
MSC ARTIFICIAL INTELLIGENCE

MASTER’S THESIS

A Game-theoretic Approach to the Card
Game Toepen

BY

DAAN LE

11329866

July 5, 2021

48 EC
NOV 2020 - JUL 2021

Supervisor:
prof. dr. Ulle Endriss

Assessor:
dr. Ronald de Haan

Institute for Logic, Language and Computation

https://www.illc.uva.nl/

iii

Abstract

This thesis examines the card game Toepen from a game-theoretic perspective. Game
theory is a mathematical framework to analyse strategic interactions between ratio-
nal agents. It offers a strong framework in environments where there is hidden in-
formation for players of the game. Toepen is such a game which is also known as an
imperfect-information game. Methods of the field of Game theory are first used to
analyse the game from a theoretical point of view. This includes modeling Toepen
as an extensive game, defining how an algorithm known as Monte Carlo Counter-
factual Regret Minimization can be used to generate Nash equilibria in Toepen and
how the game can be abstracted to make the size of the game more feasible for this
algorithm.

After theoretically going over the game, the methods which are discussed are
further investigated by testing them in practice. This is done by using Monte Carlo
Counterfactual Regret Minimization to generate strategies that can play small ver-
sions of Toepen. Here we find that a larger deck does not necessarily mean that a
strategy is harder to compute and that abstracting the hands of cards leads to worse
performance than abstracting the history of the game.

v

Acknowledgements
First of all, I would like to thank my supervisor Ulle Endriss for helping me through-
out all the stages of this long project. Every time I felt stuck or unmotivated, our
meetings would give me a fresh perspective and help me move forward. You were
my first college professor at the Bachelor’s AI program, where you taught me a
course on problem solving in Prolog using recursion. It is funny how I will now, five
years later, end my studies by implementing a recursive algorithm.

Next I want to thank my fishing friends and fellow students, Mathieu, Paul,
David and David for our great study sessions and recreational gatherings. I also
want to thank my parents and brother for their support and love during my studies.
Finally, I want to thank my partner Andrea for always being there and supporting
me throughout this year.

vii

Contents

Abstract iii

Acknowledgements v

1 Introduction 1

2 Background 3
2.1 Extensive-form Games . 3
2.2 Strategy . 4
2.3 Counterfactual Regret Minimization . 5
2.4 Monte Carlo Counterfactual Regret Minimization 6
2.5 Abstraction . 7

2.5.1 Information Abstraction . 7
2.5.2 Action Abstraction . 9

3 Strategy Design 11
3.1 Toepen . 11

3.1.1 Basic Toepen . 11
3.1.2 Size Complexity . 13
3.1.3 Smaller Versions . 14
3.1.4 Theoretical Properties . 15

3.2 MCCFR . 16
3.2.1 Algorithm . 16
3.2.2 Example . 17

3.3 Abstraction . 19
3.3.1 Card Isomorphism . 19
3.3.2 Lossy Abstraction . 20

4 Experiments 23
4.1 MCCFR . 23

4.1.1 Methodology . 23
4.1.2 Parameter Setup . 24
4.1.3 Results . 24
4.1.4 Discussion . 25

4.2 Abstraction . 28
4.2.1 Methodology . 28
4.2.2 Parameter Setup . 29
4.2.3 Results . 29
4.2.4 Discussion . 30

5 Conclusion 35
5.1 Thesis Summary . 35
5.2 Future Work . 35

ix

List of Figures

3.1 An example of the first iteration of MCCFR on one information set. . . 18
3.2 An example of a later iteration of MCCFR on one information set. . . . 19

4.1 The exploitability of strategy profiles for hand size 2 without betting.
Lower is better. 25

4.2 The exploitability of strategy profiles for hand size 2 with betting.
Lower is better. 26

4.3 The score of strategy profiles generated using naive abstractions ver-
sus non-abstracted strategy profiles. Higher is better. 30

4.4 The score of strategy profiles generated using advanced abstractions
versus non-abstracted strategy profiles. Higher is better. 31

4.5 The number of information sets reached during training for different
abstraction methods. 32

xi

List of Tables

3.1 The actual number of information sets in some smaller versions of the
game. 14

3.2 The practical number of information sets after card isomorphism. . . . 20

4.1 The game parameters for the MCCFR experiment 24

1

Chapter 1

Introduction

The advancements in Artificial Intelligence (AI) are often measured in terms of the
performance of artificial agents in popular games. Such advancements include beat-
ing top humans in chess [Campbell et al., 2002] and Go [Silver et al., 2016]. More
recently, AI agents were able to beat top humans in heads-up no-limit Texas hold
’em Poker [Brown and Sandholm, 2018] and shortly thereafter multiplayer no-limit
Texas hold ’em Poker [Brown and Sandholm, 2019]. Although these are all impor-
tant milestones in the field, the breakthrough in the game of Poker is quite distinct
from the previous findings due to the fact that Poker is an imperfect-information
game. Imperfect-information games are games in which there is uncertainty about
the current state of the game for one or more of the players. Whereas chess players
both have exactly the same information about the state of the game, Poker players
do not. Poker players each have a private hand which is only available to them-
selves. While the solutions to these games are interesting for recreational purposes,
the techniques for solving such games also have broad applications outside of this
domain. Many real-world interactions include some form of hidden information, for
example in the context of negotiating, auctions or security.

The way in which perfect and imperfect-information games are solved through
AI is different. For perfect-information games, the current state of the art techniques
make use of Reinforcement learning combined with search algorithms. Reinforce-
ment learning is an area of Machine learning which is concerned with how intel-
ligent agents take actions in an environment to maximize a reward. By searching
through a game tree, the valuations of the game states are updated iteratively. How-
ever, for imperfect-information games, the value of an action may depend on the
probability that the action is chosen. This means that a state defined by a sequence
of actions can have multiple valuations. Therefore, an AI system has to balance ac-
tions in such a way that it does not reveal too much private information about the
game. Bluffing is an example of such an action for which the utility is dependent
on the probability that one does that action. By bluffing too much, the bluff will get
called out, which results in long term losses. Another difference is that in perfect-
information games, parts of the game can be considered in isolation. In a chess
endgame for example, all knowledge about chess openings is irrelevant. This means
a chess end game can be considered by itself, without any regard for the previous
moves. Imperfect-information games do not have this luxury as it may be the case
that the optimal strategy of a subgame is dependent on the optimal strategy of a
subgame that is not reached.

To deal with these difficulties, methods from the field of Game theory offer
promising solutions. Game theory is a field developed mostly throughout the twen-
tieth century, initially by mathematicians like John F. Nash and John von Neumann.
It is the study of mathematical models to analyze strategic interactions between ra-
tional agents. This means that rather than just dealing with games, Game theory

2 Chapter 1. Introduction

is applicable in many real-world situations. During the twentieth century, for ex-
ample, Game theory was used to strategize regarding the use of nuclear weapons
in the cold war. Terms like ‘mutually assured destruction’ describe Game-theoretic
problems that were investigated at the time. Since then, Game theory has been used
in many fields like evolutionary biology, economics, computer science, philosophy
and linguistics.

For heads-up no-limit Poker, the difficulties of imperfect-information games are
solved using three main modules [Brown and Sandholm, 2018]. Since this game has
10160 unique decision points, the first module consists in creating an abstraction of
the game which is much smaller and easier to solve. The module then creates game-
theoretic strategies for this abstraction using a regret-minimizing algorithm. The
resulting strategy is detailed for the early betting rounds but just an approximation
of the later rounds. The second module constructs a fine-grained abstraction during
play of the game for the later rounds and solves them in real-time. The third module
enhances the initial strategy by filling in missing branches of the abstraction based
on the actual moves of the opponent. While some of these techniques are specific to
the domain of Poker, most of them can be applied more generally to other imperfect-
information games.

In this project, a popular Dutch card game called Toepen will be investigated
using these Game-theoretic methods. Toepen is an imperfect-information card game
in which players play out their cards over a number of rounds. Throughout the
rounds, players can bet to play for a higher number of points which get distributed
after the last round. Winning rounds gives players an advantage in the next round.
However, only the last round matters in terms of points. This means that a hand of
Toepen requires players to think ahead and play in a way that makes them win the
last round. A thorough explanation of the game will follow in Chapter 3.

The main focus of this research is to find methods that can be used to create
agents that can play a game like Toepen well. This is done by investigating two
techniques that are commonly used to find solutions to large imperfect-information
games. The first technique is a solving algorithm called Monte Carlo Counterfac-
tual Regret Minimization (MCCFR) which can be used to find optimal strategies
in extensive-form games [Lanctot et al., 2009]. This is the algorithm which is used
in the first module of the paper by Brown and Sandholm [2018] to find the optimal
strategy for the abstraction of the game. This algorithm has theoretical guarantees
to converge to an optimal strategy in an unlimited number of iterations.

The second technique is abstraction, which is used to simplify the game in order
to make MCCFR a feasible technique in a game of this size. Abstraction is usually
done in three stages. First, the game is abstracted to a smaller game, meaning de-
cision points are grouped together. The solving algorithm then generates a strategy
for this abstracted game. The strategy is then mapped back to the original game.

The thesis will be outlined in the following manner. In Chapter 2, the relevant
background information from the existing literature is highlighted. In Chapter 3,
two-player Toepen is modeled in a Game-theoretic framework as an extensive-form
game. We then explain how both MCCFR and abstraction can be used to solve
Toepen from a game-theoretic perspective. In Chapter 4, we do two experiments to
investigate how the methods, explored in Chapter 3, perform in practice. A reposi-
tory containing the code for the implementation of the methods and the experiments
can be found at github.com/DaanLe/Toepen.

https://github.com/DaanLe/Toepen

3

Chapter 2

Background

This chapter outlines the notation and terminology used throughout this thesis and
gives the necessary background regarding the methods used.

2.1 Extensive-form Games

Extensive-form games model multiagent interactions in the form of a tree which
captures the sequential nature of the interaction and are often used for their game-
theoretical properties. Each node in the tree represents a decision point for a player
or a chance event. Extensive-form games are useful models for representing imperfect-
information games. These are games in which there is information which is not
available to all players, such as a closed hand in a card game. Formally, an extensive-
form game with imperfect information can be described as a tuple 〈 N, H, Z, i, A, A,
s, I , u 〉 in the following manner [Osborne and Rubinstein, 1994]:

• Let N be a finite set of players.

• Let H be a finite set of nodes or histories of actions which contains all the
information of the situation up until that point. This set is constructed such
that the empty sequence is in H and every prefix of a sequence in H is also
in H. Define h v h′ to mean that h is a prefix of h′. Let Z ⊆ H be the set of
terminal histories which are not a prefix of any other sequence. These are the
points at which the game ends.

• Let i : H\Z → N ∪ {c} be a player function which assigns each non-terminal
node to a player in N or chance which is denoted as c.

• Let A be a finite set of the possible actions in the game and let A : H → 2A be
an action function which maps a non-terminal node h to a set of the available
actions in that node.

• Let s : H × A → H be a successor function which returns the next node h′,
given the previous node h and an action a.

• Let Ii be a partition of {h ∈ H | i(h) = i} where any two nodes h, h′ ∈ I with
I ∈ Ii, are indistinguishable for player i. We require that A(h) = A(h′) which
can also be expressed as A(I) and i(h) = i(h′) which can be expressed as i(I).
The set ZI is a the set of all terminal nodes with a prefix in I and for z ∈ ZI , let
z[I] be that prefix. Ii is called the information partition of player i and I ∈ Ii
is called an information set of player i.

• Let ui : Z → R be a payoff function for each player i ∈ N such that each termi-
nal node is mapped to a reward. Next define ∆i = maxh∈Zui(h)−minh∈Zui(h)

4 Chapter 2. Background

as the range of utilities to player i ∈ N and ∆ = maxi∈N∆i as the range of
utilities for the game.

Here we will only discuss two-player zero-sum extensive-form games which
means N = {1, 2} and u1 = −u2. Furthermore, we will assume perfect recall which
means that players will always be able to access their previous actions and corre-
sponding information sets.

2.2 Strategy

A strategy σi(I) is a stochastic vector over A(I) for a given information set I ∈ Ii.
The probability of a particular action a being chosen will be denoted as σi(I, a). In
the literature, this type of strategy is known as a behavioral strategy since the prob-
abilities are given locally for each information set as opposed to a mixed strategy
where the probability vector is over all actions in Ai. For finite imperfect-information
games with perfect recall, any behavioral strategy is outcome-equivalent to some be-
havioral strategy and vice versa [Kuhn, 1953]. Next we define σi to be a strategy for
player i in each information set I ∈ Ii and Σi as the set of all possible strategies for
player i. A strategy profile σ, will be a tuple containing a strategy for each player.
With σ−i we will denote all the strategies in σ except for σi.

Let πσ(h) be the probability of node h occurring if all players play according to
σ. This is formally given as πσ(h) = ∏h′ s.t. h′vh σi(h′)(h′, a). This simply means mul-
tiplying all the probabilities in the strategy which led to the node. This value can
be decomposed as πσ(h) = ∏i∈N∪{c} πσ

i (h) where πσ
i (h) is a player’s contribution

to the total probability. This contribution can be seen as the chance of getting to the
node, given that all other players play to get to the node. πσ

−i(h) is the contribution
of all players except for player i as well as chance. Let πσ(h, z) = πσ(h)/πσ(z)
if h v z, and zero otherwise. This can be seen as the probability of reaching a
terminal node from a non-terminal node, given the strategy profile. For I ⊆ H,
define πσ(I) = ∑h∈I πσ(h) which is the probability of reaching I given σ with
πσ

i (I) and πσ
−i(I) defined in the same way. The expected payoff of a strategy profile

ui(σ) = ∑h∈Z ui(h)πσ(h) is the result of summing up the utilities of the terminal
nodes scaled according to the probabilities of reaching those nodes.

A strategy σ∗i is a best response for player i to the partial strategy profile σ−i
if ui(σ

∗
i , σ−i) ≥ ui(σ

′
i , σ−i) for all σ′i ∈ Σi. The best-response value is then the ex-

pected value of that strategy for that player bi(σ−i) = maxσ′i∈Σi
ui(σ

′
i , σ−i)

A Nash equilibrium is a strategy profile in which each σi is a best response to
σ−i for every player i ∈ N. In a two-player zero-sum game, a Nash equilibrium has
the property that any player who plays according to a Nash equilibrium strategy
is guaranteed to not lose in expectation regardless of the strategy of the opponent.
This result is due to the fact that each player plays a best response which means that
no player can unilaterally change its strategy to gain a higher expected utility. In
a two-player game, this then means that if one player plays according to the Nash
equilibrium, the other player has the best response of also playing according to the
Nash equilibrium and all other strategies will cause her to lose in expectation. For
unbalanced games where the game gives an inherent advantage to one of the play-
ers, the property of not losing in expectation only holds if the players are equally

2.3. Counterfactual Regret Minimization 5

likely to be this player. An ε-Nash equilibrium is an approximation of a Nash equi-
librium where the following holds:

∀i ∈ N ui(σ) + ε ≥ maxσ′i∈Σi
ui(σ

′
i , σ−i) (2.1)

If ε = 0 then σ is a true Nash equilibrium. For two-player zero-sum games, we
can use the metric of exploitability of a strategy εσ = b1(σ2) + b2(σ1) to determine
how close a strategy profile is to a Nash equilibrium.

2.3 Counterfactual Regret Minimization

Counterfactual Regret Minimization (CFR) is a method to find Nash equilibria in
extensive-form games in an iterative way originally proposed by Zinkevich et al.
[2008]. It is important to note that during CFR, the algorithm is not actually playing
the game but rather just adjusting the strategies for both players. Therefore the al-
gorithm has perfect information, meaning it has access to the entire strategy profile
σ which makes calculating values like πσ

−i(I) possible. To use CFR, we first need a
notion of regret. Regret can be intuitively understood as a measure of how much a
player would gain if it had used a different strategy. As this regret is defined over
the span of multiple iterations of the game, we use σt

i to denote the strategy pro-
file on iteration t. The counterfactual value vσ(I) is the expected payoff of player
i = i(I) when reaching I, weighted by the probability of reaching I if i played to
reach I. Intuitively this can be understood as a “counterfactual” as it is the expected
payoff of player i reaching I if the player had tried to do so, keeping the strategy
profile equal for everything else. This is formally given by:

vσ(I) = ∑
z∈ZI

πσ
−i(z[I])π

σ(z[I], z)ui(z) (2.2)

Next we define vσ(I, a) in the same manner except there is now a 100% probabil-
ity of playing action a at I. Formally:

vσ(I, a) = ∑
z∈ZI

πσ
−i(z[I])π

σ(s(z[I], a), z)ui(z) (2.3)

The instantaneous regret is then defined as:

rt(I, a) = vσt
(I, a)− vσt

(I) (2.4)

This is called the instantaneous regret because it is a measure of how much a
player regrets, not always playing action a, rather than playing the current strategy
at this information set. The counterfactual regret RT(I, a) is the sum of the instan-
taneous regret rt(I, a) over T time steps. Next define the positive counterfactual
regret RT

+(I, a) = max{RT(I, a), 0} and the maximal positive counterfactual regret
RT(I) = maxaRT

+(I, a). The total regret of player i at iteration T is computed as
follows:

RT
i = maxσ∗i ∈Σi

T

∑
t=1

(ui(σ
∗
i , σt

−i)− ui(σ
t)) (2.5)

The average strategy σ−T
i of player i from time 1 to T is defined as a distribution

over all actions a ∈ A(I) for each information set I ∈ Ii, formally defined as:

6 Chapter 2. Background

σ−T
i (I) =

∑T
t=1 πσt

i (I)σt(I)

∑T
t=1 πσt

i (I)
(2.6)

In two-player zero-sum games, if both player’s average total regret RT
i

T is less
than ε at time step T, then 〈σ−T

1 , σ−T
2 〉 is a 2ε-Nash equilibrium [Waugh, 2009]. This

means that if we can bound the average total regret, we can approach an ε-Nash
equilibrium.

The goal of CFR is to minimize regret on each information set which can be done
using a number of different algorithms. An algorithm is regret-minimizing if the
average total regret of all players goes to zero as t goes to infinity. A common al-
gorithm for this purpose is regret matching which is developed by Hart and Mas-
Colell [2000]. Here the strategy of a player is a distribution over the actions in an
information set which is proportional to the positive regret of each action. This is
formally given as:

σt+1(I, a) =
Rt
+(I, a)

∑a′∈A(I) Rt
+(I, a′)

(2.7)

If ∑a′∈A(I) Rt
+(I, a′) = 0 the strategy will be a uniform distribution over all pos-

sible actions. Cesa-Bianchi and Lugosi [2006] have shown that if a player selects
actions according to regret matching, then on iteration T, RT(I) ≤ ∆

√
|A(I)|

√
T.

One of the key results in the original CFR paper by Zinkevich et al. [2008] is that
RT

i ≤ ∑I∈Ii
RT(I), which means that CFR can be used in self-play to compute a

ε-Nash equilibrium in two-player zero-sum games. Moreover, the bound on the av-
erage total regret is linear in the number of information sets and since only the values
at each information set have to be stored, the space complexity is O(|I|). However,
each iteration still requires an entire traversal of the game tree.

2.4 Monte Carlo Counterfactual Regret Minimization

The obstacle of having to traverse the entire game tree on each iteration can be cir-
cumvented using Monte Carlo Counterfactual Regret Minimization (MCCFR) [Lanc-
tot et al., 2009]. MCCFR restricts the number of terminal histories which are consid-
ered at each iteration. In practice, this means that we only update the strategy for a
part of the tree which leads to a subset of terminal nodes, rather than traversing the
entire tree.

To do this, letQ be a partition on Z for which we call a subset Q ∈ Q a block. An
iteration will consist of sampling one block and only considering the nodes which
lead to the terminal nodes in that block. The way in which these blocks are di-
vided and the probability with which a block is chosen define the MCCFR algorithm.
External-sampling MCCFR is a commonly used option for its simplicity and strong
performance. This version samples choices external to a given player, meaning the
actions of the opponent and chance. This means we have a block for every pure
strategy of the opponent and chance. The probability of sampling a block is equal to
the probability of this block occurring based on σ−i and chance. Rather than track-
ing the instantaneous regret rt(I, a), we now track the instantaneous sampled regret
r̃t(I, a). For information sets sampled at iteration t, r̃t(I, a) is equal to rt(I, a) divided
by the probability of sampling I, while for unsampled information sets r̃t(I, a) = 0.

2.5. Abstraction 7

The instantaneous sampled regret will match the instantaneous regret in expecta-
tion. The player’s strategy is updated using regret matching, after which the process
is repeated for the other player to finish an iteration. The player for which the strat-
egy is updated is called the update player. From now on, when we use MCCFR in
this research, we refer to external-sampling MCCFR unless specified otherwise.

When using MCCFR, for any ρ ∈ (0, 1] the total regret is bounded by:

RT
i ≤ (1 +

√
2
√

ρ
)|Ii|∆

√
|Ai|
√

T (2.8)

with probability 1 − ρ where |Ai| = maxh s.t. i(h)=i|A(h)|. This means that al-
though MCCFR requires the same number of iterations for a worse lower bound
than vanilla CFR, each iteration only traverses a fraction of the tree. For balanced
games where both players make an equal number of decisions, the iteration cost of
MCCFR is O(

√
H) while vanilla CFR has an iteration cost of O(H).

2.5 Abstraction

Over the last decade, abstraction has proved to be an important part of solving large
imperfect-information games [Sandholm, 2015a]. At its core, most abstraction tech-
niques consist of three modules. First, the game is abstracted to a smaller game
which is strategically similar to the original game. Then an ε-Nash equilibrium strat-
egy is computed for this smaller game, after which this strategy is mapped back to
the original game.

There are two overarching types of abstraction in imperfect-information games,
namely: information abstraction and action abstraction. Information abstraction
aims to reduce the number of information sets in the game by mapping the nodes
of the game to a smaller number of information sets. Grouping together nodes that
were previously distinguishable can be seen as forgetting some of the information
which was used to keep them apart. Good information abstraction only groups
together similar nodes. Action abstraction aims to restrict the number of actions
available to a player to decrease the branching factor of the game tree, which then
reduces the number of information sets that way.

2.5.1 Information Abstraction

There are two different types of information abstraction. The first type is lossless
abstraction. As the name implies, this is a type of abstraction for which the abstract
game still contains all the relevant information of the original game. An example
of lossless abstraction in card games is card isomorphism, where there are certain
hands of cards that are strategically identical, even though they are actually differ-
ent. In a game of Texas Hold’em Poker, the hands ‘2 of hearts’-‘3 of spades’ and ‘2
of clubs’-‘3 of diamonds’ are strategically identical and are often just referred to as
‘2-3 offsuit’. In card games containing four suits where different suits do not have
an inherent role in the mechanics of the game, card isomorphism can reduce the size
of the game by at most a factor of 4! = 24.

In a lossless abstraction, the solution maps back to an equal ε-Nash equilibrium
solution in the original game. A more advanced lossless abstraction algorithm called
GameShrink was able to solve Rhode Island Hold’em, which is a version of Poker
with 3.1 billion nodes in the game tree [Gilpin and Sandholm, 2007b]. While this
is a general algorithm applicable to games other than Poker, it does require that

8 Chapter 2. Background

the available actions are independent from the private information which is only
available to one of the players. Toepen unfortunately does not have this property, as
the playable cards depend on the hand of the player, which is private information.

The other type of information abstraction is lossy abstraction. In a lossy abstrac-
tion, information is intentionally ignored or forgotten in order to map more possible
histories to a smaller number of information sets. This comes at the cost of having a
solution which is not equal to the solution in the original game. Many games are still
too large after lossless abstraction, which is why lossy abstraction is often needed.
The main ways of doing lossy information abstraction in practice contain some form
of bucketing and imperfect recall.

Bucketing is the act of grouping together distinct information sets. Information
sets which are grouped together should be strategically similar in order to have a
solution which is still viable in the original game. This can be done based on metrics
such as ‘strength’ which can be derived from the probability to win, lose or draw
from an information set. Information sets with similar scores on this metric can then
be grouped together using a clustering algorithm like K-means [MacQueen, 1967].
While early Poker AI systems used this metric [Gilpin and Sandholm, 2007a], newer
Poker AI systems use more sophisticated methods such as potential-aware abstrac-
tions [Ganzfried and Sandholm, 2014]. These are abstractions where information
sets are bucketed based on the probability distribution over the strength in all future
rounds of the game. The distance between these distributions is computed using the
Earth Mover’s Distance (EMD). Informally, if the distributions are seen as piles of
earth, EMD can be seen as the lowest cost of turning one pile into the other; where
cost is defined as the amount of earth moved, multiplied by the distance by which it
is moved.

An Imperfect-recall abstraction is an abstraction where players forget some of
the information about the history of the game. There are several problems with this
type of abstraction. One problem is that this method removes the theoretical guar-
antees of both CFR and MCCFR. Another, bigger problem is that Nash equilibria
are not even guaranteed to exist in behavioral strategies in games with imperfect re-
call [Wichardt, 2008]. However, Waugh et al. [2009b] have shown that Poker agents
which use this type of abstractions are consistently able to outperform Poker agents
which use perfect recall abstractions. A possible explanation for this is that there
is the presence of a trade-off between the different sorts of information on which a
decision is based. By forgetting some information about the past, the more relevant
information about the current state of the game can be more refined which allows
for better choices in practice.

One of the big challenges of lossy abstractions in games, as opposed to single-
agent settings, is that they can be nonmonotonic [Waugh et al., 2009a]. This means
that a strategy which is computed on a fine-grained abstraction, meaning an abstrac-
tion closer to the original game, can be worse in the original game than a coarser
abstraction. The reason for this is that the opponent can play actions outside of the
abstraction, whereas in a single-agent setting all actions fall in the abstraction which
does ensure monotonicity. This makes the theoretical grounding of lossy abstrac-
tions weak in general. Despite this, lossy information abstraction seems to work
well in practice and has been a staple in the recent artificial Poker agents [Brown
and Sandholm, 2018, 2019].

2.5. Abstraction 9

2.5.2 Action Abstraction

Action abstraction is a type of abstraction which reduces the number of actions
which can be taken from an information set. This is especially needed in games
where there exist information sets which have a continuous or large set of actions.
In no-limit Poker, this is the case as bets can range from the big blind all the way up
to the entire stack which can often be as much as a hundred big blinds. With this
type of branching the game tree quickly becomes intractable. Luckily, many of these
actions are very similar and can be grouped together to reduce this problem. This
can be done manually by using a heuristic, but in the last decade there have also
been developments in automated action abstraction techniques [Brown and Sand-
holm, 2014, Sandholm, 2015b,a]. Since Toepen does not have continuous actions,
this type of abstraction will not be used in this research.

11

Chapter 3

Strategy Design

This chapter contains techniques which can be used to generate strategies for a game
like Toepen. First we will explain Toepen in detail, after which we will go over
MCCFR and abstraction in the context of Toepen.

3.1 Toepen

This section consists of an examination of the game of Toepen. First, the rules of the
game are outlined, both formally and informally. After that, the size complexity of
the game is investigated and some simpler versions of the game will be introduced.
Lastly, some theoretical properties of Toepen are explored.

3.1.1 Basic Toepen

Toepen is a Dutch card game which is played with a subset of a normal deck of cards,
containing only cards higher or equal to 7. The goal of the game is to stay below a
certain bound, usually 15 points, where players gain penalty points if they lose a
hand. The game can be played with 2 to 8 players. The ranking of the cards is as
follows, from high to low: 10-9-8-7-‘Ace’-‘King’-‘Queen’-‘Jack’. A hand plays out as
follows. Each player gets dealt four cards which all get played out over the course
of four rounds. The first player to act in a hand is called the starting player. The
first player to act in a round is called the active player as she has the initiative for
this round. This means that the card she plays decides the suit for that round. All
players have to play a card of this suit if they have it. If they have multiple cards of
that suit, they can choose which of those cards they play. If a player does not have
the suit, she can play any card but is unable to win the round. These players are
called the reactive players as they have to react to the card of the active player. The
player who plays the highest card of the suit determined by the active player is the
winner of the round and becomes the active player for the next round. This means
this player gets to start the next round and decide the suit for that round. However,
only the winner of the last round is the winner of the hand, which means she does
not get any penalty points. The number of penalty points the other players get is
dependent on the number of bets within that round. The round starts with an ante
of 1 point. All players can bet at any point in the game to increase the ante with 1
point, except if they were the last player to bet or if their bet causes the sum of their
penalty points and ante to become higher than the bound. After a bet each player
gets the choice to fold, adding the old ante to their point total, or to play on for the
new ante. After a hand is finished, the starting player is rotated. Players who reach
the bound leave the game until a single winner remains.

For this research, we will only consider the two-player version of Toepen and
we will just consider one hand at a time. While the strategy of a player within a

12 Chapter 3. Strategy Design

hand can somewhat change based on the penalty-point tally, the strategy in a hand
should be independent of this tally if the players are not within reach of the bound
during the hand. Furthermore, we only allow for betting by the players before they
play a card. This reduces the size of the game and is also expected behavior since
waiting with betting until a player has to play her card reveals the most information
to that player while hiding the information of that card from the other player. To
avoid confusion, we will also invert the penalty-point system which means that the
winner of a hand will get points, rather than the loser.

More formally, a two-player hand of Toepen can be defined in the framework of
extensive-form games in the following manner:
Toepen is a tuple 〈 N, H, Z, i, A, A, s, I , u 〉 where:

• N = {1, 2}

• H = {h1, ..., ht}, where t is the total number of nodes.

• Z ⊆ H are the terminal nodes which are not a prefix of any other sequence.

• i : H\Z → N ∪ {c} is a function which maps each non-terminal history to a
player in N or chance. In Toepen, only the first action is taken by chance, since
chance only determines the cards which are dealt at the beginning of a hand.
After the chance action, player 1 is the first player to act.

• A = {‘Bet’, ‘Check’, ‘Call’, ‘Fold’} ∪ (Rank × Suit) ∪ { 〈x, y〉 | x, y ∈ P(Rank×
Suit) and |x| = |y| = 4 and x ∩ y = ∅}, where Rank = {10, 9, 8, 7, ‘Ace’, ‘King’,
‘Queen’, ‘Jack’}, Suit = {‘Clubs’, ‘Diamonds’, ‘Hearts’, ‘Spades’}, P(Rank ×
Suit) indicates the power set of all possible card combinations and 〈x, y〉 indi-
cates a tuple containing the two starting hands, x for player 1 and y for player
2, as sets of size 4 containing cards as elements.

• A : H → 2A is an action function which returns the available actions given
a node. One can see that A consists of the union of three sets, namely: the
betting actions, the card playing actions and the card dealing actions. The card
dealing actions happen only at the start of the hand, while the betting and card
playing actions alternate throughout the rest of the hand. Betting actions can
be further subdivided into active betting which is the set {‘Bet’, ‘Check’} and
reactive betting which is the set {‘Call’, ‘Fold’}

• s : H× A→ H is a successor function which maps a node and action to a new
node. This function encodes the rules of the game.

• Ii is a partition of {h ∈ H | i(h) = i}, where any two nodes are indistinguish-
able for player i. For Toepen, this is the case for all {h ∈ H | i(h) = i} for which
the histories h′ v h are reached with the same sequence of actions, except for
the card dealing action 〈x, y〉 ∈ A(h1) which can differ in the set corresponding
to the hand of the opponent.

• ui : Z → R is a payoff function where u1 = −u2 as this is a zero-sum game.
Further ui(z) = ±|{h v z | s(h′, a) = h and a = ‘Call’}| which means the
payoff or ante of the hand is the number of calls in the history of the hand.

To illustrate how a hand of Toepen can play out, consider the following example:

Example 3.1.1. Two players, Alice and Beth, are playing a hand of Toepen against
each other. Alice is the starting player. Alice has a hand containing a king of hearts,

3.1. Toepen 13

a jack of spades and a 8 and 10 of diamonds. Beth has a hand containing an ace of
hearts, a king and 9 of clubs and a 7 of diamonds.

Alice starts off by playing her jack of spades. Since Beth does not have a card
with the spades suit, she can play any of her cards but is unable to win the round.
Beth plays the king of clubs, after which the round ends with Alice as the winner.
Alice starts the next round by playing the king of hearts. Beth has to play the ace of
hearts since it is her only card of the same suit. However, before she plays her card,
she decides to bet an extra point. Alice knows she will probably lose the initiative
this round, but since the rest of her hand is strong, she decides to call the bet. The
ante of the game is now 2 points. Beth plays her ace of hearts and wins the round.
Beth starts the next round by playing her 9 of clubs. Alice does not have a card of the
clubs suit, and since all the cards she has left are of the diamond suit, she decides to
play the lowest rank which is the 8 of diamonds. Beth wins the round, which means
she starts off the last round. This is the only round that matters in terms of winning
or losing the hand. Beth plays out her remaining card which is the 7 of diamonds.
Alice has the 10 of diamonds remaining in her hand, so she knows she will win the
game. Therefore, she decides to bet another point. Beth now has to decide whether
Alice’s bet is a bluff or a value bet. Beth knows that Alice’s remaining card can not
be of the clubs suit since she would have had to play it in round 3. She also knows
that it is probably a high card since Alice called her bet in round 2, even though Alice
knew she would probably lose the initiative. After some thinking, Beth decides to
call. Alice plays her 10 of diamonds which means she wins the game and gets 3
points.

3.1.2 Size Complexity

The size complexity of Toepen is outlined here. First of all, there are many decision
points which means the extensive-form game representation contains many infor-
mation sets for which a strategy has to be computed. For a two-player game using
the basic rules, there are a total of 32 different cards from which 4 cards are drawn
for each hand. This means that there are already (32

4) · (
28
4) ≈ 7.4 · 108 distinct hand

configurations for two-players. To get the number of possible histories for a round
of Toepen, this number must be multiplied by by the number of possible actions for
the players. This leads to (32

4) · (
28
4) · 42 · 32 · 22 ≈ 4.2 · 1011 possible ways of playing

the hand without betting. This number is higher than the actual possible histories
in a game since the possible actions of the second player of the round are confined
by the suit of the card which the first player played. Therefore this will be an upper
bound, rather than the actual number of possible histories. Next, betting has to be
taken into account. As discussed earlier, betting directly after a previous bet does not
make much sense in practice since you could also wait until your opponent played
her next card before betting to have more information. Since we expect players to
behave in this manner, the increase of possible histories would be by a factor of 28,
as each player could bet before playing each of their four cards, and each bet has a
branching factor of two. This leads to a total of 1.1 · 1014 possible histories per hand.

For a player who has to create a strategy, storing the entire game tree in memory
is not necessary. Players only have access to the information set which a node be-
longs to, meaning that only the size of the information partition is important for
this algorithm. For each player this can be computed by taking the number of
possible hands for that player and then for each round, multiplying by the num-
ber of possible cards of the opponent and the playable cards. This would result in
(32

4) · 28 · 4 · 27 · 3 · 26 · 2 ≈ 1.7 · 1010 possible decision points. This is again higher than

14 Chapter 3. Strategy Design

Suits Ranks Hand size Betting Hand configs Upper bound Info sets
2 2 2 False 6 48 10
2 2 2 True 6 1,536 496
2 3 2 False 15 240 39
2 3 2 True 15 7,680 3,552
3 2 2 False 15 240 51
3 2 2 True 15 7,680 3,576
3 3 2 False 36 1,008 180
3 3 2 True 36 32,256 22,338
3 3 3 False 84 30,240 4,584
3 3 3 True 84 3,870,720 1,366,338

TABLE 3.1: The actual number of information sets in some smaller
versions of the game.

the actual number of information sets due to restrictions in the possible actions. Bet-
ting adds the same complexity as before, namely a factor of 28 leading to 4.3 · 1012

information sets per player per hand. Since the second player has to act after the
first player’s first action, the betting complexity adds a factor of 29 for this player.
For two-players this leads to 1.7 · 1013 information sets per hand. The practical num-
ber of information sets for some small versions of the game is shown in Table 3.1. As
we can see, the upper bound is quite liberal.

While this is a large number of information sets, there have been games of similar
size which are solved using a version of CFR called CFR+ [Bowling et al., 2015].
However, this implementation required more than 900 core-years of computation
and 10.9 terabytes of disk space at the time. This is an immense amount of resources
that will not be used for this research. Instead, MCCFR will be tested on smaller
versions of the game. This allows for more extensive research on which features of
the game cause the most difficulty for the algorithm. These smaller versions of the
game will be explained next.

3.1.3 Smaller Versions

To reduce the size of the game, the game is reduced to smaller versions. First of
all, only a heads-up version of the game is examined, meaning a game with only 2
players. Next, one hand is considered at a time. As mentioned earlier, the strategy in
a hand should be independent of this tally if the players are not within reach of the
bound during the hand. Next, a variable deck and number of rounds will be used.
This means the game can be played with any number of cards and suits and for any
number of rounds. Therefore, the complexity can be reduced or increased based on
the intermediate findings of the research. The betting option will also be variable,
which allows for a version of the game with no betting. In this version of the game,
players cannot bet to play for a higher ante. These smaller versions of the game
are not the same as abstractions but rather new original games which preserve the
structure of the game but reduce the size. This is similar to Kuhn Poker [Kuhn, 1950]
and Leduc hold’em Poker [Southey et al., 2005]. These are small versions of Texas
hold’em poker containing only three and six cards, respectively, and two betting
rounds. These versions of Poker are often used in research as a proof of concept for
newly developed techniques.

3.1. Toepen 15

3.1.4 Theoretical Properties

Toepen has some interesting properties which set it apart from other card games.
The game contains four different types of actions, namely: active betting, reactive
betting, active card playing and reactive card playing.

Betting actions are similar to the actions in Poker. This makes Toepen somewhat
similar to Poker, although there are still many differences. Poker has chance events
throughout the game which are unknown to any of the players, while Toepen only
has chance events at the beginning of a hand. Once the hands are dealt in Toepen,
the strength of the hand is entirely dependent on the hand of the other player the
strategy profile. In Poker, if both the strategies and the hands of the players are
known, there is still uncertainty about the outcome of a game. This makes evaluation
of a hand different for each game, since concepts like potential-aware evaluation
cannot be computed in the same way in Toepen, as in Poker. Evaluating a hand
in Toepen is difficult since the quality of the cards is hard to determine based on
the individual cards themselves. This is the case, because different combinations of
suits and ranks have different strengths and weaknesses, which are also based on
which player is the active player. Having many cards of the same suit is often good
if you are the active player, but bad if the opponent is the active player. Consider the
following simple example:

Example 3.1.2. Let us assume a player has a hand containing the 7, 8, 9 and 10 of
hearts. This would be considered a perfect hand if this player is the active player. In
this case, she is guaranteed to win the hand. However, if the opponent is the active
player the hand suddenly becomes quite bad. The hand contains half of all the heart
cards in the game, so the chance of the opponent having one is small. If the opponent
does not have a heart, the hand always results in a loss.

If the game did not contain betting, it would be more straightforward to play.
Many of the actions would become strictly dominated in this setting, meaning there
exists no situation where this action leads to a higher utility than some other ac-
tion. However, the game does contain betting which makes it so that these strictly
dominated actions can now be used to bluff or mislead the opponent. Consider for
example the following situation:

Example 3.1.3. Player 1 has a hand containing the 10 of clubs and the 8 of clubs.
Player 2 won the previous round and starts this round off with a 8 of hearts. In a
game without betting, playing the 8 of clubs would always be better as the 10 of
clubs would be a better card in the last round, and the current round cannot be won.
This means that playing the 10 of clubs is a strictly dominated action, and there is no
possible scenario where playing the 10 of clubs is better than playing the 8 of clubs.
If we introduce betting, this is no longer the case. By playing the 10 of clubs in the
current round, player 1 reveals that she could have a really strong hand, containing
for example one of the other 10’s in the deck. If player 2 would now play a 9 of
diamonds in the last round, player 1 can bluff and bet. Playing the 10 of clubs made
the bluff more believable in the eyes of player 2, who is now more likely to fold.

While it is not clear that this would actually be a better action, it is no longer the
case from a game-theoretic point of view that this is a strictly dominated action.

16 Chapter 3. Strategy Design

3.2 MCCFR

MCCFR is the algorithm which can solve the game once the game is properly de-
fined. In this section we will go over the specifics of this algorithm and the imple-
mentation in practice.

3.2.1 Algorithm

To use MCCFR, we first need both the action function and the successor function of
Toepen. To use these functions, we introduce the concept of a game state. A game
state is similar to a node, but it contains all the data of the game explicitly, rather
than implicitly, as is the case with nodes. This means a game state contains the
player who has to act, the hands of both players, the history containing all played
actions, whether the state is a terminal state and the ante of the hand.

Using this information, we can define the action function, which returns the pos-
sible actions at a given game state. The function distinguishes between 4 types of
actions, namely: active betting, reactive betting, active card playing and reactive
card playing. Active betting happens at the beginning of the game and after a card
has been played. However, a player cannot bet if she was the last player to bet. This
returns the actions {‘Bet’, ‘Check’} to the player. Reactive betting only happens when
the previous action was a ‘Bet’ by the other player. In this case, the returned actions
are {‘Call’, ‘Fold’}. Active card playing happens at the start of each round by the
player who won the previous round, after this player’s betting action. If this is the
case, the player can play any of the cards in her hand. Reactive card playing is a bit
more complicated. Reactive card playing is the last action to happen in the round,
after there is one card in play and all betting for the round is finished. The available
actions are dependent on the suit of the card which was played by the active player
and the hand of the player. If the player has any cards of this suit in her hand, the
player has to play one of them. If the player does not have any card of this suit in
her hand, she can play any of the cards in her hand.

The successor function takes a game state and action and returns the next game
state. The first thing to determine for the next game state is whether it is a terminal
state or not. The next game state is terminal if either the end of the last round is
reached, meaning all cards have been played, or when the action is ‘Fold’. In all
other cases the next game state is a non-terminal game state. Next, the ante of the
next state can be determined by taking the ante of the current game state and adding
one to it of the action is ‘Call’. The player which has to act in the next game state
is only the same player if the action is ‘Check’ or if the player won the previous
round as a reacting player. In all other cases, the player who has to act is switched to
the opponent. Lastly, the action is added to the history of actions which have been
played, and if the action was a card, it is removed from the hand of the player.

Now that the action and successor functions are both defined, they can be used
in an MCCFR implementation to generate a ε-Nash equilibrium for the game. The
MCCFR function is a recursive function which takes in a game state, the probability
of reaching that game state πσt

and the update player i for which the strategy is
currently being updated. The base case for this recursion is a terminal game state
which returns the ante for the hand at the moment the hand ended. The initial
input is a game state where the cards are sampled uniformly from the deck and
no actions have been played. For the update player, each of the possible actions is
generated using the action function, after which the successor function is used to
find the new game state, which is then used for the next recursive step. For the other

3.2. MCCFR 17

player, a random action is sampled according to the average strategy of that player at
the current iteration πσt

−i. After the base case is reached, the instantaneous sampled
regret rt̃(I, a) for each reached information set for the update player is computed by
using equation 2.4 and dividing by the probability of that information set occurring,
given the strategy of the opponent. This value is then added to the counterfactual
regret RT(I, a) which is just the sum of all instantaneous sampled regrets for a given
information set and action. The strategy for the next iteration is computed using
equation 2.7. The counterfactual regrets are stored in a dictionary where the keys
are the information sets. Alongside these values, the sum of weighted strategies
∑T

t=1 πσt

i (I)σt(I) is also stored. This is the sum over the strategies multiplied by the
probability of the update player reaching the information set using the her strategy.
The algorithm then changes the update player and starts again for a given number
of iterations.

After the algorithm is done, one has a dictionary containing the sum of weighted
strategies for all information sets which were reached during training. These values
can then be normalized using equation 2.6 to compute the average strategy. This
average strategy is theoretically guaranteed to converge to an ε-Nash equilibrium
over time.

3.2.2 Example

While the MCCFR algorithm can seem complex, it is quite easy to understand in
practice. Consider the following practical example which is an altered version of
an example by Johanson [2016] for Toepen of two iteration of MCCFR on one of the
information sets:

Example 3.2.1. Let us consider the actual first iteration which means the strategy
profile σ1 contains only uniform probabilities over all choices in the game. A visual
representation of this example is given in Figure 3.1. Consider the information set
where a player has three possible actions of playing a hand containing a 10 of clubs,
7 of clubs and 8 of hearts. We will refer to these actions as action 1, action 2 and
action 3, respectively. Since it is the first iteration, the player’s strategy is 1

3 probabil-
ity for each action. Let us assume the probability of reaching this information set is
πσt

−i(I) = 0.2 if the current player was actively playing to reach this information set.
Now we assume that the expected value of the information sets which are reached
by actions 1, 2 and 3 are -3, 6 and 3, respectively. This makes the counterfactual value
of the current information set equal to 0.2 · (−3 · 1

3 + 6 · 1
3 + 3 · 1

3) = 0.4. We can now
calculate the instantaneous regret of each action by subtracting the counterfactual
value from the value of always taking that action. This would result in a regret of
0.2 · −3− 0.4 = −1 for action 1, 0.2 · 6− 0.4 = 0.8 for action 2 and 0.2 · 3− 0.4 = 0.2
for action 3. This can intuitively be understood as the player regretting to not play
actions 2 and 3 more often while also regretting she plays action 1 as often as she
does with the current strategy. These regret values are stored and accumulate as the
counterfactual regret whenever the information set is reached again. The next step
consists of calculating the strategy σt+1(I, a) of the next iteration using equation 2.7.
This is done in proportion to the positive counterfactual regret. This means the prob-
ability of choosing action 1 becomes 0 as it has negative counterfactual regret, the
probability of choosing action 2 becomes 0.8/1 = 0.8 and the probability of choos-
ing action 3 becomes 0.2/1 = 0.2. Finally, we also store the the sum of weighted
strategies ∑T

t=1 πσt

i (I)σt(I). Let us assume πσt

i (I) = 0.4 which would result in 0,
0.4 · 0.8 = 0.32 and 0.4 · 0.2 = 0.08 for actions 1, 2 and 3, respectively.

18 Chapter 3. Strategy Design

Opp

3

Player

−3

6

action 3 (1/3)

πσt

−i(I) = 0.2

action 1 (1/3)

action 2 (1/3)

FIGURE 3.1: An example of the first iteration of MCCFR on one infor-
mation set.

To further showcase how the MCCFR algorithm works, another example is given.
For the next iteration where this information set is reached, the counterfactual regret
of the previous iteration is used as follows:

Example 3.2.2. The next iteration where this information set is reached is visually
represented in Figure 3.2. The information set and thus the possible actions are all
the same as the previous example. However, the strategies of the players and the
hand of the opponent are now different, resulting in new reach probabilities πσt

(I)
and expected values. Let us assume that now, the probability of reaching this infor-
mation set is πσt

−i(I) = 0.5 if the current player was actively playing to reach this
information set. The expected value of the information sets which are reached by
action 1, 2 and 3 are -1, 0 and 6, respectively. This makes the counterfactual value of
the current information set equal to 0.5 · (−1 · 0 + 0 · 4

5 + 6 · 1
5) = 0.6. We can now

calculate the instantaneous regret which becomes 0.5 · −1− 0.6 = −1.1 for action
1, 0.5 · 0− 0.6 = −0.6 for action 2 and 0.5 · 6− 0.6 = 2.4 for action 3. These regret
values accumulate to the counterfactual regret resulting in −1− 1.1 = −2.1 for ac-
tion 1, 0.8− 0.6 = 0.2 for action 2 and 0.2 + 2.4 = 2.6 for action 3. Using equation
2.7, σt+1(I, a) is computed. For the next iteration, the probability of choosing ac-
tion 1 is still 0 as it has negative counterfactual regret, the probability of choosing
action 2 becomes 0.2/2.8 ≈ 0.071 and the probability of choosing action 3 becomes
2.6/2.8 ≈ 0.93. If we assume πσt

i (I) = 0.3 this time, ∑T
t=1 πσt

i (I)σt(I) would now be
0 + 0 = 0, 0.32 + 0.3 · 0.071 ≈ 0.34 and 0.08 + 0.3 · 0.93 ≈ 0.36 for actions 1, 2 and 3,
respectively. If we now want to compute the average strategy, we can normalize the
sum of weighted strategies using equation 2.6. This would result in a probability of
0, 0.34

0.3+0.4 ≈ 0.49 and 0.36
0.3+0.4 ≈ 0.51 for actions 1, 2 and 3, respectively.

3.3. Abstraction 19

Opp

6

Player

−1

0

action 3 (1/5)

πσt

−i(I) = 0.5

action 1 (0)

action 2 (4/5)

FIGURE 3.2: An example of a later iteration of MCCFR on one infor-
mation set.

As we can see in these examples, the calculations are pretty straightforward.
Each time the information set is reached, the computed strategies can fluctuate,
based on the current strategy. However, over time, the average strategy will sta-
bilize and approach a Nash equilibrium.

3.3 Abstraction

Abstraction is used to make Toepen tractable as it is too large in its original form.

3.3.1 Card Isomorphism

The first and simplest abstraction which will be used is called card isomorphism.
This is a type of abstraction which bundles together game states which are only
different in the suits of the cards. For example, a hand containing the 10 of hearts,
8 of hearts and 7 of clubs can be bundled with a hand containing 10 of spades, 8 of
spades and 7 of diamonds. It is important to use a specific translation of the suits,
which is then also used for the cards of the opponent. Otherwise, the suits would no
longer match between a player and her opponent. This is a lossless abstraction as it
does not lose any information from a strategic point of view. To avoid confusion, the
suits are mapped to stings other than the actual suit names, namely: ‘first’, ‘second’,
‘third’ and ‘fourth’.

To do this abstraction, each player needs a dictionary to translate the suits. This
dictionary has to be dependent on the ranks of the cards in order to actually abstract
the hands. Otherwise the suits would just rotate and there would be no reduction

20 Chapter 3. Strategy Design

Suits Ranks Handsize Betting Info sets
2 2 2 False 6
2 2 2 True 330
2 3 2 False 21
2 3 2 True 2,130
3 2 2 False 14
3 2 2 True 954
3 3 2 False 48
3 3 2 True 5,586
3 3 3 False 1,173
3 3 3 True 376,958

TABLE 3.2: The practical number of information sets after card iso-
morphism.

in the size of the game. The dictionary is made dependent on the ranks by sorting
the hand from high to low, based on the ranks. The suit of the lowest card gets
translated to ‘first’, the suit next lowest card that was not the first gets translated to
‘second’ and this is repeated until all cards in the hand have been translated. If there
are suits which were not in the hand, they can be translated arbitrarily as long as the
method is consistent. In this implementation the remaining suits are translated using
an alphabetical order which is ‘clubs’(first)-‘diamonds’-‘hearts’-‘spades’(last). This
ordering is also used in case of ties in the rankings. Two examples of a dictionary
based on a hand are given bellow:

Example 3.3.1. hand: 8 of clubs, 9 of clubs, 10 of hearts, 10 of diamonds
dictionary: ‘clubs’: ‘first’, ‘diamonds’: ‘second’, ‘hearts’: ‘third’, ‘spades’: ‘fourth’

Example 3.3.2. hand: ace of hearts, 10 of hearts, ace of diamonds, 8 of diamonds
dictionary: ‘diamonds’: ‘first’, ‘hearts’: ‘second’, ‘clubs’: ‘third’, ‘spades’: ‘fourth’

Once the dictionary is made for a hand, it can be used to translate all game states
which also contain cards of the opponent. Each player has her own dictionary as the
translation has to be constructed at the beginning of the game when the only infor-
mation available to each player is their own private hand. This reduces the number
of information sets by the number of suits factorial at most. The practical number of
information sets for some small versions of the game, after this abstraction is shown
in Table 3.2.

3.3.2 Lossy Abstraction

Lossless abstraction is not enough to make the game of Toepen tractable for an al-
gorithm like MCCFR. Therefore lossy information abstraction is needed. In the non-
abstracted version of MCCFR, each game state is mapped to a key for the dictionary
which contains the information sets. This key contains all the information available
to the player which is the hand of the player and the history of the bets and the
cards played. To use lossy information abstraction, a function is used which maps
different hands and histories to the same key.

In Poker, abstraction is often done using potential-aware methods in combina-
tion with simple clustering algorithms. In potential-aware abstractions, information
sets are bucketed based on the probability distribution over the strength in all fu-
ture rounds of the game. Potential-aware abstraction makes sense in Poker, since

3.3. Abstraction 21

the strength of a hand in future rounds is determined by simple chance events with
known probabilities. In Toepen, the strength of a hand in future rounds is deter-
mined by both chance events (the hand of the opponent) and the strategy of the
opponent. This makes potential-aware abstraction a less suitable option for a game
like Toepen. Therefore, we will rely on heuristic abstraction methods in this research.
This means we will group information sets together based on abstraction rules which
are predetermined.

A thing to note here is that MCCFR only requires to know the number of possible
actions from a given game state. This means one could map all hands and histories
with the same number of actions to the same key, resulting in just a few information
sets. This would obviously result in a strategy that makes no sense and tries to
balance the same probability distribution over groups of entirely different possible
actions. However, it does mean that we can choose the abstraction rules freely, as
long as the abstraction does not group information sets together with a different
number of possible actions.

Abstraction rules can be applied to two different aspects of the game, namely: the
hands and the history. Abstracting hands in Toepen can be done by grouping them
based on some similarity metric. A straightforward metric would be the average
rank of the hand. Since the rank of the cards determines the winner of the game,
grouping the hands in this way would make sense. However, this metric misses
many of the nuances of Toepen. Two hands with the same average rank can be
very different in Toepen, based on the spread of the ranks of the cards. Having four
mediocre cards is often worse than having two high and two low cards. This is due
to the fact that a player can throw the away her low cards in the early rounds and use
her high cards to win the later, more crucial rounds. A better metric is therefore the
number of high cards in the hand, meaning the number of cards which is higher than
the average rank of the deck. This metric is better at capturing the importance of the
rank in a hand. Another important feature of a hand is the number of different suits
in the hand. For the active player, having few different suits is often good, as that
means there is less chance of losing the initiative to the opponent. For the reacting
player, having many suits can be better as that increases the chance of gaining the
initiative back at a later round.

An important note on the hand abstractions is that they abstract away informa-
tion about the possible actions. The cards in a hand make up the actions from which
a player has to choose. To the algorithm, the only inherent information about the ac-
tions are their indexes. Therefore, hand abstraction could cause different actions to
be mapped to the same index. If those action are very different in outcome, it would
be bad for the convergence of the algorithm. To combat this, the cards are ordered
before they are given these indexes. This ordering is done by first grouping the suits
in the hand together and then ordering those groups, based on the the rank of their
lowest ranking cards. This should cause the same sort of actions to map to the same
index. However, if the hand abstraction is too coarse, it will still map different sorts
of actions to the same index. Consider the following example:

Example 3.3.3. Let us assume we use a hand abstraction which groups hands, based
on their average rank. Now assume we have to play as a reacting player in the
second round in a hand of Toepen. The active player played the 8 of clubs. We know
how many actions are available, which we can assume is three. As the reacting
player, we also have to play a card of the clubs suit if we have it. However, we have
no information on the suits in our hand. If all three cards in our hand are cards of
the clubs suit, we would want to play one of our high index cards as that means we

22 Chapter 3. Strategy Design

could win the round and gain the initiative. However, if our hand contains no cards
of the clubs suit, throwing away the low index card is probably better, as that would
preserve our higher ranking cards for the later rounds.

Since the MCCFR algorithm can not distinguish between these states, it will have
to balance its strategy according to the probabilities of these hands occurring. This
means that the strategy at this decision point has to be optimized for the player’s
own hand, rather than the hand or strategy of the opponent, which makes it less
refined.

Abstracting the history is less intuitive than abstracting the hands. The history
contains much more implicit information which is hard to abstract. In the non-
abstracted game, the history is an ordered tuple, containing all the actions up until
that point. This information can be used to infer which player is the active player,
what the ante of the game is, which suits the opponent does not have, which specific
cards are not in the opponents hand and at what points the opponent decided to bet.
Information about the cards in the opponent’s hand seems crucial to make the right
decision at any point in the game. Therefore, abstracting the card playing actions
could be too costly in terms of the information that is lost. However, a possibility
here could be to group together histories with the same actions but different orders.
This would still allow players to infer which specific cards are not in the opponents
hand, but it would lose information on the suits which the opponent does not have
as that can only be inferred based on the order of the actions.

Abstracting the betting actions in the history can be easier as the exact betting or-
der has less influence on the way a game plays out. The betting order can be used to
get a read on the strength of the opponent’s hand, but if a player has a well balanced
betting strategy, this should be hard to do. Whereas the order of the card playing
actions gives first-order knowledge about the cards in the hand of the opponent, the
betting order gives second-order knowledge through the strategy of the opponent.
An abstraction rule for the history of the betting actions could therefore be to remove
all the betting actions and replace them with the value of the ante. This would still
keep the most crucial betting information, while leaving out the exact order of the
betting.

To further explore the right abstraction rules for a game like Toepen in practice,
a number of experiments will be conducted. These experiments will be outlined in
Chapter 4.

23

Chapter 4

Experiments

This chapter contains a number of experiments which are used to explore the game
of Toepen and ways to find optimal strategies for Toepen. The first section describes
experiments which can determine the exploitability of a strategy, generated by MC-
CFR. This will be used on smaller versions of Toepen, to inspect how MCCFR han-
dles certain aspects of the game. The second section describes experiments on the
abstraction methods which are used to reduce the size of the game. Here we will
look at the trade-off between certain fine-grained and coarser abstractions to deter-
mine which abstractions are right for a game like Toepen.

4.1 MCCFR

The first experiments are done to determine the strengths and weaknesses of MC-
CFR on Toepen in practice. The motivation for these experiments is to highlight the
interaction between certain aspects of the game and the MCCFR algorithm. By look-
ing at the exploitability curves across different game settings, we can see how the
convergence differs for each of these settings. This can be used to infer how MCCFR
would converge on the full game. To do this, we use MCCFR on the simpler versions
of Toepen and track the exploitability over a number of iterations.

4.1.1 Methodology

For these experiments, we want to track the exploitability over a number of itera-
tions. The exploitability of a strategy profile εσ = b1(σ2) + b2(σ1) is defined as the
sum of the best response of player one to the strategy of player two and the best
response of player two to the strategy of player one. If a strategy profile is a Nash
equilibrium, the exploitability would be zero. Exploitability can therefore be seen
as a metric of how close a strategy profile is to a Nash equilibrium. However, a
problem with this metric is that it can be hard to determine the best response to a
given strategy. In this research, we will approximate the best response by using the
MCCFR algorithm exclusively for one player while keeping the strategy of the op-
ponent unchanged. This means that the strategy for this player will become better
and approach the best response to the strategy of the opponent over time. After the
best response is computed, the expected payoff of this new strategy profile can be
computed by summing over all terminal histories multiplied by the probability of
them occurring, given this new strategy profile. We do this for both players and take
the difference in expected payoff as an approximation for the exploitability. We call
this procedure the evaluation algorithm.

24 Chapter 4. Experiments

Suits Ranks Hand size Betting
2 3 2 False
2 3 2 True
3 2 2 False
3 2 2 True
3 3 2 False
3 3 2 True

TABLE 4.1: The game parameters for the MCCFR experiment

4.1.2 Parameter Setup

There are two different types of parameters for this experiment. The first parameter
type is the game parameters. These are the parameters which determine the features
of the game. The game parameters are the following:

• Suits, which is the number of different suits in the deck.

• Ranks, which is the number of different ranks in the deck.

• Hand size, which is the number of hands in each players hands. This also
determines the number of rounds in a hand.

• Betting, which is a boolean and indicates whether the game contains betting or
not.

The combinations of these parameters which are tested are given in Table 4.1.
The other type of parameters are the experiment parameters. These are the pa-

rameters which determine the scope of the experiment. These parameters are kept
equal in order to capture the difference between the game parameter settings, which
is what we are interested in. The experiment parameters are the following:

• Train iterations, which is the total number of iterations for which the MCCFR
algorithm is run. For this experiment, this parameter is kept at 50,000.

• Evaluation intervals, which is the number of intervals at which an evaluation
step is performed. For this experiment, this parameter is kept at 500.

• Evaluation iterations, which is the number of iterations for which the evalua-
tion algorithm is run. For this experiment, this parameter is kept at 10,000.

Since the algorithm has inherent randomness, each experiment is repeated 15
times after which the average and standard deviation are taken.

4.1.3 Results

Figure 4.1 shows how the MCCFR algorithm converges for games without betting,
a hand size of 2 and differing deck sizes. The x-axis shows the number of training
iterations, while the y-axis shows the exploitability. A lower exploitability is better,
meaning the strategy profile is closer to a Nash equilibrium. Since this game does
not have betting, the ante of the game is always 1. This means the range of utilities
is ∆i = maxh∈Zui(h)−minh∈Zui(h) = 1 + 1 = 2 which also means the upper bound
on the exploitability is 2.

4.1. MCCFR 25

Figure 4.2 shows how the MCCFR algorithm converges for games with betting,
a hand size of 2 and differing deck sizes. The layout is similar to Figure 4.1. Since
this is a game with hand size 2 and players can only bet before they play a card, the
highest possible ante is 4. This means the range of utilities and the upper bound on
the exploitability is 4 + 4 = 8. The algorithm starts with random strategies meaning
a uniform probability over each decision point in the game. We can see that this
strategy leads to an exploitability of approximately 2 for all deck sizes in this setting.

FIGURE 4.1: The exploitability of strategy profiles for hand size 2
without betting. Lower is better.

4.1.4 Discussion

When looking at Figure 4.1, we can see that each deck size seems to converge to a
certain exploitability and not improve that much from there. The order of the deck
sizes in terms of exploitability from high to low is 2 ranks and 3 suits first, 3 ranks
and 3 suits second and 3 ranks and 2 suits third.

It is important to consider that this is a setting with a hand size of 2. This means
that there is not that much choice in terms of card playing actions. Both players can
only make choices in the first round of play since the last round is predetermined by
the remaining card in each of their hands. The rules of Toepen further restrict these
actions, since a reacting player has to play the same suit if she has it.

The deck with 3 ranks and 2 suits converges the fastest and also reaches the low-
est exploitability. A reason for this could be that the choices in this setting are more
straightforward to compute and less dependent on the strategy of the opponent.
Since there is only two different suits, many of the hands are predetermined to win
or lose, regardless of the strategy. This is the case for any hand containing two con-
nected cards in terms of rank of the same suit and a hand with the two highest or
two lowest cards of different suits, which is already 12 of the 21 information sets.

26 Chapter 4. Experiments

FIGURE 4.2: The exploitability of strategy profiles for hand size 2 with
betting. Lower is better.

In the other situations, the optimal decisions are either fully determined or of equal
probability. For example, the reacting player should always play her lowest card
if she cannot win the round, and her highest card if she can. The algorithm seems
to pick up on this quickly. This means the Nash equilibrium does not have to be
balanced based on the strategy of the opponent.

For the deck with 2 ranks and 3 suits, the strategies have to be more balanced
with relation to the strategy of the opponent. This could due to the fact that, when
the reacting player has two high ranking cards of different suits and the starting
player plays a card of the third suit, the reactive player has to choose which one to
throw away. If the strategy for this choice is not a uniform distribution, it means
that the starting player has to balance how she plays a hand where she has a hand
containing a a low and high card from two different suits. The less balanced these
strategies are, the more they become exploitable. Balancing these strategies seems
to be harder for the algorithm than approaching a Nash equilibrium in a game in
which it does not have to do this.

An unexpected finding is that the curve of the exploitability of a deck with 3
ranks and 3 suits is lower than the curve of a deck with 2 ranks and 3 suits. This
is not what one would expect, given that a larger deck has more information sets
for which a strategy has to be computed. The result seems to suggest that this is
not necessarily the case. A reason for this could be that, while the deck is larger,
many of the new information sets are more straightforward than in the smaller deck.
For example, most of the new information sets consist of hands where one card is
ranked higher than the other. It could be that in these situations, throwing away
the low card becomes a less balanced option, because the probability of that card
still winning in the last round is lower than in a smaller deck. This would cause the
initial convergence of the larger deck to be quicker.

4.1. MCCFR 27

When looking at Figure 4.2, we can see that the curves are in a different order
than in Figure 4.2. A deck with 3 ranks and 2 suits is now the most exploitable,
while the other two settings are both less exploitable and very similar to each other.
This result highlights the difference which betting makes to the MCCFR algorithm.
A deck with 3 ranks and 2 suits converged the fastest and was the least exploitable
in the setting with no betting, but converged slower and was more exploitable in
the setting with betting. One of the reasons for this is that betting causes strictly
dominated actions to become viable again, as was shown in Example 3.1.3. Strictly
dominated actions are very straightforward for MCCFR as these actions would get
no regret, meaning the chance of exploring those branches diminishes quickly. Now
that these are no longer strictly dominated actions in the game with betting, the
algorithm has balance its resources on all branches of the tree, which means it will
converge slower.

The other notable result of this experiment is that a deck with 2 ranks and 3 suits
and a deck with 3 ranks and 3 suits are very similar in their convergence. The reason
for this could be the same as for the setting with no betting, which was that, while
there are more information sets, the information sets are more straightforward. This
could also be true when betting is available since a good betting strategy involves
estimating your hand strength in relation to the strategy of the opponent. In a small
deck, the betting strategy has to be more refined as there are fewer possible hands
for the opponent to consider. In a larger deck, the strength of a hand can be easier to
determine since the probability of specific hands for the opponent is lower. It is also
harder for the opponent to determine your specific hand. This means that the betting
actions in a larger deck can become more straightforward and less dependent on the
strategy of the opponent, which could cause the algorithm to converge faster.

The two main takeaways of these results are that betting can cause relatively sim-
ple games to become much more complicated in unpredictable manners and that a
larger deck, does not necessarily mean that a strategy is harder to compute. The first
takeaway is due to the fact that the deck with 3 ranks and 2 suits went from being
the easiest the fastest to converge in the setting with no betting, to being the slow-
est in the setting with betting. This means that using a version of Toepen with no
betting can be misleading when you want to learn a viable strategy to the full game
of Toepen. It also means that using abstraction which abstracts away from betting
could be unreliable. The second takeaway is due to the fact that the convergence in
the larger deck setting was faster than the smaller deck settings. This is a promising
result, as it means that learning the full game with a deck of 32 cards could be much
easier than the size complexity, in terms of information sets, would suggest.

A shortcoming of these results is that they are tied strongly to the number of
evaluation iterations. This parameter obviously has an impact on the results as more
evaluation iterations results in more exploitability. However, it is also a parameter
which has a big impact on computational resources. A reason why this is not a
big problem is that we focus more on the convergence than the actual values of the
exploitability. While the exploitability could be higher if we used a higher number
of evaluation iterations, it would be higher for the entire curve, which means the
structure of the curve would probably look similar.

28 Chapter 4. Experiments

4.2 Abstraction

The experiments in this section are done to determine which abstraction rules are
most suitable for a game like Toepen. This is done by generating multiple strat-
egy profiles using different rules and tracking their performance against a non-
abstracted strategy profile. However, rather than just finding the optimal abstraction
rules for Toepen, we will go over what aspects of the abstractions cause the results.

4.2.1 Methodology

For this experiment, we track the performance of strategy profiles, generated using
abstraction rules, against strategy profiles, generated without any lossy abstraction,
over a given number of training iterations. It is important to note that a strategy
profile contains a strategy for both players in the game, meaning both the starting
player and the reactive player. However, since we want to track the performance
between different strategy profiles, it can be confusing to think of the strategy profile
as containing a strategy for two different players. It can be more intuitive to view a
strategy profile as a strategy of a single player for both starting positions in the game.
The performance of a strategy profile is computed by simulating a number of games
between the different strategy profiles. To simulate games, we take a strategy for
each starting position from two different strategy profiles and use those strategies to
sample an actual instance of a game of Toepen. Since there is an asymmetry between
the starting positions in Toepen, each strategy profile is used an equal number of
times per starting position. After this number of games is sampled, we take the
average number of points to determine which strategy profile is better.

Since lossy abstraction is a trade-off between the rate of convergence and the
quality of the solution, it is important to investigate the abstraction rules by tracking
how they interact in combination with MCCFR. If we were to run the MCCFR algo-
rithm for an infinite number of iterations, we would always expect a non-abstracted
strategy profile to perform better than an abstracted strategy profile, as it has more
information to act on and has theoretical guarantees of convergence. However, if
we only ran the MCCFR algorithm for a very small number of iterations, we would
expect the abstracted strategy profile to perform better, as it can reach more unique
information sets per iteration. It is therefore less interesting to look at the perfor-
mance of an abstracted strategy profile after a set number of iterations, and more
interesting to look at the convergence of the performance as the number of iterations
increases. This is done by training both the non-abstracted and abstracted strategy
profiles from scratch and measuring their performance against each other at given
intervals.

The following abstraction rules are tested:

• Naive abstraction, which abstracts away all information available to the player
except for the number of possible actions at each information set. This means
that for each player, all information sets with the same number of possible
actions are grouped together.

• Simple history abstraction, which abstracts away all information about the his-
tory of the game. This means that all information sets where a player has the
same hand and possible actions are grouped together.

• Simple hand abstraction, which abstracts away all information about the hands.
This means that all information sets with the same history and possible actions
are grouped together.

4.2. Abstraction 29

• Advanced hand abstraction, which abstracts hands down to a tuple containing
the average rank of the hand, the number of cards which is higher than the
average rank of the deck and the number of different suits in the hand.

• Advanced history abstraction, which just abstracts the betting history down to
the the ante. This means that all histories with the same order of card playing
actions and antes are grouped together.

• Advanced combined abstraction, which combines advanced hand and advanced
history abstraction.

The simple and naive abstraction rules are chosen because their convergence can
be used to see if our intuitions about abstraction are correct. They will most likely
not be the best types of abstraction in terms of their score. The advanced abstraction
rules are based on the observations made in subsection 3.3.2. They will more likely
lead to actual abstractions which can be used in the full game of Toepen.

4.2.2 Parameter Setup

These experiments have the same parameters as the MCCFR experiments which can
be found in subsection 4.1.2.

For this experiment, we will use the following game parameter settings:

• Suits: 3

• Ranks: 3

• Hand size: 3

• Betting: True

These game parameter settings are chosen because they allow for intricate dy-
namics in the game. Having a hand size of 3 makes the game considerably larger
than a game with a hand size of 2, but this is still feasible due to the fact that the
evaluation function is less costly than in the MCCFR experiments.

The experiment parameters are the following:

• Train iterations: 100,000

• Evaluation intervals: 1,000

• Evaluation iterations: 20,000

We will also compute the exploitability of the final non-abstracted strategy pro-
file to see whether how far the algorithm has converged. This will only be done after
all training iterations are done using 100,000 evaluation iterations.

As we mentioned previous experiment, both the algorithm and the evaluation
method have inherent randomness. Therefore, each experiment is repeated 15 times,
after which the average and standard deviation are taken.

4.2.3 Results

Figures 4.3 and 4.4 show how the abstracted strategy profiles perform against non-
abstracted strategy profiles, trained for the same number of iterations. Figure 4.3
can be seen as a baseline, which compares the advanced abstraction method to the

30 Chapter 4. Experiments

simple abstraction rules which are very coarse and abstract away a lot of informa-
tion. Figure 4.4 shows how the advanced abstraction methods perform separately,
as well as combined. Figure 4.5 shows the number of information sets which are
reached after a given number of training iterations. The size of the naive and simple
history abstraction are 4 and 166 information sets, respectively. They are left out of
the plot for visibility. The top line represents the total number of information sets in
the non-abstracted game.

The exploitability of the final non-abstracted strategy profile after 100,000 evalu-
ation iterations was approximately 0.914.

FIGURE 4.3: The score of strategy profiles generated using naive ab-
stractions versus non-abstracted strategy profiles. Higher is better.

4.2.4 Discussion

If we look at Figure 4.3, we can see that the coarse abstractions actually perform very
good in the beginning of the training process but quickly fall off. This expected, as
the lower number of information sets means that the MCCFR algorithm can learn
quicker. The simple hand abstraction falls off quickly, which also makes sense. Hav-
ing no information about your own hand is obviously a big handicap which causes
the strategy to fall off quickly. However, it is interesting that both the naive and the
simple history abstraction perform better for a longer time. This is a clear example
of the nonmonotonicity of abstractions in multiplayer games. The naive and sim-
ple history abstractions have 4 and 166 information sets, respectively. This means
they are vastly coarser abstractions than the simple hand abstraction, but are still
able to outperform it. In the case of the simple history abstraction, this is expected
because the cards in the hand contain more crucial information than the history in
isolation. However, for the naive abstraction this result is stranger. The naive ab-
straction should be a really bad abstraction. This abstraction has to balance the same

4.2. Abstraction 31

FIGURE 4.4: The score of strategy profiles generated using advanced
abstractions versus non-abstracted strategy profiles. Higher is better.

probability distribution over card playing actions and betting actions, which obvi-
ously does not make sense. For the simple hand abstraction, this is not the case as it
can use the history to infer what type of action it has to make. However, when we
look at Figure 4.5, we can see that the simple hand abstraction converges to about
200,000 information sets. If these all contained high quality information, it might
have been good to have this many information sets. In this case, it seems that this
specific abstraction has the worst of both worlds. The history information is not
enough to make well informed decisions, while the number of information sets is to
large for MCCFR to converge properly in the given time.

In Figure 4.4 we can see the convergence of the advanced abstraction methods.
The first thing we notice is that the advanced hand abstraction performs worse than
the other methods. The fact that it performs worse than the combined advanced
abstractions is unexpected. These results seem to suggest that abstracting away the
betting order, somehow makes the hand abstraction perform better. A reason for
this could be that advanced hand abstraction has about twice as many information
sets. This means that the advanced hand abstraction method has to learn a strategy
for many more information sets which could cause a slower convergence in the al-
gorithm. Further, we can see that the advanced history abstraction performs better
than the combined advanced abstractions after a small number of initial training iter-
ations. This is what we would expect, given that the advanced history abstraction is
only slightly bigger in terms of information sets, but contains far more fine-grained
information about the hand.

From these results, we can infer that the advanced history abstraction, which
groups together information sets with different betting orders, is a good abstraction
to make. The number of information sets in this abstraction is reduced by half in

32 Chapter 4. Experiments

FIGURE 4.5: The number of information sets reached during training
for different abstraction methods.

comparison to the non-abstracted version, while the performance over 100,000 iter-
ations is the highest of all abstractions which were tested.

The general takeaways from these experiments are that history abstraction seems
promising and hand abstraction seems bad terms of performance. Both in the simple
and advanced settings, we can see that the history abstractions reduce the number of
information sets the most, while still converging better than the hand abstractions.
Hand abstraction also performs worse in isolation than the combination of hand an
history abstraction.

In these experiments we could not approximate the exploitability in the same
way as in the MCCFR experiments. This is the case because the abstraction rules
are used within the MCCFR algorithm, which means the best response would be
a best response for the abstracted game, rather than the original game. This could
be circumvented by translating the abstraction back to the original game and then
using the method described in the MCCFR experiments, but this was not done in
this research.

A shortcoming of these experiments is that the number of training iterations is
too low to make any theoretical claims on the convergence of the non-abstracted
method. The total number of information sets for these game parameter settings is
376,958 where the starting player has 131,763 information sets and the second player
has 245,195 information sets from which to act. If we use Equation 2.8, we can see
that the total regret for the second player, using the non abstracted method, for any
ρ ∈ (0, 1] would be RT

i ≤ (1+
√

2√
ρ) ∗ 245195 ∗ 8 ∗

√
4 ∗
√

100000 with probability 1− ρ.

Even if we chose a ρ approaching 1, this would still result in RT
i ≤ 3.0 ∗ 109 which

means the exploitability of this strategy profile is at least 2 RT
i

T ≈ 2 ∗ 3.0∗109

100000 ≈ 60000.
This means that from a theoretical point of view, we know the strategy profile is at

4.2. Abstraction 33

least a ε-Nash equilibrium with ε = 60000. This value is obviously way to large to
be useful. The range on the rewards ∆ = 8, meaning any value above 8 does not
actually bound the exploitability. However, this theoretical bound is much worse
than the actual result, which was an exploitability of approximately 0.914. This is
still a big exploitability which means the non-abstracted strategy method was far
from converged. If we look at Figure 4.5, we can also see that over the total number
of training iterations, the non-abstracted method did not reach the total number of
information sets.

35

Chapter 5

Conclusion

This chapter contains a summary of the findings of this thesis and some directions
for future research in this area.

5.1 Thesis Summary

This thesis examined the card game Toepen from a game-theoretic perspective. This
was done by using theoretical methods which were then tested in practice. First,
we modelled Toepen as an extensive-form game. We then analysed the game in
terms of complexity and explained how the game can be made smaller while still
capturing the essence of the game. Next we explained what is needed in order to
use the MCCFR algorithm in Toepen. Lastly, we went over how we can use both
lossless and lossy abstraction in Toepen. Lossless abstraction can be done through
card isomorphism, while lossy abstraction can be done through abstraction rules
which need to be specific to Toepen.

Two experiments were done to investigate how these methods perform in prac-
tice. The first experiment was an experiment on the convergence of MCCFR in
smaller versions of the game. This was done to investigate how specific aspects
of Toepen influence the converge of MCCFR. The two main takeaways of this ex-
periment were that betting can cause relatively simple games to become much more
complicated in unpredictable manners and that a larger deck, does not necessarily
mean that a strategy is harder to compute. The second takeaway is a promising re-
sult, as it means that learning the full game of Toepen with a deck of 32 cards could
be much easier than the size complexity, in terms of information sets, would suggest.
In the second experiment, we looked at the convergence of MCCFR, using different
abstraction methods. This was done to investigate how abstraction works and what
types of abstraction would be best for Toepen. The general takeaways from this ex-
periment were that history abstraction seems promising and hand abstraction seems
bad terms of performance.

The focus of this research was to find methods that can be used to create agents
that can play a game like Toepen well. While we did not find a solution to do this
for the full game of Toepen, we did put forth some findings which can be used as a
foundation to investigate Toepen in the future.

5.2 Future Work

This research highlighted how Toepen can be understood through game theory and
how to apply that understanding to generate strategies for the game. However, the
full game of Toepen cannot yet be solved using just these methods. We will go over
some of the directions for future research into Toepen.

36 Chapter 5. Conclusion

One of the things we touched upon in Chapter 3 is how abstraction is done
in Poker. This often includes clustering hands together based on their potential
strength in future rounds using a clustering algorithm. This exact method is not
as suitable for Toepen, since the strength of a hand is dependent on the strategy of
the opponent. However, this general framework of using a metric and grouping us-
ing a simple clustering algorithm could still be strong in a game like Toepen. For
example, one could model the potential strength in future rounds of the game, using
a strategy generated by MCCFR.

Another clear direction is the use of real-time search. In this research, all com-
putation is done beforehand to generate a strategy profile for the game. Many AI
systems for both perfect- and imperfect-information games use some sort of real-
time search to update a strategy during play. This reduces the computational cost
dramatically.

Lastly, it would be interesting to look at other solution concepts than a Nash
equilibrium. The strength of a Nash equilibrium is that it will never lose in expecta-
tion. However, this is very different from playing to win as often as possible. Playing
to win requires the player to learn the weaknesses of the opponent during play, in
order to exploit them. While this obviously leaves the player open to be exploited as
well, it is interesting to explore how the agent can interact with the opponent.

37

Bibliography

Michael H. Bowling, Neil Burch, Michael Johanson, and Oskari Tammelin. Heads-
up limit hold’em Poker is solved. Science, 347(6218):145–149, 2015.

Noam Brown and Tuomas Sandholm. Regret transfer and parameter optimization.
In Proceedings of the 28th AAAI Conference on Artificial Intelligence, 2014.

Noam Brown and Tuomas Sandholm. Superhuman AI for heads-up no-limit Poker:
Libratus beats top professionals. Science, 359(6374):418–424, 2018.

Noam Brown and Tuomas Sandholm. Superhuman AI for multiplayer Poker. Sci-
ence, 365(6456):885–890, 2019.

Murray Campbell, A. Joseph Hoane Jr, and Feng-hsiung Hsu. Deep blue. Artificial
intelligence, 134(1-2):57–83, 2002.

Nicolo Cesa-Bianchi and Gábor Lugosi. Prediction, learning, and games. Cambridge
University Press, 2006.

Sam Ganzfried and Tuomas Sandholm. Potential-aware imperfect-recall abstraction
with Earth Mover’s Distance in imperfect-information games. In Proceedings of the
28th AAAI Conference on Artificial Intelligence, 2014.

Andrew Gilpin and Tuomas Sandholm. Better automated abstraction techniques for
imperfect information games, with application to Texas Hold’em Poker. In Pro-
ceedings of the 6th International Joint Conference on Autonomous Agents and Multiagent
Systems, 2007a.

Andrew Gilpin and Tuomas Sandholm. Lossless abstraction of imperfect informa-
tion games. Journal of the ACM (JACM), 54(5):25–es, 2007b.

Sergiu Hart and Andreu Mas-Colell. A simple adaptive procedure leading to corre-
lated equilibrium. Econometrica, 68(5):1127–1150, 2000.

Michael Bradley Johanson. Robust strategies and counter-strategies: from superhuman to
optimal play. PhD thesis, University of Alberta, 2016.

Harold William Kuhn. A simplified two-person Poker. In Harold William Kuhn
and Albert William Tucker, editors, Contributions to the Theory of Games, volume 1,
pages 97–103. Princeton University Press, 1950.

Harold William Kuhn. Extensive Games and the Problem of Information. In
Harold William Kuhn and Albert William Tucker, editors, Contributions to the The-
ory of Games, volume 2, pages 193–217. Princeton University Press, 1953.

Marc Lanctot, Kevin Waugh, Martin Zinkevich, and Michael H. Bowling. Monte
carlo sampling for regret minimization in extensive games. In Proceedings of the
22th conference on Advances in Neural Information Processing Systems, pages 1078–
1086, 2009.

38 BIBLIOGRAPHY

James MacQueen. Some methods for classification and analysis of multivariate ob-
servations. In Proceedings of the 5th Berkeley Symposium on Mathematical Statistics
and Probability, volume 1, pages 281–297. Oakland, CA, USA, 1967.

Martin J. Osborne and Ariel Rubinstein. A Course in Game Theory, page 200. MIT
Press, Cambridge, Massachusetts, 1994.

Tuomas Sandholm. Abstraction for solving large incomplete-information games. In
Proceedings of the 29th AAAI Conference on Artificial Intelligence, 2015a.

Tuomas Sandholm. Solving imperfect-information games. Science, 347(6218):122–
123, 2015b.

David Silver, Aja Huang, Chris J. Maddison, Arthur Guez, Laurent Sifre, George Van
Den Driessche, Julian Schrittwieser, Ioannis Antonoglou, Veda Panneershelvam,
Marc Lanctot, Sander Dieleman, Dominik Grewe, John Nham, Nal Kalchbrenner,
Ilya Sutskever, Timothy Lillicrap, Madeleine Leach, Koray Kavukcuoglu, Thore
Graepel, and Demis Hassabis. Mastering the game of Go with deep neural net-
works and tree search. Nature, 529(7587):484–489, 2016.

Finnegan Southey, Michael H. Bowling, Bryce Larson, Carmelo Piccione, Neil Burch,
Darse Billings, and Chris Rayner. Bayes’ Bluff: Opponent Modelling in Poker. In
Proceedings of the 21st Conference on Uncertainty in Artificial Intelligence, pages 550–
558, 2005.

Kevin Waugh. Abstraction in large extensive games. Master’s thesis, University of
Alberta, 2009.

Kevin Waugh, David Schnizlein, Michael H. Bowling, and Duane Szafron. Abstrac-
tion pathologies in extensive games. In Proceedings of the 8th International Confer-
ence on Autonomous Agents and Multiagent Systems, pages 781–788, 2009a.

Kevin Waugh, Martin Zinkevich, Michael Johanson, Morgan Kan, David Schnizlein,
and Michael H. Bowling. A practical use of imperfect recall. In Proceedings of the
8th Symposium on Abstraction, Reformulation and Approximation, 2009b.

Philipp C Wichardt. Existence of Nash equilibria in finite extensive form games with
imperfect recall: A counterexample. Games and Economic Behavior, 63(1):366–369,
2008.

Martin Zinkevich, Michael Johanson, Michael H. Bowling, and Carmelo Piccione.
Regret minimization in games with incomplete information. In J. Platt, D. Koller,
Y. Singer, and S. Roweis, editors, Proceedings of the 20th Conference on Advances in
Neural Information Processing Systems, pages 1729–1736. Curran Associates, Inc.,
2008.

	Abstract
	Acknowledgements
	Introduction
	Background
	Extensive-form Games
	Strategy
	Counterfactual Regret Minimization
	Monte Carlo Counterfactual Regret Minimization
	Abstraction
	Information Abstraction
	Action Abstraction

	Strategy Design
	Toepen
	Basic Toepen
	Size Complexity
	Smaller Versions
	Theoretical Properties

	MCCFR
	Algorithm
	Example

	Abstraction
	Card Isomorphism
	Lossy Abstraction

	Experiments
	MCCFR
	Methodology
	Parameter Setup
	Results
	Discussion

	Abstraction
	Methodology
	Parameter Setup
	Results
	Discussion

	Conclusion
	Thesis Summary
	Future Work

