dimensions —

The kind of social choice problem studied, e.g.:

• electing a winner given individual preferences over candidates

• aggregating individual judgements into a collective verdict

• fairly dividing a cake given individual tastes

• finding a stable matching of students to schools

The kind of computational technique employed, e.g.:

• algorithm design to implement complex mechanisms

• complexity theory to understand limitations

• logical modelling to fully formalise intuitions

• knowledge representation techniques to compactly model problems

• deployment in a multiagent system

Y. Chevaleyre, U. Endriss, J. Lang, and N. Maudet. A Short Introduction to

Computational Social Choice. Proc. SOFSEM-2007.

Ulle Endriss 8

Computational Social Choice Moscow, 27 May 2014

Voting Theory

In these lectures we will focus on the problem of voting to exemplify

some of the ideas in COMSOC, but similar questions may also be

asked for other frameworks of collective decision making . . .

Formal Framework

Finite set of voters N = {1, . . . , n} and finite set of alternatives X .

Each voter expresses a preference over the alternatives by providing a

linear order on X (her ballot). L(X) is the set of all such linear orders.

A profile R = (R1, . . . , Rn) fixes one preference/ballot for each voter.

A voting rule F is a function mapping every possible profile to a

(nonempty) set of winning alternatives:

F : L(X)n → 2X \{∅}

If |F (R)| = 1 for every profile R, then F is called resolute.

Ulle Endriss 9

Computational Social Choice Moscow, 27 May 2014

Example: Electing a President

Remember Florida 2000 (simplified):

49%: Bush � Gore � Nader

20%: Gore � Nader � Bush

20%: Gore � Bush � Nader

11%: Nader � Gore � Bush

Questions:

• Who wins?

• Is that a fair outcome?

• What would your advice to the Nader-supporters have been?

Ulle Endriss 10

Computational Social Choice Moscow, 27 May 2014

Strategic Manipulation

Our example demonstrates that the plurality rule is not strategy-proof :

sometimes voters have an incentive to report false preferences. Worse:

Theorem 1 (Gibbard-Satterthwaite) Any resolute voting rule for

> 3 alternatives that is surjective and strategy-proof is a dictatorship.

What to do?

• domain restrictions (e.g., single-peakedness)

• change of model (e.g., irresoluteness + certain strong assumptions)

• look for rules with low frequency of manipulability

• look for rules that are “difficult” to manipulate

A. Gibbard. Manipulation of Voting Schemes: A General Result. Econometrica,

41(4):587–601, 1973.

M.A. Satterthwaite. Strategy-proofness and Arrow’s Conditions. Journal of Eco-

nomic Theory, 10:187–217, 1975.

Ulle Endriss 11

Computational Social Choice Moscow, 27 May 2014

Complexity as a Barrier against Manipulation

The Gibbard-Satterthwaite Theorem shows that strategic manipulation

cannot be ruled out.

Idea: So it’s always possible to manipulate; but maybe it’s also

difficult? Tools from complexity theory can make this idea precise.

• If manipulation is computationally intractable for F , then F might

be considered resistant (albeit still not immune) to manipulation.

• Even if standard voting rules turn out to be easy to manipulate, it

might still be possible to design new ones that are resistant.

Ulle Endriss 12

Computational Social Choice Moscow, 27 May 2014

Computational Complexity Theory

Computational complexity theory studies the hardness of classes of

(decision) problems in terms of the time (and other resources) they

require to be solved, relative to their size. Examples:

• for a given graph with n nodes, deciding whether node A is

reachable from node B is possible in O(n2) steps

• for a given propositional formula of length n, deciding whether it

is satisfiable is possible in O(2n) steps

Two important complexity classes:

• P: the class of problems that can be solved in polynomial time

• NP: the class of problems for which a supposed solution can be

verified in polynomial time (unknown whether P 6=NP)

NP-complete means: amongst the hardest problems within NP.

C.H. Papadimitriou. Computational Complexity. Addison-Wesley, 1994.

Ulle Endriss 13

Computational Social Choice Moscow, 27 May 2014

Classical Results

The seminal paper by Bartholdi, Tovey and Trick (1989) starts by

showing that manipulation is in fact easy for a range of commonly

used voting rules, and then presents one system (a variant of the

Copeland rule) for which manipulation is NP-complete. Next:

• We first present a couple of these easiness results, namely for

plurality and for the Borda rule.

• We then mention a result from a follow-up paper by Bartholdi and

Orlin (1991): the manipulation of STV (Hare) is NP-complete.

J.J. Bartholdi III, C.A. Tovey, and M.A. Trick. The Computational Difficulty of

Manipulating an Election. Soc. Choice and Welfare, 6(3):227–241, 1989.

J.J. Bartholdi III and J.B. Orlin. Single Transferable Vote Resists Strategic Voting.

Social Choice and Welfare, 8(4):341–354, 1991.

Ulle Endriss 14

Computational Social Choice Moscow, 27 May 2014

Manipulability as a Decision Problem

We can cast the problem of manipulability, for a particular voting

rule F , as a decision problem:

Manipulability(F)

Instance: Set of ballots for all but one voter; alternative x.

Question: Is there a ballot for the final voter such that x wins?

A manipulator has to solve Manipulability(F) for all alternatives,

in order of her preference. (Note that in practice the manipulator does

not just want a yes/no answer, but the manipulating ballot.)

If Manipulability(F) is computationally intractable, then

manipulability may be considered less of a worry for F .

Remark: We assume that the manipulator knows all the other ballots.

This unrealistic assumption is intentional: if manipulation is

intractable even under such favourable conditions, then all the better.

Ulle Endriss 15

Computational Social Choice Moscow, 27 May 2014

Manipulating the Plurality Rule

Recall plurality: the alternative(s) ranked first most often win(s)

The plurality rule is easy to manipulate (trivial):

• Simply vote for x, the alternative to be made winner by means of

manipulation. If manipulation is possible at all, this will work.

Otherwise manipulation is not possible.

That is, we have Manipulability(plurality) ∈ P.

General: Manipulability(F) ∈ P for any rule F with polynomial

winner determination problem and polynomial number of ballots.

Ulle Endriss 16

Computational Social Choice Moscow, 27 May 2014

Manipulating the Borda Rule

Recall Borda: submit a ranking (super-polynomially many choices!)

and give m−1 points to 1st ranked, m−2 points to 2nd ranked, etc.

The Borda rule is also easy to manipulate. Use a greedy algorithm:

• Place x (the alternative to be made winner through manipulation)

at the top of your ballot.

• Then inductively proceed as follows: Check if any of the remaining

alternatives can be put next on the ballot without preventing x

from winning. If yes, do so. (If no, manipulation is impossible.)

After convincing ourselves that this algorithm is indeed correct, we

also get Manipulability(Borda) ∈ P.

J.J. Bartholdi III, C.A. Tovey, and M.A. Trick. The Computational Difficulty of

Manipulating an Election. Soc. Choice and Welfare, 6(3):227–241, 1989.

Ulle Endriss 17

Computational Social Choice Moscow, 27 May 2014

Intractability of Manipulating STV

Single Transferable Vote (STV): eliminate plurality losers until an

alternative is ranked first by > 50% of the voters

Theorem 2 (Bartholdi and Orlin, 1991) Manipulability(STV)

is NP-complete.

Proof: Omitted.

J.J. Bartholdi III and J.B. Orlin. Single Transferable Vote Resists Strategic Voting.

Social Choice and Welfare, 8(4):341–354, 1991.

Ulle Endriss 18

Computational Social Choice Moscow, 27 May 2014

Coalitional Manipulation

It will rarely be the case that a single voter can make a difference. So

we should look into manipulation by a coalition of voters.

Variants of the problem:

• Ballots may be weighted or unweighted .

Examples: countries in the EU; shareholders of a company

• Manipulation may be constructive (making alternative x a unique

or tied winner) or destructive (ensuring x does not win).

Ulle Endriss 19

Computational Social Choice Moscow, 27 May 2014

Decision Problems

On the following slides, we will consider two decision problems, for a

given voting rule F :

ConstructiveManipulability(F)

Instance: Set of weighted ballots; set of weighted manipulators; x ∈ X .

Question: Are there ballots for the manipulators such that x wins?

DestructiveManipulability(F)

Instance: Set of weighted ballots; set of weighted manipulators; x ∈ X .

Question: Are there ballots for the manipulators such that x loses?

Ulle Endriss 20

Computational Social Choice Moscow, 27 May 2014

Constructive Manipulation under Borda

In the context of coalitional manipulation with weighted voters, we can

get hardness results for elections with small numbers of alternatives:

Theorem 3 (Conitzer et al., 2007) Under the Borda rule, the

constructive coalitional manipulation problem with weighted voters is

NP-complete for > 3 alternatives.

Proof: We have to prove NP-membership and NP-hardness:

• NP-membership: easy (if you guess ballots for the manipulators,

we can check that it works in polynomial time)

• NP-hardness: for three alternatives by reduction from Partition

(next slide); hardness for more alternatives follows

V. Conitzer, T. Sandholm, and J. Lang. When are Elections with Few Candidates

Hard to Manipulate? Journal of the ACM, 54(3), Article 14, 2007.

Ulle Endriss 21

Computational Social Choice Moscow, 27 May 2014

Proof of NP-hardness
We will use a reduction from the NP-complete Partition problem:

Partition

Instance: (w1, . . . , wn) ∈ Nn

Question: Is there a set I ⊆ {1, . . . , n} s.t.
∑

i∈I wi =
1
2

∑n
i=1 wi?

Let K :=
∑n

i=1 wi. Given an instance of Partition, we construct an

election with n+ 2 weighted voters and three alternatives:

• two voters with weight 1
2
K − 1

4
, voting (x � y � z) and (y � x � z)

• a coalition of n voters with weights w1, . . . , wn who want z to win

Clearly, each manipulator should vote either (z � x � y) or (z � y � x).

Suppose there does exist a partition. Then they can vote like this:

• manipulators corresponding to elements in I vote (z � x � y)

• manipulators corresponding to elements outside I vote (z � y � x)

Scores: 2K for z; 1
2
K + (1

2
K − 1

4
) · (2 + 1) = 2K − 3

4
for both x and y

If there is no partition, then either x or y will get at least 1 point more.

Hence, manipulation is feasible iff there exists a partition. X

Ulle Endriss 22

Computational Social Choice Moscow, 27 May 2014

Destructive Manipulation under Borda

Theorem 4 (Conitzer et al., 2007) Under the Borda rule, the

destructive coalitional manip. problem with weighted voters is in P.

Proof: Let x be the alternative the manipulators want to lose. The

following algorithm will find a manipulation, if one exists:

For each alternative y 6= x, try letting all manipulators rank y

first, x last, and the other alternatives in any fixed order.

If x loses in one of these m−1 elections, then manipulation is

possible; otherwise it is not.

Correctness of the algorithm follows from the fact that (a) the best we

can do about x is not to give x any points and, (b) if any other

alternative y has a chance of beating x, she will do so if we give y a

maximal number of points. X

V. Conitzer, T. Sandholm, and J. Lang. When are Elections with Few Candidates

Hard to Manipulate? Journal of the ACM, 54(3), Article 14, 2007.

Ulle Endriss 23

Computational Social Choice Moscow, 27 May 2014

Worst-Case vs. Average-Case Complexity

NP-hardness is only a worst-case notion. Do NP-hardness barriers

provide sufficient protection against manipulation?

What about the average complexity of strategic manipulation?

Some recent work suggests that it might be impossible to find a voting

rule that is usually hard to manipulation—for a suitable definition of

“usual”. See Faliszewski and Procaccia (2010) for a discussion.

P. Faliszewski and A.D. Procaccia. AI’s War on Manipulation: Are We Winning?

AI Magazine, 31(4):53–64, 2010.

Ulle Endriss 24

Computational Social Choice Moscow, 27 May 2014

Controlling Elections

Strategic manipulation is not the only undesirable form of behaviour in

voting we may want to contain by means of complexity barriers . . .

People have studied the computational complexity of a range of

different types of control in elections:

• Adding or removing candidates.

• Adding or removing voters.

• Redefining districts (if your party is likely to win district A with an

80% majority and lose district B by a small margin, you might win

both districts if you carefully redraw the district borders . . .).

See Faliszewski et al. (2009) for an introduction to this area.

P. Faliszewski, E. Hemaspaandra, L.A. Hemaspaandra, and J. Rothe. A Richer

Understanding of the Complexity of Election Systems. In Fundamental Problems

in Computing, Springer-Verlag, 2009.

Ulle Endriss 25

Computational Social Choice Moscow, 27 May 2014

Bribery in Elections

Bribery is the problem of finding 6 K voters such that a suitable

change of their ballots will make a given candidate x win.

• Connection to manipulation: in the (coalitional) manipulation

problem the names of the voters changing ballot are part of the

input, while for the bribery problem we need to choose them.

• Several variants of the bribery problem have been studied: when

each voter has a possibly different “price”; when bribes depend on

the extent of the change in the bribed voter’s ballot; etc.

People have studied the complexity of several variants of the bribery

problem for various voting rules (e.g., Faliszewski et al., 2009).

P. Faliszewski, E. Hemaspaandra, and L.A. Hemaspaandra. How Hard is Bribery

in Elections? Journal of Artificial Intelligence Research, 35:485–532, 2009.

Ulle Endriss 26

Computational Social Choice Moscow, 27 May 2014

Information and Communication

Next we will discuss a range of questions concerning the role of

information and communication in voting:

• The Possible Winner Problem

– its many interpretations and applications

– its complexity, for various settings and voting rules

• Compilation of Intermediate Election Results

Note: We will mostly concentrate on positional scoring rules,

particularly Borda and plurality, to exemplify the general ideas,

but several other voting rules have been analysed as well.

Ulle Endriss 27

Computational Social Choice Moscow, 27 May 2014

Possible Winners

Idea: If we only have partial information about the ballots, we may ask

which alternatives are possible winners (for a given voting rule).

Let P(X) be the class of partial orders on the set of alternatives X .

Terminology: The linear order (�`) ∈ L(X) refines the partial order

(�p) ∈ P(X) if (�`) ⊇ (�p), i.e., if x �` y whenever x �p y.

Similarly, a profile of linear ballots R` ∈ L(X)n refines a profile of

partial ballots Rp ∈ P(X)n if R`
i refines Rp

i for each voter i ∈ N .

Definition: Given a partial profile R ∈ P(X)n, an alternative x? ∈ X
is called a possible winner under voting rule F if x? ∈ F (R?) for some

profile of linear ballots R? ∈ L(X)n that refines R.

The concept was originally introduced by Konczak and Lang (2005).

K. Konczak and J. Lang. Voting Procedures with Incomplete Preferences. Proc.

Multidisciplinary Workshop on Advances in Preference Handling 2005.

Ulle Endriss 28

Computational Social Choice Moscow, 27 May 2014

Necessary Winners

Analogously, we can also define the set of necessary winners of an

election with partial information about ballots:

Given a profile of partial ballots R ∈ P(X)n, an alternative x? ∈ X is

called a necessary winner under voting rule F if x? ∈ F (R?) for all

profiles of linear ballots R? ∈ L(X)n that refine R.

Remark: The set of necessary winners is a (not necessarily proper)

subset of the set of possible winners.

Ulle Endriss 29

Computational Social Choice Moscow, 27 May 2014

Connection with Preference Elicitation

Eliciting preference/ballot information from voters is costly, so it is

interesting to develop protocols for goal-directed elicitation:

• Coarse elicitation: Ask each voter for her ballot in turn.

• Fine elicitation: Ask voters to rank pairs of alternatives

one-by-one, in an appropriate order.

Observe the following connection:

I We can stop eliciting ballot information as soon as the sets of

possible and necessary winners coincide.

More on elicitation: Conitzer and Sandholm (2002), Walsh (2008)

V. Conitzer and T. Sandholm. Vote Elicitation: Complexity and Strategy-

Proofness. Proc. AAAI-2002.

T. Walsh. Complexity of Terminating Preference Elicitation. Proc. AAMAS-2008.

Ulle Endriss 30

Computational Social Choice Moscow, 27 May 2014

Special Case: Missing Voters

A first natural special case of having only partial ballot information is

when some voters are missing:

• Some voters have ballots that are linear orders (note: a linear

order is a special case of a partial order).

• All other voters have empty relations as ballots: x 6� y for all

x, y ∈ X (also a special case of a partial order)

Possible scenarios:

• We might be in the midst of a coarse elicitation procedure.

• Postal ballots may only arrive a few days after election day.

Ulle Endriss 31

Computational Social Choice Moscow, 27 May 2014

Missing Voters and Coalitional Manipulation

There are close links to the coalitional manipulation problem:

• The possible winner problem with missing voters is equivalent to

the constructive coalitional manipulation problem:

A coalition of voters can collude to make x? a (joint) winner iff

x? is a possible winner when only those voters are missing.

• The necessary winner problem is the complement of the

destructive coalitional manipulation problem:

A coalition of of voters can collude to bar x? from winning iff

x? is not a necessary winner when only those voters are missing.

Ulle Endriss 32

Computational Social Choice Moscow, 27 May 2014

Special Case: Missing Alternatives

A second natural special case of having only partial ballot information

is when some alternatives are missing:

• Distinguish “old” alternatives X1 and “new” alternatives X2.

• All ballots are complete on X1: x � y or y � x for all x, y ∈ X1.

• All ballots are empty on pairs involving at least one new

alternative: x 6� y if x ∈ X2 or y ∈ X2

Possible scenario:

• Some alternatives (e.g., a new plan) become available only after

voting has started.

Remark: We had briefly discussed control by adding alternatives and

bribery before. This is related, but different (now we don’t know or

control how the new alternatives will be ranked by the voters).

Ulle Endriss 33

Computational Social Choice Moscow, 27 May 2014

Computational Complexity

There are a large number of complexity results for the possible and

necessary winner problems in the literature:

• for a range of voting rules (for which the standard winner

determination problem is tractable, otherwise it’s hopeless)

• for weighted and unweighted voters

• for bounded and unbounded numbers of alternatives

• for the general problem and for special cases

Next, we will see some of these results, for positional scoring rules with

unweighted voters and unbounded numbers of alternatives.

Ulle Endriss 34

Computational Social Choice Moscow, 27 May 2014

The Possible Winner Problem

This is the variant of the problem we will consider:

PossibleWinner(F)

Instance: profile of partial ballots R ∈ P(X)n; alternative x? ∈ X
Question: Is x? a possible winner under voting rule F?

Note that ballots are unweighted and that the number of alternatives

is unbounded (the crucial parameter for the complexity will be the

number of alternatives, not the number of voters).

Ulle Endriss 35

Computational Social Choice Moscow, 27 May 2014

Possible Winners under Plurality

Even for the very simplest of voting rules, computing possible winners

is not trivial. But for plurality it is at least polynomial:

Theorem 5 (Betzler and Dorn, 2010) Under the plurality rule, the

possible winner problem can be decided in polynomial time.

The original proof of Betzler and Dorn is based on flow networks.

Here we will instead use a reduction to bipartite matching.

Remark: Computing possible winners under the antiplurality rule is

also polynomial, and the proof is very similar.

N. Betzler and B. Dorn. Towards a Dichotomy for the Possible Winner Problem

in Elections Based on Scoring Rules. Journal of Computer and System Sciences,

76(8):812–836, 2010.

Ulle Endriss 36

Computational Social Choice Moscow, 27 May 2014

Bipartite Matching

A perfect matching of a graph G = (V,E) is a set of edges E′ ⊆ E

such that each vertex in V is adjacent to exactly one edge in E′.

A graph G = (V,E) is called bipartite if the set of vertices V can be

partitioned into sets V1 and V2 such that each edge in E is adjacent to

both a vertex in V1 and a vertex in V2.

Bipartite Matching

Instance: Bipartite graph G.

Question: Does G have a perfect matching?

Bipartite Matching can be decided in polynomial time, using for

instance the Hopcroft-Karp Algorithm (Hopcroft and Karp, 1973).

J.E. Hopcroft and R.M. Karp. An n5/2 Algorithm for Maximum Matchings in

Bipartite Graphs. SIAM Journal on Computing, 2(4):225–231, 1973.

Ulle Endriss 37

Computational Social Choice Moscow, 27 May 2014

Proof of Theorem 5
Recall: Given a profile of partial ballots, we want to show that we can

decide in polynomial time whether x? is a possible plurality winner.

An alternative can get a point from a partial ballot iff it is undominated.

Suppose x? is undominated in K 6 n ballots. So x? can get K points.

Can we choose one alternative from each of the remaining sets of

undominated alternatives without one of them getting more than K points?

If K · (m−1) < n−K, then one rival must get more points than x?. X

Otherwise, construct a bipartite graph G:

• Lefthand vertices: one for each remaining set of undominated

alternatives; and K · (m−1)− (n−K) “dummy” vertices

• Righthand vertices: K copies of each alternative other than x?

• Edges: link each set-vertex to each copy of each of its members;

and link each dummy vertex to all vertices on the right

Now we have a one-to-one correspondence between perfect matchings of G

and ballot refinements that give each rival of x? at most K points. X

Ulle Endriss 38

Computational Social Choice Moscow, 27 May 2014

Possible Winners under Borda

Theorem 6 (Xia and Conitzer, 2008) Under the Borda rule,

deciding whether an alternative is a possible winner is NP-complete.

Proof: Omitted.

In fact, the result of Xia and Conitzer covers many positional scoring

rules. Betzler and Dorn (2010) showed that PossibleWinner is

NP-complete for almost all PSR’s (except for plurality and veto).

L. Xia and V. Conitzer. Determining Possible and Necessary Winners under Com-

mon Voting Rules Given Partial Orders. Proc. AAAI-2008.

N. Betzler and B. Dorn. Towards a Dichotomy for the Possible Winner Problem

in Elections Based on Scoring Rules. Journal of Computer and System Sciences,

76(8):812–836, 2010.

Ulle Endriss 39

Computational Social Choice Moscow, 27 May 2014

Possible Winners for Missing Alternatives

Recall that for the possible winner problem with missing alternatives

only, we are given a complete ballot profile for the “old” alternatives

and have to decide whether the “new” alternatives can be inserted so

that x? wins.

Theorem 7 (Chevaleyre et al., 2010) Under the Borda rule, the

possible winner problem restricted to the case of missing alternatives

can be decided in polynomial time.

Proof: Trivial if x? is new. Else: The best we can do for x? is to insert

the new alternatives (in any order) just below x? in each ballot. This

maximises the point difference between x? and its old rivals (and x?

beats all new rivals). So we only need to check whether x? wins for

this one profile. X

Y. Chevaleyre, J. Lang, N. Maudet, and J. Monnot. Possible Winners when New

Candidates are Added: The Case of Scoring Rules. Proc. AAAI-2010.

Ulle Endriss 40

Computational Social Choice Moscow, 27 May 2014

Overview: Possible Winners under PSR’s

We have seen several results regarding the computational complexity

of the PossibleWinner problem for positional scoring rules:

• General case: polynomial for plurality and antiplurality

• General case: NP-complete for Borda (and most PSR’s)

• Missing alternatives only: polynomial for Borda

• Missing voters only: NP-complete for for Borda (not discussed)

This is equivalent to the constructive coalitional manipulation

problem. For weighted voters, we have seen an NP-hardness proof

before (there is a similar result for unweighted voters).

Ulle Endriss 41

Computational Social Choice Moscow, 27 May 2014

Compilation of Intermediate Election Results

Given a partial ballot profile and a voting rule, how much information

do we need to store to be to be able to compute the election winners

once the remaining ballot information comes in?

An instance of this general question:

I If some voters have voted already (using complete linear ballots),

what is the most compact way of compiling the intermediate

election result so as to be able to compute the winner(s) once the

remaining voters have voted?

The number of bits required to store the relevant information for a

given voting rule F is called the compilation complexity of F .

Remark: The number of additional voters may be known or unknown.

We shall discuss the case where it is unknown.

Ulle Endriss 42

Computational Social Choice Moscow, 27 May 2014

Compilation Complexity
Let n be the number of (old) voters and m the number of alternatives.

We need dlogme bits to represent the name of one alternative.

Some basic observations:

• The compilation complexity of any voting rule is at most

ndlog(m!)e (just store all ballots)

• The compilation complexity of any anonymous voting rule is at

most min{ndlog(m!)e,m!dlog(n+1)e} (as we can also store for

each ballot the number of voters choosing it, if that’s shorter)

• The compilation complexity of any dictatorial voting rule is

dlogme (just store the choice of the dictator)

• The compilation complexity of any constant voting rule (always

electing the same winner) is 0.

Y. Chevaleyre, J. Lang, N. Maudet, and G. Ravailly-Abadie. Compiling the Votes

of a Subelectorate. Proc. IJCAI-2009.

Ulle Endriss 43

Computational Social Choice Moscow, 27 May 2014

Equivalence Classes

Let F be a voting rule.

Call two ballot profiles R and R′ F -equivalent if for any additional

ballot profile R?, we have F (R⊕R?) = F (R′ ⊕R?).

The most space-efficient (but not time-efficient!, which is ok) way to

compile a ballot profile is to store the index of its equivalence class.

Hence, if g(F, n,m) is the number of equivalence classes for voting

rule F , n (old) voters, and m alternatives, then the compilation

complexity of F is (exactly) dlog g(F, n,m)e.

This suggests a proof technique for proving compilation complexity

results: count the equivalence classes!

Ulle Endriss 44

Computational Social Choice Moscow, 27 May 2014

Compilation Complexity of Borda

Two ballots are Borda-equivalent if they assign the same Borda scores.

But this doesn’t tell us how many equivalence classes there are (some

combinations of Borda scores will be impossible). So we cannot use

this to get the exact compilation complexity of Borda.

Theorem 8 (Chevaleyre et al., 2009) The compilation complexity

of the Borda rule is in O(m log(nm)).

Proof: Next slide.

Remark: Chevaleyre et al. also prove a matching lower bound.

Y. Chevaleyre, J. Lang, N. Maudet, and G. Ravailly-Abadie. Compiling the Votes

of a Subelectorate. Proc. IJCAI-2009.

Ulle Endriss 45

Computational Social Choice Moscow, 27 May 2014

Proof of the Upper Bound

We want to establish an upper bound on the compilation complexity

of the Borda rule for n voters and m alternatives:

• The maximal Borda score of each alternative is n(m−1), because

at best they all rank that alternative first.

• So we can store the scores of the first m−1 alternatives using

d(m−1) log(n(m−1))e bits; the mth score can be inferred.

• Hence, the compilation complexity of Borda is at most

d(m−1) log(n(m−1))e, and thus in O(m log(nm)). X

Ulle Endriss 46

Computational Social Choice Moscow, 27 May 2014

Summary

We have reviewed several examples for typical research questions

investigated in computational social choice.

• Strategic manipulation: can high complexity protect elections?

• Possible winners: which alternatives do have a chance of winning?

• Compilation: how can we efficiently represent the relevant

information elicited for the voters so far?

In the second lecture, we will look into the problem of dealing with

large numbers of alternatives for voting in combinatorial domains.

Meanwhile, more information is available in the book chapter cited

below and on the website of my Amsterdam course:

http://www.illc.uva.nl/~ulle/teaching/comsoc/

F. Brandt, V. Conitzer, and U. Endriss. Computational Social Choice. In G. Weiss

(ed.), Multiagent Systems, MIT Press, 2013.

Ulle Endriss 47

