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Abstract

Social choice theory studies collective decision making problems. Judgement ag-
gregation, a branch of social choice theory, studies the problem of how individual
judgements on a set of (possibly) logically interconnected issues are to be aggregated
into a collective judgement. One of the main concerns in judgement aggregation is
how to guarantee that the computed collective judgement is logically consistent. Im-
portantly, the intuitively appealing majority procedure—which collectively accepts
an issue if and only if it is accepted by at least half of the individuals—does not fulfill
this requirement. The Kemeny rule is one of the procedures that has been intro-
duced to solve this problem; the rule is defined in such a way that it always returns
a logically consistent collective judgement. Using ideas from welfare economics, and
on the basis of results in other social choice theory areas, we argue for a poten-
tially interesting modification of the Kemeny rule: we introduce the Kemeny-Nash
judgement aggregation procedure. The Kemeny-Nash rule is potentially interesting
because we expect the rule to provide collective judgements that are both efficient
and fair. The Kemeny-Nash rule is studied throughout this thesis, in particular in
relation to the Kemeny rule. We study axiomatic, computational complexity, and
experimental properties.
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Chapter 1

Introduction

Judgement aggregation is a branch of social choice theory that studies how indi-
vidual judgements on a set of possibly interconnected issues, should be aggregated
into a single collective judgement. This problem is central to democratic decision
making and arises in various contexts, such as examination boards, expert panels,
and multimember courts; but also in informal settings, e.g., when a group of friends
decides on their holiday plans.

That this problem is not trivial was first recognised by Pettit (2001), who showed
that the interconnections between the issues, in many cases, cause serious difficulties.
In particular, it was shown that majority voting, traditionally seen as the triumph
of democratic decision-making, fails to ensure consistent collective judgements in
many cases. The field of judgement aggregation emerged from this observation,
and finding suitable ways to circumvent this problem is still one of the fundamental
questions of the field. With this thesis we directly contribute to this line of research;
we propose an aggregation method that guarantees consistent collective judgements.

The theory of judgement aggregation provides an important framework for study-
ing how groups can reach consistent collective judgements; in a broader sense our
work contributes to any discipline in which such problems arise. In particular, the
relevance for AI lies (a.o.) in its applications to multiagent systems and abstract
argumentation; where virtual entities are to make a collective decision on the basis
of conflicting information, see e.g., Awad et al. (2017).

The remainder of this chapter is structured as follows. In Section 1.1, we motivate
our work and discuss its relation to other judgement aggregation research. The
structure of this thesis is described in Section

1.1 Motivation and Related Work

In this section we treat the problem that was first described by Pettit (2001) in more
detail. We discuss several lines of research that sprung from this work, and posit
our own work in this context.
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1.2. Thesis Overview

The problem that initiated the field of judgement aggregation was directly moti-
vated by work from the legal philosophers Kornhauser and Sager (1986, 1993), who
considered a variant of the following problem.

Suppose that a defendant is found guilty, but urges the verdict should be reversed
on two grounds: (i) her confession was inadmissible and (ii) the jury was biased.
Legal theory requires that the verdict is reversed if and only if at least one of the
claims of the defendant is true. Three judges consider the argument:

Confession Biased Conclusion
inadmissable? jury? (Reverse Yes/No)

Judge A Yes No Yes
Judge B No Yes Yes
Judge C No No No

Will the verdict of the defendant be reversed or not? Well, this depends on
our exact question to the judges. If we ask them to judge the premises (i) and (ii)
separately, the majority says that the verdict should not be reversed. However, if
we ask the juries to judge only the conclusion, and ask every one of them if there
is a reason to reverse the verdict, the outcome is opposite; then the verdict will be
reversed. This is exactly the point of the legal scholars, it is a doctrinal paradox;
two equally reasonable approaches lead to opposite juridical verdicts.

Pettit (2001), and later List and Pettit (2002) revisited the problem that was posed
by the legal scholars, and recognised that the scope of this problem reaches far
beyond legal theory. They showed that it is impossible to satisfy a small num-
ber of salient principles, and to guarantee consistent collective judgements at the
same time. In JA examples of this kind are now known as discursive dilemmas or
discursive paradoxes (Endriss, 2016; List and Pettit, 2002).

After the work of List and Pettit various approaches have been taken to cir-
cumvent the impossibility. One possibility is to focus on the role of the judgement
aggregation procedure; several rules have been put forward that guarantee consis-
tent collective judgements. The Kemeny rule is one of the examples, this procedure
collectively accepts the consistent judgements that are, in some well-defined way,
closest to the list of individual judgements. This thesis falls within this line of re-
search: we study a modification to the Kemeny rule, we introduce the Kemeny-Nash
rule, which guarantees a consistent collective judgement.

1.2 Thesis Overview

This thesis is structured as follows:

Chapter 2. In this chapter we present the judgement aggregation framework pro-
posed by Endriss et al. (2020), which is used throughout the rest of this thesis. The
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1.2. Thesis Overview

distinctive feature of this framework is that the demands on individual judgements
are distinguished from the demands on a collective judgement. We discuss different
kinds of aggregation procedures that have been studied in the literature. One of
these procedures, that is of particular relevance for this work, is the Kemeny rule.
We use concepts from the field of welfare economics to propose a modification to
the Kemeny rule that should make the rule sensitive to fairness considerations. We
introduce two variants of the Kemeny-Nash rule.

Chapter 3. In all parts of social choice theory, the axiomatic approach is one of
the fundamental tools that is used to scrutinise collective decision problem proce-
dures. In Chapter 3 we study the axiomatic properties of the Kemeny-Nash rule, in
particular, in comparison to the axiomatic properties of the Kemeny rule.

Chapter 4. Besides the normative principles that a procedure complies with, it is
also important what computational resources are necessary to use the procedure in
practice. Employing tools from computational complexity theory, in Chapter 4, we
study the outcome determination problem in judgement aggregation—the problem
of computing a collective judgement. For the Kemeny rule, this problem is known to
be Θp

2-complete; we reiterate the result from Endriss et al. (2020). We show that for
both variants of the Kemeny-Nash rule, this problem is contained in ∆p

2 and hard
for Θp

2. Whether the problem of one (or both) of the variants of the Kemeny-Nash
rule is complete for either one of these classes is unanswered.

Chapter 5. At the end of the day, collective decision procedures are meant to be
used in the tangible world, in which theoretic results are hardly ever the hole story.
In Chapter 5, we study the differences between collective judgements that have been
computed with the Kemeny-Nash rule and the Kemeny rule in an experimental way.
Our implementation is based on the Jaggpy library.1. Although we consider other
aspects as well, the major part of this chapter is devoted to a qualitative analysis.
We introduce criteria to evaluate both the efficiency and the fairness of the collective
judgements, as computed by the different rules.

We conclude in Chapter 6, where we summarise our results and indicate possible
directions for future research.

1https://pypi.org/project/jaggpy/
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Chapter 2

Background

This chapter is meant to serve as a foundational resource for the mathematical
language used throughout this thesis. In Section 2.1 we discuss the judgement
aggregation framework introduced by Endriss et al. (2020). In particular, we explain
the formal description of scenarios in which judgement aggregation can be applied.
Moving on, Section 2.2 outlines the formalism for judgement aggregation procedures
which are used to compute collective judgements. In Section 2.3 we make a detour
into welfare economics, examining judgement aggregation procedures in this context.
Our study suggests a novel judgement aggregation procedure, which we introduce
as the Kemeny-Nash rule. Our final section, provides an initial exploration of the
Kemeny-Nash rule (Section 2.4).

2.1 Framework

The first formal framework for judgement aggregation was established by List and
Pettit (2002) and is now known as formula-based judgement aggregation. In their
framework issues are represented as formulas in classical propositional logic. Al-
though several related frameworks exist in the judgement aggregation literature
today, the original framework is still widely used (Endriss et al., 2020).

In this thesis, we use the framework of Endriss et al. (2020), which is more general
than any other known framework in the literature. This framework distinguishes an
input constraint Γin for individual judgements from an output constraint Γout for
collective judgements.

While the full generality of the framework is only used in Chapter 3, we believe
that the explicitness of the framework clarifies matters. We deviate from the original
exposition by Endriss et al. (2020) only in the representation of a collection of
individual judgements (we use an unordered representation).

In simple terms, a judgement aggregation scenario is the mathematical description
of a situation that can be evaluated using judgement aggregation. This section
provides an in-depth explanation of the mathematical descriptions for such scenarios,
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2.1. Framework

using the framework by Endriss et al. (2020). We further discuss the influence
of the representation of a collection (or profile) of individual judgements, ordered
or unordered, on the total number of different collections. Finally, we revisit the
discursive dilemma from Chapter 1, and render it using our formal framework.

Symbols. To get an idea of where we are heading, let us just look at the symbols
that we need to fully specify a judgement aggregation scenario. Formally, a scenario
is a tuple (Φ,Γin,Γout,J) containing a set of issues Φ, a constraint Γin for individual
judgements, a constraint Γout for collective judgements, and a collection J of indi-
vidual judgements. The issues and constraints contain formulas that are expressed
in classical propositional logic.

Agendas. Let language L consist of all formulas constructed from a finite set of
propositional variables and the usual logical connectives (¬,∨,∧,→,↔,⊤ and ⊥).
Double negations are eliminated by defining the complement of a proposition ∼φ
as follows: ∼φ := ϑ if φ = ¬ϑ (for some ϑ) and ∼φ := ¬φ otherwise. The set
of issues Φ ⊆ L, known as the agenda, is a subset of language L and is closed
under complementation (i.e., φ ∈ Φ if and only if ∼φ ∈ Φ). The pre-agenda Φ+ ⊂ Φ
contains all non-negated formulas that appear in the corresponding agenda Φ. Thus,
given an agenda Φ = {φ1, . . . , φm,¬φ1, . . . ,¬φm} built from non-negated formulas
φi, the corresponding pre-agenda is defined as Φ+ = {φ1, . . . , φm}. The issues in
the agenda are evaluated by a group, formally defined as a set N = {1, . . . , n}, of n
judges.

Judgement sets. Individual and collective judgements are represented as judge-
ment sets J ⊆ Φ consisting of the accepted agenda-issues. The antipodal of judge-
ment J ⊆ Φ is denoted as J , and contains the agenda-issues that are not contained
in J , i.e., J = Φ\J . A judgement J is consistent if J is a satisfiable set of formulas;
it is complete if for all agenda-issues φ ∈ Φ, it holds that φ ∈ J or ∼φ ∈ J ; finally, J
is complement-free if there is no formula φ ∈ Φ such that both φ ∈ J and ∼φ ∈ J .

Further, judgement set J is rational, or Γin-consistent, if it is compatible with
the input constraint Γin; that is, J ∪{Γin} is satisfiable. Similarly, a judgement set J
is feasible, or Γout−consistent, if J is compatible with the output constraint Γout.
Note that both rational and feasible judgements are consistent by definition. The
set of all complete and complement-free rational judgements is denoted as J (Φ,Γin),
similarly, set J (Φ,Γout) contains all complete and complement-free feasible judge-
ments.

We introduce some auxiliary notation to describe (properties of) judgement
sets. When agenda Φ and constraint Γ (either an input or output constraint,
Γ ∈ {Γin,Γout}) are clear from the context, for an arbitrary subset S ⊆ Φ of agenda-
issues we define the set of all complete, complement-free and Γ-consistent extensions
of S as follows:

ext(S) = {J ∈ J (Φ,Γ) | J ⊇ S}

5



2.1. Framework

We present two measures for the (dis)similarity between complete and complement-
free judgements. The Hamming distance is widely used in the judgement aggregation
literature and is a measure for the dissimilarity between judgement sets; the agree-
ment between two judgements is a notion that is closely related, but that measures
the similarity instead. Formally, the Hamming distance between two complete and
complement-free judgements J, J ′ is defined as the number of issues in Φ+ on which
they do not agree:

H(J, J ′) = |J \ J ′| = |J ′ \ J |

Correspondingly, we define the agreement between two complete and complement-
free judgements J, J ′ as the number of issues on which they agree:

Agr(J, J ′) = |J ∩ J ′|

Thus, for two complete and consistent-free judgements J, J ′ the Hamming distance
and agreement are related as follows: Agr(J, J ′) = |Φ+| −H(J, J ′).

Example 2.1. Consider the pre-agenda Φ+ = {φ1, φ2, φ3} containing three propo-
sitional variables. Let J = {φ1, φ2, φ3} and J ′ = {φ1,¬φ2,¬φ3} be two judgements
that are complete and complement-free. In this case we have |Φ+| = 3, H(J, J ′) = 2
and Agr(J, J ′) = 1. △

Profiles. Finally, a profile (for n judges) is a collection of n individual judgements.
In the original exposition by Endriss et al. (2020) such a profile J = (J1, . . . , Jn) is
represented as a vector, specifying a rational judgement Ji ∈ J (Φ,Γin) for all judges
i ∈ N . For such a profile we may write J ∈ J (Φ,Γin)

n.
Because we never explicitly consider the identity of the judges, in our setting, the

vector representation is superfluous, we use multisets instead. Informally, a multiset
is a set (i.e., unordered representation) in which a single element may be contained
more than once.

We represent a profile for n judges as a multiset J of cardinality n, with un-
derlying set J (Φ,Γin). It is a function J : J (Φ,Γin) → N that for every rational
judgement J ∈ J (Φ,Γin), specifies the number of times it occurs—its multiplicity
J(J). The cardinality of such a multiset is defined as |J | =

∑
J∈J (Φ,Γin)

J(J); it is
the sum of multiplicities of all contained elements. Although, in our representation,
this is not completely correct, we use J (Φ,Γin)

n to denote the set of all profiles
with n judges. We write J (Φ,Γin)

† to denote the set of all profiles, for any finite
number of judges. By a slight abuse of notation we write J ∈ J , if J ∈ J (Φ,Γin)
and J(J) > 0. Further, for any (multi)set S = {s}, with cardinality |S| = 1, we
may simply write s to refer to set {s}.

We now introduce auxiliary expressions related to profiles. We define J ⊎ J ′ to
be the sum of two profiles, i.e., (J ⊎ J ′)(J) = J(J) + J ′(J). For every ℓ ∈ N, we
further define ℓJ = J⊎· · ·⊎J as the sum of ℓ copies of profile J . A compound profile
is a profile that is constructed from several constituent profiles. As an example, if
J = J1⊎J2, then J is a compound profile; the profiles J1 and J2 are its constituents.

6



2.1. Framework

Let J ∈ J (Φ,Γin)
n be any profile for n judges. The support judgements, hereafter

simply referred to as the support, of a formula φ ∈ Φ is a function NJ
φ : J (Φ,Γin) →

N, defined as:

NJ
φ (J) =

{
J(J) if φ ∈ J

0 otherwise

Note that function NJ
φ defines a multiset (containing the judgements that ac-

cept formula φ); and |NJ
φ | equals the number of judges that support formula φ in

profile J . Its complement with respect to J , NJ
φ = J \NJ

φ , denotes the multiset of
judgements that reject φ. Further, we define the majoritarian judgement m(J):

m(J) =
{
φ ∈ Φ | |NJ

φ | >
n

2

}
If judgement m(J) is feasible, or Γout-consistent, we say that profile J is majority-
consistent.

Comparison of profile representations. To conclude the formal description
of scenarios, we compare the two (vector and multiset) representations in terms of
the total number of profiles. Clearly, for both representations, the total number of
profiles depends on the number of judges n, and the number of rational judgements
|J (Φ,Γin)|. Let g, g′ : (n,J (Φ,Γin)) → N be the functions that relate a scenario
to the total number of vectors and the total number of multisets (respectively). Of
course, for the vector representation, we have: g(n,J (Φ,Γin)) = |J (Φ,Γin)|n.

For the multiset representation this number is given by the so called multiset
coefficient. Let S, with |S| = s, be an arbitrary set. The multiset coefficient for the
number of multisets with cardinality k, with underlying set S is defined as:((

s
k

))
=

(
s+ k − 1

k

)
=

(s+ k − 1)!

k!(s− 1)!

Thus, for the multiset representation, the function g′ is defined as:

g′(n,J (Φ,Γin)) =
(|J (Φ,Γin)|+ n− 1)!

n!(|J (Φ,Γin)| − 1)!

Example 2.2. We consider three numbers of feasible judgements: |J (Φ,Γin)| = 4,
|J (Φ,Γin)| = 13, and |J (Φ,Γin)| = 24. For three different numbers of judges (n = 5,
n = 15, and n = 50) we present the total number of profiles, for both the multiset
and the vector representation, in Table 2.1. △

Discursive dilemma revisited. Finally, to recapitulate the formal framework
we described above, let us reconsider the discursive dilemma (see Chapter 1).

7



2.1. Framework

# multisets # tuples

4 rational judgements

5 judges 56 1.02 · 103
15 judges 8.16 · 102 1.07 · 109
50 judges 2.34 · 104 1.27 · 1030
13 rational judgements

5 judges 6.19 · 103 3.71 · 105
15 judges 1.74 · 107 5.12 · 1016
50 judges 2.16 · 1012 4.98 · 1055
24 rational judgements

5 judges 9.83 · 104 7.90 · 106
15 judges 1.55 · 1010 5.05 · 1020
50 judges 5.69 · 1018 1.02 · 1069

Table 2.1: The number of different profiles for the multiset (employed here)and
thevector representation (employed by Endriss et al. (2020)). We show thenumber
of different profiles, for different numbers of judges (n ∈ {5, 15, 50}) anddifferent
numbers of feasible judgements (|J (Φ,Γin)| ∈ {4, 13, 24}).

Example 2.3. In the situation we described in Chapter 1, three judges gave their
opinion on the following issues: (i) there was an inadmissible confession, (ii) the
(original) jury was biased, and (iii) statement (i) or statement (ii) is true (in this
case there is a legal ground to reverse the verdict). To describe the situation as
a formal judgement aggregation scenario, we could define Φ+ = {φ1, φ2, φ1 ∨ φ2},
where formula φ1 stands for ‘statement (i) is true’ (similarly, φ2 indicates whether
statement (ii) is true). The input and output constraint coincide and are trivially
satisfied: Γin = Γout = ⊤. To represent the opinions of the judges we can no longer
refer to the individual judges, we could this in the following way:

φ1 φ2 φ1 ∨ φ2

#1 Yes No Yes
#1 No Yes Yes
#1 No No No

m(J) No No Yes

Now, the ‘dilemma’ we saw was that if we let the judges decide on the individual
premises (φ1 and φ2), then there is no legal ground to reverse the verdict (according
to the majority of the judges). However, if we decide to let the judges evaluate only
the conclusion (φ1 ∨φ2), then there is reason to reverse the verdict. Put differently,
the majoritarian judgement m(J) is inconsistent; and if we want to decide what to
do in this case we cannot simply use majority aggregation. △

8



2.2. Rules

2.2 Rules

A judgement aggregation procedure or rule is a function, mapping an arbitrary pro-
file J ∈ J (Φ,Γin)

† (for any number of judges) to a set of corresponding collective
judgements. In contrast to voting theory, in judgement aggregation there is little re-
search that focuses on the properties of a particular class of aggregation procedures
(Lang et al., 2011). In this section we treat three exceptions: quota-based rules,
the premise-based rule, and distance-based rules. The majority rule belongs to the
class of quota-based rules. The other two classes have been proposed as solutions to
the problem posed by the discursive dilemma, which we discussed in the Introduc-
tion (Chapter 1). We start with the formal definition of a judgement aggregation
procedure.

Procedures in judgement aggregation. We distinguish two types of aggrega-
tion procedures. Resolute rules always return a single collective judgement, while
irresolute rules may return multiple collective judgements. To distinguish the two
types of procedures, we write f for resolute, and F for irresolute procedures. A
resolute rule is a function f mapping an arbitrary profile J ∈ J (Φ,Γin)

†, for any
number of judges, of individual judgements to a collective judgement that is com-
plete and complement-free. On the other hand, an irresolute rule F maps any profile
J ∈ J (Φ,Γin)

† to a non-empty set of (possibly multiple) complete and complement-
free judgements.

In the judgement aggregation literature it is customary to employ resolute rules
(Endriss, 2016). However, as the ‘measure of irresoluteness’ of a rule, i.e., the average
number of collective judgements it returns, is an interesting property by itself (see
Chapter 5), we use irresolute rules instead.1

Quota-based rules. Quota-based rules associate every issue in the agenda with a
quota; whenever the number of judges that accept the issue is (weakly) higher than
the quota, the issue is collectively accepted. Quota-based rules are studied by (a.o.)
Dietrich and List (2007) and Dietrich (2010). Formally, given a function q : Φ →
{0, 1, . . . , n + 1} which maps every issue to its associated quota, the corresponding
rule is defined as:

Fq(J) = {φ ∈ Φ | |NJ
φ | ≥ q(φ)}.

Note that when q(φ) = 0, then issue φ ∈ Φ is always accepted; if q(φ) = n+1, then
issue φ ∈ Φ is never accepted.

The majority rule is the most familiar example of this class. Formally, the (strict)
majority rule is instigated by the function φ 7→ ⌊n2 + 1⌋. In general, whenever
function q is constant, Fq is said to be a uniform quota rule.

1Only in Section 3.1, where we present the theorem of List and Pettit (2002)—which we already
encountered in the Introduction (Chapter 1)—we consider resolute rules f .
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2.2. Rules

Premise-based rule. The premise-based rule is studied by (a.o.) Kornhauser and
Sager (1993), Dietrich and Mongin (2010), and Mongin (2008). With the premise-
based rule it is assumed that the agenda Φ can be partitioned into premises Φp—
which are required to be logically independent—and conclusions Φc, i.e., Φ = Φp∪Φc

and Φp ∩ Φc = ∅.
The judges give their opinion only on the premises, and a premise φ ∈ Φp is

accepted if and only if it is accepted by a majority of the judges. A conclusion
φ ∈ Φc is accepted if and only if it is entailed by the set of accepted premises.
Formally, the premise-based rule is defined as follows:

Fp(J) = Φp
maj ∪ {φ ∈ Φc | Φp

maj |= φ}, with Φp
maj =

{
φ ∈ Φp | |NJ

φ | >
n

2

}
Because the set of premises is logically independent—i.e., there is no subset of
premises that is inconsistent—and conclusions are accepted only if they are con-
sistent with the accepted premises, the discursive dilemma is circumvented.

Example 2.4. In the example we considered in the Introduction (Chapter 1, for-
malised in Example 2.3) it would be natural to designate issues φ1 and φ2 as
premises, and issue φ1 ∨ φ2 as conclusion; i.e., Φp = {φ1, φ2} and Φc = {φ1 ∨ φ2}.
The premise-based rule would return the judgement J = {¬φ1,¬φ2,¬(φ1 ∨ φ2)},
and there would be no reason to revise the verdict. △

Distance-based rules. Distance-based rules have been studied by (a.o.) Lang
et al. (2011), Miller and Osherson (2009) and Pigozzi (2006). A distance-based rule
uses a distance metric d(Jin, J) to determine the (dis)similarity between any rational
judgement Jin ∈ J (Φ,Γin) and feasible judgement J ∈ J (Φ,Γout).

2

The distance from an arbitrary profile J ∈ J (Φ,Γin)
n to any feasible judge-

ment J ∈ J (Φ,Γout) is then defined as an aggregate of the individual distances
between the judgements Jin ∈ J in the profile and the feasible judgement J ∈
J (Φ,Γout). Formally, given a distance metric d : J (Φ,Γin)∪J (Φ,Γout)×J (Φ,Γin)∪
J (Φ,Γout) → R and some operation ⊙, a distance based rule is defined as:

Fd(J) = argmin
J∈J (Φ,Γout)

⊙
Jin∈J

(
⊙J(Jin)

i=1 d(Jin, J)
)

The double appearance of the operation ⊙ might be confusing. The expression says
that for every judgement Jin ∈ J we calculate a partial contribution which is based
on the multiplicity J(Jin); then, we use the same operation to aggregate the partial
contributions of every judgement Jin ∈ J . By construction, a distance-based rule
always returns a set of feasible judgements.

The Kemeny rule is a distance-based rule that frequently appears in the literature;
see, e.g., Nehring and Pivato (2022), De Haan and Slavkovik (2017), and Lang et al.

2A distance metric on a set S, with arbitrary x, y, z ∈ S, is a function d : S × S → R that must
satisfy the following conditions: (i) d(x, x) = 0, (ii) d(x, y) > 0 whenever x ̸= y, (iii) d(x, y) =
d(y, x), and (iv) d(x, y) + d(y, z) ≥ d(x, z).
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2.3. Welfare Economics and the Kemeny Rule

(2011). In the literature the Kemeny rule is defined as the rule that minimises the
sum of Hamming distances; for an arbitrary profile J ∈ J (Φ,Γin)

† the Kemeny rule
is conventionally defined as F ′

kem(J) = argmin
J∈J (Φ,Γout)

∑
Jin∈J (J(Jin) ·H(Jin, J)). For

reasons we discuss in Section 2.4 we define the Kemeny rule in a slightly different,
but equivalent, manner. Instead of minimising the sum of Hamming distances, we
define the Kemeny rule as the procedure that maximises the sum of agreements (see
Section 2.1).

Definition 2.1. For an arbitrary profile J ∈ J (Φ,Γin)
n for n judges, the Kemeny

rule is (unconventionally) defined as follows:

Fkem(J) = argmax
J∈J (Φ,Γout)

∑
Jin∈J

(J(Jin) ·Agr(Jin, J))

We use the Kemeny rule Fkem throughout this thesis. To enhance readability,
for any profile J ∈ J (Φ,Γin)

† and feasible judgement J ∈ J (Φ,Γout) we define the
Kemeny score as follows:

Skem(J , J) =
∑
Jin∈J

(J(Jin) ·Agr(Jin, J))

Example 2.5. For the example we discussed in the Introduction (Chapter 1, for-
malised in Example 2.3), the Kemeny-Nash rule Fkem would return the following
three collective judgements: J = {φ1,¬φ2, φ1 ∨ φ2}, J ′ = {¬φ1, φ2, φ1 ∨ φ2}, and
J ′′ = {¬φ1,¬φ2,¬(φ1 ∨ φ2)}. △

2.3 Welfare Economics and the Kemeny Rule

In this section we want to link aggregation procedures to Bergson-Samuelson social
welfare functions, hereafter referred to as cardinal social welfare functions.3 The
notion of a social welfare function originates in the field of welfare economics; it is a
way to rank economically feasible allocations. For any feasible allocation, a cardinal
social welfare function computes the collective welfare on the basis of the individual
utilities that are induced by the allocation.4

Of course, just as there are different judgement aggregation procedures, there
are different ways to compute the collective welfare of a society on the basis of the
individual utilities. Three important approaches are: utilitarian, egalitarian and
Nash social welfare. As we explain below, the utilitarian and egalitarian approach
focus on economic efficiency and economic equity (or fairness), respectively. Nash
social welfare combines efficiency and fairness considerations.

3In social choice theory it is more common (and it would have been clearer) to use the term
collective utility function for this purpose; the term social welfare function is typically reserved for
Arrow social welfare functions.

4The utility of an individual agent is a measure for their satisfaction.
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2.3. Welfare Economics and the Kemeny Rule

The purpose of this section is to show that, under mild assumptions, the Kemeny
rule can be interpreted as a utilitarian approach. Moreover, under the same mild
assumptions, a small modification to the rule makes it adhere to Nash social welfare;
we obtain the Kemeny-Nash judgement aggregation procedure.

The remainder of this section is structured as follows. We start by covering the
relevant background from welfare economics (Section 2.3.1). Among other things,
we give formal definitions of the three welfare functions mentioned above (utilitarian,
egalitarian and Nash social welfare). In Section 2.3.2 we use a widely accepted
assumption for the preferences of individual judges (Hamming preferences) that
enables us to analyse judgement aggregation procedures in the context of welfare
economics. This analysis suggests a novel judgement aggregation procedure: the
Kemeny-Nash rule.

2.3.1 Introduction to Welfare Economics

In welfare economics the goal is to rank economically feasible allocations according
to the societal welfare they induce. It is assumed that the societal welfare is com-
pletely determined by the satisfaction levels of the individuals in the society. Other
factors, e.g., the impact on the environment are not taken into account—unless the
satisfaction of an individual agent depends on it.

There are two ways to describe the satisfaction level of an individual agent: via
a preference order, or via a cardinal utility function. Let A be the set of feasible
allocations and take arbitrary allocations a, a′, a′′ ∈ A. A preference order is a
binary relation ⪰ : A×A→ {0, 1} over the set of feasible allocations. This relation
is required to satisfy completeness (i.e., either a ⪰ a′ or a′ ⪰ a) and transitivity
(i.e., if a ⪰ a′ and a′ ⪰ a′′ then a ⪰ a′′). The other method, a cardinal utility
function u : A → R maps every feasible allocation to a real value, where a higher
value indicates a higher level of satisfaction. More precisely, the utility of allocation
a is greater than (or equal to) the utility of allocation a′ if and only if a is weakly
preferred over allocation a′; i.e., u(a) ≥ u(a′) if and only if a ⪰ a′. Thus, a cardinal
utility function u corresponds to a unique preference order ⪰, the converse is not
true.

When we consider the satisfaction of the society as a whole, we can distinguish, in a
similar way as before, a cardinal social welfare function (SWF) from a social welfare
ordering (SWO). Before we describe these notions properly, we introduce some new
notations for collections of utility functions.

Let N = {1, . . . , n} be a set of individual agents, each associated to a utility
function ui : A → R, where A denotes the set of feasible allocations. Given an
allocation a ∈ A, and utility functions ui for all agents i ∈ N , we define the utility
vector ua = (u1(a), . . . , un(a)) ∈ Rn. Hereafter, we may simply talk about a utility
vector, without explicit reference to the allocation a that induced it; we may write
u instead of ua. Further, given an arbitrary utility vector u ∈ Rn, we let vector ulex
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2.3. Welfare Economics and the Kemeny Rule

denote the vector in which the components are lexicographically ordered. That is,
if index i is smaller than index i′; then ulex

i ≤ ulex
i′ . Finally we define the arithmetic

mean of vector u ∈ N as: ⟨u⟩ = 1
n

∑
i∈N ui.

A cardinal social welfare function U : Rn → R maps an arbitrary utility vector to a
collective utility. On the other hand, a social welfare ordering is a binary relation
⪰col : Rn×Rn → {0, 1} over the set of possible utility vectors. For arbitrary vectors
u,u′ ∈ Rn we have, U(u) ≥ U(u′) if and only if u ⪰col u′.

We now consider three important social welfare functions: utilitarian, egalitarian
and Nash social welfare. For each SWF, we give its formal definition, literature
references and a brief explanation of the intuition behind the particular welfare
function. To explain the ideas behind the different approaches it can be helpful to
think of utility as something material; in particular the concept of money may be a
helpful analogy.

Utilitarian social welfare is studied by Sen (1974). The formal definition of the
SWF is given below.

Definition 2.2. Given a utility vector u = (u1, . . . , un) ∈ Rn for n agents, the
utilitarian social welfare function is defined as:

Uutil(u) =
∑
i∈N

ui

The utilitarian SWF ranks feasible allocations on the basis of the average utility
they induce. If we think of the utility of an agent in terms of money: the utilitarian
approach says that the welfare of a society is completely determined by the total
amount of money that is distributed among its members. The idea is that we
should distribute as much money as possible, in that sense the utilitarian approach
maximises economic efficiency. Considering the distribution of the money among
the individuals: according to utilitarianism this factor does not effect the societal
welfare. The function is blind to economic equity (or fairness) considerations.

Example 2.6. Let u = (5, 1, 1) and u′ = (3, 3, 1) and u′′ = (2, 2, 2). For the
utilitarian approach we have: Uutil(u) = Uutil(u

′) > Uutil(u
′′). △

Egalitarion social welfare is studied by Hammond (1976), Sen (1976) and Sen
(1974). Below we provide the formal definition of the egalitarian SWF.

Definition 2.3. Given a utility vector u = (u1, . . . , un) ∈ Rn for n agents, the
egalitarian social welfare function is defined as:

Uegal(u) = min
i∈N

ui

In an egalitarian society the societal welfare is equal to the welfare of its poorest
member. Egalitarian social welfare is solely concerned with economic equity, it does
not consider economic efficiency.
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2.3. Welfare Economics and the Kemeny Rule

Example 2.7. Let u = (5, 1, 1) and u′ = (3, 3, 1) and u′′ = (2, 2, 2). For the
egalitarian approach we have: Uegal(u

′′) > Uegal(u
′) = Uegal(u). △

Nash social welfare (NSW) is studied in Nash (1950), Caragiannis et al. (2019)
and Varian (1974); the formal definition of the SWF is given below.

Definition 2.4. Given a utility vector u = (u1, . . . , un) ∈ Rn for n agents, the Nash
social welfare function is defined as:

Unash(u) =
∏
i∈N

ui

By maximising the product of utilities, the Nash social welfare function combines
economic efficiency and economic equity. Looking to the same example as before,
we see that the Nash social welfare stimulates inequality-reducing trades that do not
effect the average utility.

Example 2.8. Let u = (5, 1, 1) and u′ = (3, 3, 1) and u′′ = (2, 2, 2). For the Nash
SWF we have: Unash(u

′′) > Unash(u
′) = Unash(u). △

To show that this is not just the case for this particular example we prove the
following proposition.

Proposition 2.1. Let X = (x1, . . . , xn), with xi ∈ N, and define N = {1, . . . , n}.
We constrain the values xi for i ∈ N in the following way:

∑
i∈N xi = C. We

further assume that C mod n = 0, then:

argmax
(x1,...,xn)∈Nn

∏
i∈N

xi = (x∗1, . . . , x
∗
n), where x∗i =

C

n
for all i ∈ N (2.1)

Proof. We use Jensen’s inequality (Jensen, 1906). Jensen’s inequality states that for
any real concave function f : R → R, with numbers x1, . . . , xn ∈ R in the domain of
f the following inequality holds:∑n

i=1 f(xi)

n
≤ f

(∑n
i=1 xi
n

)
Moreover, equality holds if and only if xi = xj for all i, j ∈ N . By substituting the
concave logarithmic function log(x) for f(x) we obtain:∑n

i=1 log(xi)

n
≤ log

(∑n
i=1 xi
n

)
(2.2)

To apply Jensen’s inequality we rewrite the original argument in Equation 2.1
as follows:

argmax
(x1,...,xn)∈Nn

∏
i∈N

xi = argmax
(x1,...,xn)∈Nn

log
(∏

i∈N xi
)

n

= argmax
(x1,...,xn)∈Nn

∑
i∈N log(xi)

n
(2.3)
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To obtain the first equality, we first take the logarithm of the argument and divide
by constant n ∈ N. The second equality is trivial. The conclusion, Equation 2.1,
now directly follows from Jensen’s inequality.

The proposition shows that under the constraint that
∑

i∈N ui = C—if condi-
tions (i) C mod n = 0 and (ii) there exists a feasible allocation a ∈ A such that
ui(a) = uj(a) for all i, j ∈ N are met—maximising Nash social welfare amounts to
dividing the total utility equally among all agents.

Without providing a formal proof, if the conditions (i) and (ii) are not met, we
can still see from Equation 2.3—as the logarithmic function is a concave function
(i.e., log(x + dx) − log(x) < log(x) − log(x − dx) for all x ∈ R≥0)—that for a
fixed average utility the Nash social welfare is maximised by putting the individual
utilities as close to the average utility as possible. In particular, under the constraint
that

∑
i∈N (ua)i = C for some C ∈ N we posit the following equality:

argmax
a∈A

Unash(ua) = argmax
a∈A

∏
i∈N

(ua)i = argmin
a∈A

∑
i∈N

∣∣∣∣(ua)i −
C

n

∣∣∣∣ (2.4)

As a final remark, note that the three social welfare functions we defined above (util-
itarian, egalitarian and Nash) do not depend on the specific order of the (individual)
utilities. In particular, for ⊙ ∈ {util, egal,Nash} and an arbitrary vector u ∈ Rn,
we have:

U⊙(u) = U⊙(u
lex) (2.5)

2.3.2 Judgement Aggregation as Welfare Aggregation

In this section we study judgement aggregation procedures from the perspective of
welfare economics. With a social welfare function, economically feasible allocations
are ranked according to the societal welfare they induce. On the other hand, an
aggregation procedure returns the collective judgements that represent the opinions
(preferences or beliefs) of the individuals in the best possible way. It is natural
to assume that individual judges have preferences over the set of collective judge-
ments. Moreover, in the literature, there is a commonly accepted way to define
such preferences—so called Hamming preferences—on the basis of the individual
judgements. On the basis of these preferences we propose utility functions for the
individual judges. Showing that the Kemeny rule adheres to utilitarian social welfare
is then straightforward.

The remainder of this section is organised as follows. We start with a brief remark
on notation, concerning the representation of individual utilities as multisets instead
of vectors. We continue by defining individual preference orders, which leads us to
the definition of individual utility functions. To conclude we show that the Kemeny
rule maximises utilitarian social welfare and propose a novel judgement aggregation
procedure that maximises Nash social welfare: the Kemeny-Nash rule.
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In welfare economics it is customary to use a non-anonymous framework; the utilities
of the individual agents are represented as vectors. In such a framework it makes
sense to define a preference order ⪰i for every agent i ∈ N . In our framework this
is at least confusing, but also (slightly) incorrect; we cannot distinguish any two
judges other than by their judgement Jin ∈ J (Φ,Γin). So, in our framework we
define individual preference orders ⪰Jin

and utilities uJin that are parameterised by
the judgement Jin ∈ J (Φ,Γin), rather than by the judge i ∈ N that holds it.

It is natural to assume that judges participating in a judgement aggregation scenario
have preferences over the set of feasible judgements. Formally, we may assume
that a judge with judgement Jin ∈ J (Φ,Γin) is endowed with a preference order
⪰Jin

: |J (Φ,Γout)| → N. Although it is not the only accepted method; in the
judgement aggregation literature, the prevalent way to establish such preference
orders is to endow the judges with Hamming preferences (Botan et al., 2021, 2023;
Baumeister et al., 2015, 2017).

Let J, J ′ ∈ J (Φ,Γout) be arbitrary feasible judgements. A judge i ∈ N with
judgement Jin ∈ J (Φ,Γin) is said to have Hamming preferences when they (weakly)
prefer judgement J ∈ J (Φ,Γout) over judgement J ′ ∈ J (Φ,Γout) if and only if the
Hamming distance between their own judgement Jin and judgement J is not larger
than the Hamming distance between their own judgement Jin and judgement J ′:

J ⪰Jin
J ′ if and only if H(Jin, J) ≤ H(Jin, J

′)

Of course, the statement above is equivalent to:

J ⪰Jin
J ′ if and only if Agr(Jin, J) ≥ Agr(Jin, J

′)

As we want to use the preference orders to construct utility functions, the latter rep-
resentation is more suitable: a higher agreement indicates a more preferred feasible
judgement, while a higher Hamming distance indicates a less preferred judgement.
We give the formal definition of our assumed preference orders below.

Definition 2.5. Consider a judgement aggregation scenario (Φ,Γin,Γout,J) with
n judges and let J, J ′ ∈ J (Φ,Γout) be arbitrary feasible judgements. For a judge
i ∈ N with judgement Jin ∈ J (Φ,Γin), we define the following binary relation
⪰Jin

: J (Φ,Γout)× J (Φ,Γout) → {0, 1}:

J ⪰Jin
J ′ if and only if Agr(Jin, J) ≥ Agr(Jin, J

′)

It is easy to verify that the defined preference orders satisfy completeness and
transitivity.

The preference orders above (Definition 2.5) determine the utility functions up to
a positive affine transformation. For any judge with judgement Jin ∈ J (Φ,Γin) the
utility function uJin : J (Φ,Γout) → R is constrained by:

u̇Jin(J) = α ·Agr(Jin, J) + β, with α ∈ R>0, β ∈ R≥0
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If we set the parameters α ∈ R>0 and β ∈ R≥0, we have fixed unique utility functions
uJin . The values of these parameters cannot be derived by reason; we stipulate α = 1
and β = 0. That is, we stipulate that if a judge is in complete disagreement with
the collective judgement, their utility is zero; they have nothing to be satisfied with.
Further we suppose that for every issue φ ∈ Φ they (judge i) share with the collective
judgement, their utility is increased by 1. We give the formal definition of our utility
functions below.

Definition 2.6. Given a judgement aggregation scenario (Φ,Γin,Γout,J) with n
judges, let J ∈ J (Φ,Γout) be an arbitrary feasible judgement. For judge i ∈ N
with judgement Jin ∈ J (Φ,Γin), we define the utility function uJin : J (Φ,Γout) →
{1, . . . , |Φ+|}:

uJin(J) = Agr(Jin, J) (2.6)

Note that the individual utilities uJin are elements of a finite set {1, . . . , |Φ+|}.
Hence, for an arbitrary profile J ∈ J (Φ,Γin)

n we can define a multiset of individual
utilities ums : {1, . . . , |Φ+|} → N as follows:

ums
J (u′) =

∑
Jin∈J s.t.

Agr(Jin,J)=u′

J(Jin) (2.7)

That is, the multiplicity of utility u′ ∈ {1, . . . , |Φ|} equals the sum of multiplicities
of all judgements Jin ∈ J in the profile that are associated with utility u′.

Example 2.9. Let J = {{¬φ1,¬φ2}1, {φ1,¬φ2}1, {φ1, φ2}2} be an arbitrary profile
and let J = {¬φ1, φ2} for some scenario (Φ,Γin,Γout,J). For profile J the multiset
of utilities is defined as ums

J = {01, 13}. △

In the previous section we defined the social welfare functions for utility vectors, not
for multisets. However, as we mentioned above (Equation 2.5), the SWFs do not
depend on the order of the individual utilities. It is straightforward to restate the
different social welfare functions for multisets of individual utilities.

Definition 2.7. For an arbitrary multiset ums
J : {1, . . . , |Φ+|} → N, the utilitarian

social welfare function Ums
util is defined as:

Ums
util(u

ms
J ) =

∑
u′∈ums

J

(ums
J (u′) · u′)

Definition 2.8. For an arbitrary multiset ums
J : {1, . . . , |Φ+|} → N, the egalitarian

social welfare function Ums
egal is defined as:

Ums
egal(u

ms
J ) = min

u′∈ums
J

u′
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Definition 2.9. For an arbitrary multiset ums
J : {1, . . . , |Φ+|} → N, the Nash social

welfare function Ums
nash is defined as:

Ums
nash(u

ms
J ) =

∏
u′∈ums

J

(ums
J (u′) · u′)

Finally, we have established the tools we need to derive our conclusion: the Kemeny
rule maximises utilitarian social welfare. Given an arbitrary profile J ∈ J (Φ,Γin)

n

with n judges we have:

Fkem(J) = argmax
J∈J (Φ,Γout)

∑
Jin∈J

(J(Jin) ·Agr(Jin, J))

= argmax
J∈J (Φ,Γout)

∑
u′∈ums

J

(
ums
J (u′) · u′

)
= argmax

J∈J (Φ,Γout)
Ums
util(u

ms
J )

The first line is the definition of the Kemeny rule (Definition 2.1). The second equal-
ity follows from the definition of ums

J (Equation 2.7). The final step follows directly
from the definition of the utilitarian SWF for multisets of utilities (Definition 2.7).

In the judgement aggregation literature there is no rule that, in a similar way as
the Kemeny rule does for utilitarian social welfare, maximises Nash social welfare.
In other fields of social choice theory, in particular in fair allocation, maximising
Nash social welfare is known to yield allocations that are both efficient and fair
(Caragiannis et al., 2019). It would be relevant to examine whether collective judge-
ments that result from maximising Nash social welfare are comparable in terms of
fairness and efficiency. Reversing the steps we took above, this time starting from
the Nash SWF for multisets (Definition 2.9) we obtain the rule that does this. We
introduce the novel judgement aggregation procedure, the Kemeny-Nash rule:

argmax
J∈J (Φ,Γout)

Ums
nash(u

ms
J ) = argmax

J∈J (Φ,Γout)

∏
Jin∈J

(J(Jin) ·Agr(Jin, J)) = Fkn(J) (2.8)

The Kemeny-Nash rule is formally defined in the next section.

2.4 The Kemeny-Nash Rule

In this section we make our first exploration into the Kemeny-Nash rule Fkn. We
start by providing the formal definition of the Kemeny-Nash rule and reason about
the differences between the Kemeny and Kemeny-Nash rule.

Definition 2.10. For an arbitrary profile J ∈ J (Φ,Γout)
n with n judges we define

the Kemeny-Nash rule as follows:

Fkn(J) = argmax
J∈J (Φ,Γout)

∏
Jin∈J

(J(Jin) ·Agr(Jin, J)) (2.9)
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Similarly to the Kemeny score, we define the Kemeney-Nash score Skn(J , J) =∏
Jin∈J (J(Jin) ·Agr(Jin, J)). In the previous section we argued that this rule max-

imises Nash social welfare (NSW). In other areas of social choice theory, maximising
NSW is known to provide solutions that are both efficient and fair (Caragiannis et al.,
2019); that is why it is relevant to study the Kemeny-Nash judgement aggregation
procedure.

Before we start our investigation into the properties of the Kemeny-Nash rule, a
brief remark on formalities. Given a multiset x we define ⟨x⟩ the average of x as:

⟨x⟩ = 1

|x|
∑
x∈x

(x(x) · x)

Further, for an arbitrary multiset of individual utilities ums
J (Equation 2.7) we define

the inequality I(ums
J ) as the sum of the absolute differences between the individual

utilities and the average utility:

I(ums
J ) =

∑
u′∈ums

J

(
ums
J (u′) · |u′ − ⟨ums

J ⟩|
)

(2.10)

We propose that this is a relevant measure for the inequality of a feasible judgement
J ∈ J (Φ,Γout). Unquestionably, there are other measures that are just as relevant
to measure the inequality of a feasible judgement. E.g., the minimum utility; the
ruler that is used in the egalitarian SWF. As a justification for our measure, we
note that for a multiset ums

J = {cn} in which all judges have the same utility—
without doubt the most equal distribution conceivable—the inequality I(ums

J ) = 0.
Reasoned differently, if I(ums

J ) is large, some judges enjoy a high level of satisfaction
that is to be compensated by the judges that have a low utility (in order to keep the
average utility fixed). We note that this measure is meant to compare the equity of
a rule F and F ′ for a fixed scenario (Φ,Γin,Γout,J).

Finally, when a judgement aggregation rule returns multiple collective judge-
ments, exactly one of these judgements is materialised; a tie-breaking procedure
has to take place. We do not consider the exact details of such a procedure here.
However, we do make the following mild assumption: in case a judgement rule F re-
turns a tied outcome F (J), with |F (J)| > 1, then all returned collective judgements
J ∈ F (J) have a non-zero probability of being realised (after some tie-breaking
procedure has been executed). That is to say, (the expected value of) an arbitrary
property of a rule is affected by all of its returned judgements. Because we do
not want to treat tie-breaking rules, expected values or probability distributions
in detail, the statement here is imprecise. Our point will be clarified in the next
example.

Example 2.10. Consider the judgement aggregation scenario (Φ,Γin,Γout,J), with
the agenda Φ that is based on the pre-agenda Φ+ = {φ1, φ2, φ1∧φ2}, the constraints
Γin = Γout = ⊤ coincide and the profile J = {J1

1 , J
1
2} contains judgements J1 =
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{¬φ1, φ2,¬(φ1 ∧ φ2)} and J2 = {φ1,¬φ2,¬(φ1 ∧ φ2)}. The Kemeny and Kemeny-
Nash scores, as well as the agreement between judgement Jin ∈ {J1, J2} and J , for
the four different consistent judgements are given by:

Feasible judgement J Agr(J1, J) Agr(J2, J) Skem(J , J) Skn(J , J)

{¬φ1,¬φ2,¬(φ1 ∧ φ2)} 2 2 4 4
{¬φ1, φ2,¬(φ1 ∧ φ2)} 3 1 4 3
{φ1,¬φ2,¬(φ1 ∧ φ2)} 1 3 4 3
{φ1, φ2, (φ1 ∧ φ2)} 1 1 2 1

In this example the Kemeny rule returns three collective judgements; for two of these
judgements one of the judges has agreement 1 while the other judge has agreement
3 with the collective judgement, for the other collective judgement both judges
have agreement 2. The Kemeny-Nash rule returns only the collective judgement
for which the agreement of both judges is 2. By using the Kemeny-Nash rule,
instead of the Kemeny rule, the efficiency of the returned collective judgements
is not affected. However, because we assume that every returned judgement has a
non-zero probability of being realised after some tie-break procedure, the (expected)
inequality of the Kemeny rule is higher. △

In the above example the Kemeny-Nash rule is certainly more favourable than the
Kemeny rule; we gain economic equity without sacrificing economic efficiency. Let us
consider another example in which the economic equity is increased by the Kemeny-
Nash rule; this time it comes with a sacrifice of economic efficiency. Moreover, the
example illustrates a peculiar facet of the Kemeny-Nash rule: a feasible judgement
J = Jin that is the antipodal of any of the judgements Jin ∈ (J) contained in the
profile has a Kemeny-Nash score of 0. We refer to this feature of the Kemeny-Nash
rule as the Zero-Effect, we provide the formal definition below.

Example 2.11. Consider the judgement aggregation scenario (Φ,Γin,Γout,J), with
the agenda Φ that is based on the pre-agenda Φ+ = {φ1, φ2}, the constraints
Γin = Γout = ⊤ coincide and the profile J = {J2

1 , J
1
2} contains judgements J1 =

{¬φ1,¬φ2} and J2 = {φ1, φ2}. The Kemeny and Kemeny-Nash scores, for the four
different consistent judgements are given by:

Feasible judgement J Agr(J1, J) Agr(J2, J) Skem(J , J) Skn(J , J)

{¬φ1,¬φ2} 2 0 4 0
{¬φ1, φ2} 1 1 3 1
{φ1,¬φ2} 1 1 3 1
{φ1, φ2} 0 2 2 0

For this profile the Kemeny rule Fkem(J) = {¬φ1,¬φ2} = Jkem returns a single
collective judgement, two of the judges are in complete agreement and have utility 2.
The other judge completely disagrees with the collective judgement and has utility 0.
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The Kemeny-Nash rule Fkn(J) = {{¬φ1, φ2}, {φ1,¬φ2}} returns a tie between two
judgements, for both collective judgements, all three judges have utility 1.

In this scenario the average utility induced by the Kemeny rule equals ⟨ums
Jkem

⟩ =
4/3, while the average utility ⟨ums

J ⟩ = 1 for the judgements J ∈ Fkn(J). On the
positive side, the minimal utility minu′∈ums

J
u′ = 1 for the Kemeny-Nash collective

judgements, while it is minu′∈ums
Jkem

= 0 for the Kemeny judgement. Moreover, for

the Kemeny rule we have: I(ums
Jkem

) = 2 · 23+
4
3 = 8

3 . For the multisets of utilities that
correspond to the Kemeny-Nash judgements J ∈ Fkn(J), we have I(ums

J ) = 0. In
conclusion, compared to the Kemeny rule, the Kemeny-Nash rule sacrifices economic
efficiency on the one side, but it gains economic equity on the other side.

Finally, it is noteworthy that Skn(J , Jkem) = 0; the single judgement that is
returned by the Kemeny rule can only be returned by the Kemeny-Nash rule if all
feasible judgement have Kemeny-Nash score of 0, in that case all feasible judgements
are returned by the Kemeny-Nash rule. The reason that the Kemeny-Nash score
Skn(J , Jkem) = 0 because judgement Jkem = J2, resulting in a zero multiplication,
we term this effect the Zero-Effect. △

The formal definition of the Zero-Effect is given below.

Definition 2.11. Let J ∈ J (Φ,Γin)
n be an arbitrary profile, and let J ∈ J (Φ,Γout)

be any feasible judgement. We define the function ZEJ : J (Φ,Γout) → {0, 1} as
follows:

ZEJ (J) =

{
1, if J ∈ J

0, otherwise

For any judgement J ∈ J (Φ,Γout) with ZEJ (J) = 1 the Kemeny-Nash score
Skn(J , J) = 0; the probability that judgement J ∈ Fkn(J) is selected by the Kemeny-
Nash rule is zeroed out.5

In the previous example the ZE did not appear to be a (potential) weakness; it
led to some efficiency loss but also to a gain in equity. In an early stage of this
work we assumed that the Zero-Effect (in some cases) may be a weakness of the
Kemeny-Nash rule. For profile J , a single judge with judgement Jin ∈ J is sufficient
to preclude the possibility that Jin ∈ Fkn(J) is selected by the Kemeny-Nash rule.
We reasoned that for scenarios where basically all judges n′ ≈ n have judgements
that are very similar to Jin; precluding the possibility that judgement Jin is selected
by the Kemeny-Nash rule might damage the economic efficiency (for that scenario)
disproportionately, compared to the gained economic equity.

In an attempt to designate the scenarios for which the ZE might be a weakness,
we introduced the Variance-Increasing Zero-Effect. In this stage of the work we

5Technically, judgement J can still be selected by the Kemeny-Nash rule; J ∈ Fkn(J) if and only
if Skn(J , J

′) = 0 for all feasible judgements J ′ ∈ J (Φ,Γout), then Fkn(J) = J (Φ,Γout). Although
the judgement is indeed technically selected, from a practical point of view we might as well say
that none of the judgements is selected.
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believe our previous argument is flawed. We explain our initial idea behind the
VIZE. By use of an example we show the problem of our previous train of thought.

As mentioned, in the previous example the ZE did not appear to be a (potential)
weakness. However, as the ZE is independent of the number of judges—if a single
judge with judgement Jin ∈ J (Φ,Γin) completely disagrees with judgement Jin =
J ∈ J (Φ,Γout); it is precluded that judgement J is selected by the Kemeny-Nash
rule. It is reasonable to suggest that, in some scenarios, the power that a single
judge has to preclude a particular judgement J ∈ J (Φ,Γout) from being selected as
collective judgement, should be seen as a deficiency of the Kemeny-Nash rule.

In an attempt to demarcate the scenarios for which the ZE should be consid-
ered as a (potential) weakness of the Kemeny-Nash rule we defined the Variance-
Increasing Zero-Effect (VIZE).

Definition 2.12. For an arbitrary profile J ∈ J (Φ,Γin)
n let J ∈ Fkn(J) be any

judgement that is returned by the Kemeny-Nash rule. We define the Variance-
Increasing Zero-Effect (VIZE) as:

VIZEJ (J) =

{
1 if I(ums

J ) > I(ums
J ′ ) for all J ′ ∈ Fkem(J)

0 otherwise

That is, a judgement J ∈ Fkn(J) is counted as an instance of the VIZE if
the sum of distances from the individual utilities to the average utility (multiplied
by the multiplicities of the individual utilities) is larger for (the utilities induced
by) judgement J ∈ Fkn(J) than for any judgement J ′ ∈ Fkem(J) returned by the
Kemeny rule (See Equation 2.10).

Example 2.12. Consider a profile J = {Jnmaj

maj , J
nmin
min } with Jmaj, Jmin ∈ J (Φ,Γin),

Jmaj, Jmin ∈ J (Φ,Γout), Jmin = Jmaj and nmaj ≫ nmin; we let n = nmaj + nmin.
Our initial idea was that the efficiency of the Kemeny-Nash rule would be dis-

proportionally affected if judgement Jmaj cannot be returned by the Kemeny rule:
in theory the satisfaction of a large number of judges is damaged to increase the
satisfaction of a single (or maybe a few) judges. We now abandon this view.

Yes, the sum of utilities that is lost by the majority of the judges outweighs
the sum of utilities that is gained by the minority. But we should realise that this
reasoning holds only if the majority of the judges enjoys a significantly higher utility
than the judges that make up the minority. The idea of the egalitarian approach is
that the will of the minority cannot be disregarded by the will of the majority; and
we introduced the Kemeny-Nash rule with the assumption that it is a combination
of fairness and efficiency considerations. At this point, we see no reason to assume
that VIZE instances indicate a disproportional loss in economic efficiency.

Maybe, in scenarios where the output constraint Γout is very limiting, and there
is no feasible judgement that is close to Jmaj, the VIZE might be a weak point.
However, this had nothing to do with our initial idea, and we consider it improbable
that these cases affect (the efficiency of) the Kemeny-Nash rule in a significant
way. △
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We argued that the potentially worrying VIZE (if it indeed turned out to be a defi-
ciency of the Kemeny-Nash rule) might be mitigated by introducing a small nonzero
parameter λ in the Kemeny-Nash rule; we proposed the parameterised Kemeny-Nash
rule.

Definition 2.13. The parameterised Kemeny-Nash rule is defined as:

F λ
kn(J) = argmax

J∈J (Φ,Γout)

∏
Jin∈J

(J(Jin) ·max{Agr(Ji, J), λ}), with 0 < λ≪ 1.

Similar to the Kemeny and Kemeny-Nash score, we define the parameterised
Kemeny-Nash score Sλ

kn(J , J, λ) :=
∏

i∈N max{Agr(Ji, J), λ}. The Kemeny-Nash
rule is studied throughout the rest of this thesis. Although our reasoning above is
now abandoned, as we will see in Chapter 3, in which we study desirable normative
principles (or axioms) for judgement aggregation procedures; from this perspective
the parameterised Kemeny-Nash rule is still a relevant addition the the Kemeny-
Nash rule.

As a minor remark, when we talk about the Kemeny-Nash rule we explicitly
mean the unparameterised variant Fkn. In our further examination we often study
both the Kemeny-Nash and the parameterised Kemeny-Nash, for readability we
write (parameterised) Kemeny-Nash rule in such cases.

To conclude this section we treat a particular scenario in full detail, and discuss how
the outcomes that are returned by the Kemeny and (parameterised) Kemeny-Nash
rule differ from one another.

Example 2.13. To see how the different rules work we consider a scenario from
Endriss et al. (2020). Mathematically, the scenario is defined as follows. We have
(Φ,Γin,Γout,J), where agenda Φ is based on the pre-agenda Φ+ = {φ1, φ2, φ3, φ4},
and the input and output constraints coincide Γin = Γout = ¬φ1∨(¬φ2∧¬φ4)∨¬φ3.
Further, let the profile J contain two judgements: J = {J1

1 , J
1
2}. Finally, we stipu-

late: J1 = {φ1, φ2,¬φ3¬φ4} and J2 = {¬φ1,¬φ2, φ3,¬φ4}. Intuitively, this scenario
could correspond to the situation where two mechanics judge the cause of a failure.
The failure could be caused by a fault in either component 1 or component 3 or by
a failure of both components 2 and 4. Then, the relation between the mathematical
and intuitive description is that the positive literal φi stands for component i works;
while ¬φi indicates that component i does not work.

From the input and output constraints we can reason that there are thirteen
feasible judgements, i.e., |J (Φ,Γout)| = 13. The judgement that all four compo-
nents are faulty, J = {¬φ1,¬φ2,¬φ3,¬φ4} is feasible. All (four) judgements that
state that one component works (while the other three components do not work)
are feasible; e.g., judgement J = {φ1,¬φ2,¬φ3,¬φ4} is feasible. It is also clear that
all judgements that judge two components to function, and two components to be
damaged, are feasible; e.g., judgement J = {φ1, φ2,¬φ3,¬φ4} is feasible. From the
four judgements that declare a single component to be faulty, only the two judge-
ments that declare either component 1 or component 3 to be flawed, are feasible. For
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example, the judgement J = {¬φ1, φ2, φ3, φ4} is feasible. Finally, the judgement
that says that all components are working properly is not feasible.

Let J ∈ J (Φ,Γout) be any feasible judgement. Table 2.2 shows the judgement J ,
and the agreement of J with judgement J1 and J2 (respectively): Agr(J1, J) and
Agr(J2, J). Further, Table 2.2 shows the Kemeny and parameterised Kemeny-Nash
score of J (for profile J): Skem(J , J) and S

λ
kn(J , J, λ), respectively. The maximum

scores are printed in bold face. Note that the Kemeny-Nash score is obtained from
the parameterised Kemeny-Nash score, simply by setting λ to 0. That is, Skn(J , J) =
Sλ
kn(J , J, 0).

Now, let us compare the collective judgements returned by the Kemeny rule with
those that are returned by the (parameterised) Kemeny-Nash rule. First, observe
that for all λ < 1 we have: 3λ < 6. In this particular scenario, the collective judge-
ments of the parameterised Kemeny-Nash rule are not influenced by the value of
λ, and they coincide with those of the Kemeny-Nash rule: Fkn(J) = F λ

kn(J). Fur-
ther, we can see that the set of judgements that is returned by the (parameterised)
Kemeny-Nash rule is a proper subset of the set that is returned by the Kemeny
rule: Fkn, F

λ
kn ⊂ Fkem. That is, the efficiency of (the collective judgements that

are returned by) the different rules coincide. However, we can also see that for all
collective judgements that are returned by the (parameterised) Kemeny-Nash rule,
the agreement difference between the two judges is equal to 1. Rephrased in a math-
ematical precise way, for all J ′ ∈ F λ

kn(J) (alternatively, for all J
′ ∈ Fkn(J)) we have:

|Agr(J1, J ′)− Agr(J2, J
′)| = 1. While, for some judgements J ′′ ∈ Fkem(J), selected

by the Kemeny rule, this difference is equal to 3: |Agr(J1, J ′′)−Agr(J2, J
′′)| = 3.

In conclusion, in this scenario the (parameterised) Kemeny-Nash rule selects
judgements that are (compared to the Kemeny rule) equal in terms of efficiency, but
better in terms of fairness; as they induce a more equal distribution of satisfaction
among the judges. △

24



2.4. The Kemeny-Nash Rule

Feasible judgement J Agr(J1, J) Agr(J2, J) Skem(J , J) Sλ
kn(J , J, λ)

{¬φ1,¬φ2,¬φ3,¬φ4} 2 3 5 6
{¬φ1,¬φ2,¬φ3, φ4} 2 1 3 2
{¬φ1,¬φ2, φ3,¬φ4} 2 3 5 6
{¬φ1, φ2,¬φ3,¬φ4} 4 1 5 4
{ φ1,¬φ2,¬φ3,¬φ4} 2 3 5 6
{¬φ1,¬φ2, φ3, φ4} 2 1 3 2
{¬φ1, φ2,¬φ3, φ4} 1 4 5 4
{¬φ1, φ2, φ3,¬φ4} 1 2 3 2
{ φ1,¬φ2,¬φ3, φ4} 3 0 3 3λ
{ φ1,¬φ2, φ3,¬φ4} 3 2 5 6
{ φ1, φ2,¬φ3,¬φ4} 0 3 3 3λ
{¬φ1, φ2, φ3, φ4} 1 2 3 2
{ φ1, φ2,¬φ3, φ4} 3 2 5 6

Table 2.2: Analysis of the consistent judgements corresponding to the scenario con-
sidered in Example 2.13. (Profile J contains judgements J1 = {φ1, φ2,¬φ3,¬φ4}
and J2 = {¬φ1,¬φ2, φ3,¬φ4}.) For every feasible judgement J ∈ J (Φ,Γout) we
show (from left to right): the judgement J ; the agreement of J with judgement J1,
Agr(J1, J); the agreement of J with judgement J2, Agr(J2, J); the Kemeny score
of J (for profile J), Skem(J , J); and the parameterised Kemeny-Nash score of J ,
Sλ
kn(J , J, λ). (Note that the Kemeny-Nash score is computed by substituting λ = 0

in the parameterised Kemeny-Nash score: Skn(J , J) = Sλ
kn(J , J, 0).) The maximal

Kemeny and parameterised Kemeny-Nash scores are printed bold.
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Chapter 3

Theoretical Analysis I:
Axiomatics

List and Pettit (2002) showed that the conflict exhibited by the discursive dilemma
is not restricted to the field of legal theory. As we mentioned in the Introduction
(Chapter 1), they established that it is impossible to aggregate individual judgements
made on a set of logically connected issues, in such a way that a group of (seemingly)
undemanding normative principles or axioms is satisfied. The result is exemplary
for the axiomatic approach, which is the subject of this chapter.

The chapter is organised as follows. In Section 3.1 we start by introducing the
axiomatic approach. In Section 3.2, we examine the work of Nehring and Pivato
(2022), who showed that the Kemeny rule is the only rule that satisfies a particular
group of axioms (in that sense, the group of axioms characterises the Kemeny rule).1

As we will see, from the four axioms that are used, the Kemeny-Nash rule violates
all four, while the parameterised Kemeny-Nash rule violates only one of the axioms.
Next, in Section 3.3 we treat four more axioms to further study the axiomatic
properties of the (parameterised) Kemeny-Nash rule. We conclude the chapter in
Section 3.4.

Before we begin, a remark on notation is in order. In this chapter we frequently
consider scenarios in which the agenda Φ is based on the pre-agenda Φ+ = {φ1, φ2}
containing two propositional variables. For the sake of readability, we define judge-
ments J00 = {¬φ1,¬φ2}, J01 = {¬φ1, φ2}, J10 = {φ1,¬φ2} and J11 = {φ1, φ2}.
As a mnemonic, the subscripts may be recognised as indicating whether the corre-
sponding non-negated issue (contained in the pre-agenda) is accepted (1) or rejected
(0).

1To be precise, Nehring and Pivato (2022) provide two distinct (but logically related) character-
isations of the Kemeny rule.
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3.1 Introduction

The purpose of this section is to introduce the axiomatic approach, one of the
fundamental instruments in social choice theory. We present the renowned theorem
by List and Pettit (2002), and distinguish this type of result (impossibility theorems)
from another type of result (characterisations).

From the very beginning—the seminal work of Arrow (1951)—the axiomatic ap-
proach is one of the vital instruments used in social choice theory. An axiom is a
normative principle, of which we consider it desirable that a collective decision pro-
cedure complies with it. By comparing the axiomatic properties of such procedures
we can make a more deliberate choice between the different alternatives.

When it comes to the role of the axiomatic approach, the field of judgement
aggregation is no exception; also in this area the technique is indispensable. As
we saw in the Introduction (Chapter 1), judgement aggregation—as a dedicated
research area—started with the work of List and Pettit (2002). We review their
result below.

There are substantial differences between the framework of List and Pettit (2002)
and our framework. To wit, the former (i) is non-anonymous; profiles are represented
as tuples J = (J1, . . . , Jn) containing n rational judgements, and (ii) uses resolute
aggregation rules f , mapping a profile J ∈ J (Φ,Γin)

n to a single feasible judgement
(see Section 2.2). Hence, the axioms below are requirements for all ordered profiles
J = (J1, . . . , Jn) ∈ J (Φ,Γin)

n, and are defined for resolute rules f .2

Universal Domain (UD): A feasible judgement aggregation rule f should return
a collective judgement for every possible n-tuple of rational judges; that is,
f : J (Φ,Γin)

n → J (Φ,Γout).

Anonymity (A): For arbitrary profiles J = (J1, . . . , Jn) and J ′ = (J ′
1, . . . , J

′
n) that

are permutations of one another, anonymity demands that a resolute procedure
f returns f(J) = f(J ′) identical collective judgements.

Systematicity (S): Let J = (J1, . . . , Jn) and J ′ = (J ′
1, . . . , J

′
n) be arbitrary pro-

files for n judges, with J ,J ′ ∈ J (Φ,Γin)
n, and φ, ϑ ∈ Φ any two formulas in

the agenda. If, for all judges i ∈ N we have φ ∈ Ji if and only if ϑ ∈ J ′
i , then

systematicity requires that for a resolute rule f we have: φ ∈ f(J) if and only
if ϑ ∈ f(J ′).

Collective Rationality (CR): For any profile J = (J1, . . . , Jn) ∈ J (Φ,Γin)
n with

n judges, collective rationality requires that a resolute rule f(J) ∈ J (Φ,Γout)
returns a collective judgement that is Γout-consistent.

The first condition (UD) prohibits that an aggregation rule is defined on the domain
of multisets of rational judgements; the requirement cannot be translated to our

2Note that in this representation, a profile J for n judges actually is an element of J (Φ,Γin)
n.

(While, in our framework, the expression J ∈ J (Φ,Γin)
n is slightly incorrect, see Section 2.1.)
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framework. Anonymity (A) requires that all judges are treated in an equal manner.
The third requirement, systematicity (S), demands that (i) the (collective) accep-
tance of a formula φ solely depends on (the pattern of) individual judgements for
that formula φ and (ii) the patterns of individual judgements on a formula φ, that
result in collective acceptance of φ, may not depend on the formula φ itself. We now
have the tools to (formally) state the fundamental impossibility result of judgement
aggregation.

Theorem 3.1 (List and Pettit, 2002). For an agenda Φ that contains a subset of
issues of the form {φ1, φ2, φ1∨φ2}, with φ1 and φ2 being logically independent; there
exists no resolute aggregation rule f satisfying (UD), (A), (S) and (CR).

Since the seminal work of Arrow (1951), much research has been done to inves-
tigate what rules (aggregation rules and otherwise) satisfy what axioms. We can
distinguish two types of results: characterisations and impossibility theorems.

Given a group of axioms, impossibility theorems—such as the result of List and
Pettit (2002)—establish that it is impossible to (simultaneously) fulfil all given ax-
ioms. Impossibilities are negative (but relevant) results. On the other hand, charac-
terisation theorems characterise a class of judgement aggregation rules by the given
axioms; a rule satisfies the axioms if and only if it belongs to the demarcated class.
That is, given a set of axioms, an impossibility theorem tells us that we can never
find a procedure that fulfils all our wishes, which may help us to find acceptable
compromises to make the demands satisfiable; a characterisation narrows down our
choice (if we want to adhere to the axioms).

3.2 Characterisation of the Kemeny Rule

Nehring and Pivato (2022) have characterised the Kemeny judgement aggregation
rule. They proved that a judgement aggregation rule F satisfies the axioms rein-
forcement, continuity and ensemble supermajority efficiency if and only if F is the
Kemeny rule. Further, they show that judgement consistency and continuity to-
gether imply reinforcement—allowing for an alternative characterisation. For each
axiom, we prove that the Kemeny rule satisfies it, and examine the adherence of
the (parameterised) Kemeny-rule with the axiom. We show that the Kemeny-Nash
rule satisfies none of the axioms, while the parameterised variant satisfies continuity,
reinforcement and judgement consistency. To start, we provide a formal statements
of the results.

Theorem 3.2 (Nehring and Pivato, 2022). Rule F satisfies continuity (C), rein-
forcement (R) and ensemble supermajority efficiency (ESME) if and only if F is the
Kemeny rule.

As mentioned, the authors show that (JC) and (C) together imply (R); this allows
for an alternative characterisation.
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Corollary 3.2.1. Rule F satisfies continuity (C), judgement consistency (JC) and
ensemble supermajority efficiency (ESME) if and only if F is the Kemeny rule.

In the remainder of this section we study the different axioms ((C), (R), (JC) and
(ESME)) one-by-one.

3.2.1 Continuity

The first axiom, continuity, aims to formalise a stability requirement. A rule satisfies
the axiom if a collective judgement cannot be revoked by a small disruption in the
associated profile.

Continuity (C): For an arbitrary profile J ∈ J (Φ,Γin)
n with n judges and any

rational judgement Jin ∈ J (Φ,Γin), an aggregation rule F satisfies continuity
if there exists an integer ℓ ∈ N such that any judgement J ∈ F (J) that is
returned for profile J , is also returned J ∈ F (ℓJ ⊎{J1

in}) for profile ℓJ ⊎{J1
in}.

In the definition above the profile {J1
in} represents an infinitesimal disruption to

the profile ℓJ ∈ J (Φ,Γin)
ℓn; as ℓ increases the single judge (with judgement Jin)

is outnumbered by the total number of judges. The principle requires that it is
possible to diminish the impact of the single judge to the point that no collective
judgement that was returned for profile J , is not returned for profile ℓJ ⊎ {J1

in}.
Formulated differently, the axiom demands that when a large population is mixed
with a much smaller population, the collective judgement is essentially determined
by the judgements in the large population.

With nonconstructive proof we show that the Kemeny rule satisfies continuity.

Proposition 3.1. The Kemeny rule Fkem satisfies (C).

Proof. Take an arbitrary profile J ∈ J (Φ,Γin)
n (for n judges) and Jin ∈ J (Φ,Γin)

a rational judgement. Let J ′ = {J1
in} denote the profile, for one judge, containing

judgement Jin. Suppose there exists a feasible judgement J ′ ∈ J (Φ,Γout) such that
Skem(J⊎J ′, J ′) > Skem(J⊎J ′, J), for some judgement J ∈ Fkem(J) that is returned
by the Kemeny rule for profile J . Then, it must be that Skem(J , J) > Skem(J , J

′).
Now, for all freasible judgements J̃ ∈ J (Φ,Γout) we have:

Skem(ℓJ ⊎ J ′, J̃) = Skem(J ⊎ J ′, J̃) + Skem

(
(ℓ− 1)J , J̃

)
(3.1)

So, with every copy of J we add, we close the finite gap between Skem(J ⊎ J ′, J ′)
and Skem(J ⊎ J ′, J).

But then, for any profile J ∈ J (Φ,Γin)
n and feasible judgement Jin ∈ J (Φ,Γin),

there must exist an ℓ ∈ N such that Skem(ℓJ ⊎ {J1
in}, J) > Skem(ℓJ ⊎ {J1

in}, J ′).

Because of the zero-effect, the Kemeny-Nash rule does not satisfy (C); we use a
counterexample to prove this.
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Proposition 3.2. The Kemeny-Nash rule Fkn does not satisfy (C).

Proof. The proof uses a counterexample. The essential feature of the example is
that judgement Jin ∈ J (Φ,Γin) is antipodal to a collective judgement J ∈ Fkn(J)
selected by the Kemeny-Nash rule, for profile J .

Consider the scenario (Φ,Γin,Γout,J) with agenda Φ based on the pre-agenda
Φ+ = {φ1, φ2} containing two propositional variables, the input and output con-
straint coincide Γin = Γout = ⊤, and are trivially satisfied; the profile J = {J2

11}
contains two judgements. Clearly, the Kemeny-Nash rule selects Fkn(J) = J11 as
collective judgement.

Now, consider the feasible judgement Jin = J00 ∈ J (Φ,Γin); for an arbitrary
positive integer ℓ ∈ N we have Skn(ℓJ ⊎ {J1

in}, J11) = 0 < ℓ = Skn(ℓJ ⊎ {J1
in}, J10).

That is, J11 ∈ Fkn(J) while for all ℓ ∈ N we have J11 /∈ Fkn(ℓJ ⊎ {J1
in}).

Mirroring the argument of Proposition 3.1 we can show that the parameterised
Kemeny-Nash rule F λ

kn satisfies (C); in the proof below, we do not reiterate the line
of thought from the aforementioned argument in full detail.

Proposition 3.3. The parameterised Kemeny-Nash rule F λ
kn satisfies (C).

Proof. The proof is analogous to the argument employed in the proof of Propo-
sition 3.1. The differences being: (i) for a profile J ∈ J (Φ,Γin)

n and feasible
judgement J ∈ J (Φ,Γout), the parameterised Kemeny-Nash Sλ

kn(J , J, λ) scores are
substituted for the Kemeny scores Skem(J , J), and (2) the sum in Equation 3.1 is
replaced by a product.

For an arbitrary profile J ∈ J (Φ,Γin)
n, feasible judgement J ∈ J (Φ,Γout), and

0 < λ≪ 1, for the parameterised Kemeny-Nash score we have: Sλ
kn(J , J, λ) > 0, by

definition. The validity of the argument still holds.

3.2.2 Reinforcement

The reinforcement axiom is a requirement on the collective outcomes, returned for
a compound profile. The axiom demands that if the constituent profiles share a
collective judgement, then, for the compound profile, rule F returns exactly the
judgements that are shared by the constituents.

Reinforcement (R): For arbitrary profiles J ∈ J (Φ,Γin)
n and J ′ ∈ J (Φ,Γin)

n′

with n and n′ judges (respectively), an aggregation rule F satisfies reinforce-
ment if F (J) ∩ F (J ′) ̸= ∅ implies that F (J ⊎ J ′) = F (J) ∩ F (J ′).

Intuitively, it is clear that the Kemeny rule satisfies (R): the Kemeny score of a
compound profile is maximal when the Kemeny score of its components are maximal.
For the sake of completeness we provide a formal proof.

Proposition 3.4. The Kemeny rule Fkem satisfies (R).
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3.2. Characterisation of the Kemeny Rule

Proof. Take arbitrary profiles J ∈ J (Φ,Γin)
n and J ′ ∈ J (Φ,Γin)

n′
, for n and n′

judges, and let J ∈ J (Φ,Γout) be any feasible judgement. By the definition of the
Kemeny rule, for the compound profile J ⊎ J ′ we have:

Fkem(J ⊎ J ′) = argmax
J∈J (Φ,Γout)

(
Skem(J , J) + Skem(J

′, J)
)

If Fkem(J) ∩ Fkem(J
′) ̸= ∅—i.e., there exists a feasible judgement J ∈ J (Φ,Γout)

such that J ∈ argmax
J∈J (Φ,Γout)

Skem(J , J) and J ∈ argmax
J∈J (Φ,Γout)

Skem(J
′, J)—then the re-

quirement is satisfied.

With a counterexample, we show that the Kemeny-Nash rule does not satisfy (R).

Proposition 3.5. The Kemeny-Nash rule Fkn does not satisfy (R).

Proof. The proof uses a counterexample. The idea is that for every feasible judge-
ment J ∈ J (Φ,Γout), the antipodal judgement J is contained in (at least) one of
the constituents of the compound profile J ⊎ J ′.

Let agenda Φ be based on the pre-agenda Φ+ = {φ1, φ2} containing two propo-
sitional variables, and let the input and output constraint Γin = Γout = ⊤ coincide.
Consider the profiles J = {J1

00, J
1
01, J

1
10, J

1
11} and J ′ = {J1

11}. It is easy to verify that
Fkn(J) = {J00, J01, J10, J11} and Fkn(J

′) = J11. Thus, we have Fkn(J) ∩ Fkn(J
′) =

J11 ̸= ∅. However, Skn(J ⊎ J ′, J) = Skn(J , J) · Skn(J ′, J) = 0, for every feasible
judgement J ∈ J (Φ,Γout). That is, Fkn(J ⊎ J ′) ̸= Fkn(J) ∩ Fkn(J

′).

With a direct argument we show that the parameterised Kemeny-Nash rule F λ
kn

satisfies (R).

Proposition 3.6. The parameterised Kemeny-Nash rule F λ
kn satisfies (R).

Proof. For arbitrary profiles J ∈ J (Φ,Γin)
n and J ′ ∈ J (Φ,Γin)

n′
with n and n′

judges, and feasible judgements J, J ′ ∈ J (Φ,Γout) we have:

Sλ
kn(J ⊎ J ′, J, λ) = Sλ

kn(J , J, λ) · Sλ
kn(J

′, J, λ), for all 0 < λ≪ 1

For all 0 < λ≪ 1, the parameterised Kemeny-Nash score Sλ
kn(J , J, λ) > 0 is positive

by definition. Consequently, in correspondence to the argument we presented in
Proposition 3.4, if F λ

kn(J) ∩ F λ
kn(J

′) ̸= ∅ then: F λ
kn(J ⊎ J ′) = F λ

kn(J) ∩ F λ
kn(J

′).

3.2.3 Judgement Consistency

Before considering the final axiom of Theorem 3.2 we make a detour and consider
the judgement consistency axiom. Judgement consistency is another demand for the
collective judgements that are returned for compound profiles. The formal definition
is given below.
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3.2. Characterisation of the Kemeny Rule

Judgement Consistency (JC): Take arbitrary profiles J1,J
′
1 ∈ J (Φ,Γin)

n and
J2,J

′
2 ∈ J (Φ,Γin)

n′
, respectively for n and n′ judges, and feasible judgements

J, J ′ ∈ J (Φ,Γout). A judgement aggregation rule F satisfies judgement con-
sistency if the conjunction of the following premises excludes the possibility
that judgement J ′ ∈ F (J ′

1 ⊎J ′
2) is returned for the compound J ′

1 ⊎J ′
2. There

are four conditions:

J ′ ∈ F (J1 ⊎ J2) (3.2)

J ∈ F (J ′
1 ⊎ J2) (3.3)

J ′ /∈ F (J ′
1 ⊎ J2) (3.4)

J ∈ F (J1 ⊎ J ′
2) (3.5)

Rule F satisfies judgement consistency if the conjunction of the premises im-
plies:

J ′ /∈ F (J ′
1 ⊎ J ′

2) (3.6)

Taken together, the former three premises express that the change from J1 to J ′
1, in

the compound profile with J2, effects the rule to no longer select judgement J ′. The
latter premise indicates that in the compound of J1 and J ′

2, judgement J is weakly
preferred over judgement J ′. If all these conditions are (simultaneously) satisfied,
the axiom requires that—in the compound with profile J ′

2—the shift from J1 to J ′
1

again excludes judgement J ′ from being returned as collective judgement. That is,
in a compound profile, the effect of a change in one of its constituents should not
depend on the other constituent.

We use the contrapositive to show that the Kemeny rule satisfies (JC)

Proposition 3.7. The Kemeny rule Fkem satisfies (JC).

Proof. We prove the contrapositive. We show that if the implication (Equation 3.6)
is not true, then it cannot be the case that all premises (Equations 3.2-3.5) are true.

From the conjunction of Equations 3.2-3.4, and some algebra, we obtain:

Skem(J1, J
′)− Skem(J

′
1, J

′) > Skem(J1, J)− Skem(J
′
1, J)

Similarly, from the conjunction of Equation 3.5 and the negation of Equation 3.6,
we derive:

Skem(J1, J)− Skem(J
′
1, J) ≥ Skem(J1, J

′)− Skem(J
′
1, J

′)

The derived inequalities are contradictory.

By providing a counterexample, we show the the Kemeny-Nash rule does not satisfy
(JC).
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3.2. Characterisation of the Kemeny Rule

Proposition 3.8. The Kemeny-Nash rule does not satisfy (JC).

Proof. Proof by counterexample. For the agenda Φ that is based on the pre-agenda
Φ+ = {φ1, φ2} containing two propositional variables and Γin = Γout = ⊤ trivial
constraints we consider four profiles; two profiles J1,J

′
1 ∈ J (Φ,Γin)

2 with two
judges, and two profiles J2,J

′
2 ∈ J (Φ,Γin)

3 for tree judges. The profiles are defined
as follows:

J1 = {J01, J11} J2 = {J00, J2
10}

J ′
1 = {J00, J01} J ′

2 = {J00, J10, J11}

We consider feasible judgements J, J ′ ∈ J (Φ,Γout), stipulated as J = J00 and
J ′ = J11. It can be verified that the premises (Equations 3.2-3.5) are satisfied:

J ′ ∈ Fkn(J1 ⊎ J2)

J ∈ Fkn(J
′
1 ⊎ J2)

J ′ /∈ Fkn(J
′
1 ⊎ J2)

J ∈ Fkn(J1 ⊎ J ′
2)

However, for profile J ′
1⊎J ′

2, judgement J ′ ∈ Fkn(J
′
1⊎J ′

2) is returned by the Kemeny-
Nash rule.

With an algebraic derivation we prove that the parameterised Kemeny-Nash rule
satisfies (JC).

Proposition 3.9. The parameterised Kemeny-Nash rule F λ
kn satisfies (JC)

Proof. Let J1,J
′
1 ∈ J (Φ,Γin)

n and J2,J
′
2 ∈ J (Φ,Γin)

n′
be arbitrary profiles (for

n and n′ judges, respectively) and let J, J ′ ∈ J (Φ,Γout) be any feasible judgements.
We show that if the profiles J1,J

′
1,J2,J

′
2 and feasible judgements J, J ′ are such

that all conditions of the (JC) axiom are met (Equations 3.2-3.5), we can derive the
consequence (Equation 3.6).

From the first condition (Equation 3.2) we can conclude:

Sλ
kn(J2, J

′, λ)

Sλ
kn(J2, J, λ)

≥
Sλ
kn(J1, J, λ)

Sλ
kn(J1, J ′, λ)

While, from the second and third conditions (Equations 3.3 and3.4) we can derive:

Sλ
kn(J

′
1, J, λ)

Sλ
kn(J

′
1, J

′, λ)
>
Sλ
kn(J2, J

′, λ)

Sλ
kn(J2, J, λ)

Combining the two expressions we obtain:

Sλ
kn(J

′
1, J, λ)

Sλ
kn(J

′
1, J

′, λ)
>

Sλ
kn(J1, J, λ)

Sλ
kn(J1, J ′, λ)
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3.2. Characterisation of the Kemeny Rule

Similarly, from the fourth condition (Equation 3.5) we get:

Sλ
kn(J1, J, λ)

Sλ
kn(J1, J ′, λ)

≥
Sλ
kn(J

′
2, J

′, λ)

Sλ
kn(J

′
2, J, λ)

The conclusion follows:

Sλ
kn(J

′
1, J, λ) · Sλ

kn(J
′
2, J, λ) > Sλ

kn(J
′
1, J

′, λ) · Sλ
kn(J

′
2, J

′, λ)

That is: J ′ /∈ F λ
kn(J

′
1 ⊎ J ′

2).
For an arbitrary profile J ∈ J (Φ,Γin)

n and feasible judgement J ∈ J (Φ,Γout),
the Kemeny-Nash score Sλ

kn(J , J, λ) > 0, for all 0 < λ < 1; guaranteeing the sound-
ness of the above expressions.

3.2.4 Ensemble Supermajority Efficiency

The final axiom, ensemble supermajority efficiency (ESME) is connected to the ma-
jority preservation (MP) axiom. The latter axiom is more common in the literature,
and we already encountered it in the previous section. Significantly, the connec-
tion between the two axioms is that (ESME) is logically stronger than (MP). As the
Kemeny-Nash and parameterised Kemeny-Nash rules do not satisfy (MP) (Proposi-
tions 3.11 and 3.12), the rules do not satisfy (ESME) either; for this reason we do not
examine the axiom to the last detail.

Let J ∈ J (Φ,Γin)
n be an arbitrary profile for n judges, and J ∈ J (Φ,Γout) any

feasible judgement. For 0 ≤ n′ ≤ n we define the n′-majority γJ as the number of
issues that is supported in at least n′ judgements Jin ∈ J , that are contained in the
profile:

γJ (J, n′) = |{φ ∈ J | |NJ
φ | ≥ n′}|

Further we say that feasible judgement J ∈ J (Φ,Γout) is supermajority efficient (for
profile J) if there is no judgement J ′ ∈ J (Φ,Γout) such that γJ (J ′, n′) ≥ γJ (J, n′)
for all 0 ≤ n′ ≤ n, with strict inequality for some n′ ≤ n. Let SME(J) denote
the set of all supermajority efficient judgements J ∈ J (Φ,Γout); then a judgement
aggregation rule is said to be supermajority efficient if it always returns a set of
supermajority efficient judgements.

Supermajority Efficiency (SME): For an arbitrary profile J ∈ J (Φ,Γin)
n, rule F

is supermajority effecient if all collective judgements J ∈ F (J) ⊆ SME(J) are
supermajority efficient.

Note that if profile J is majority-consistent, then SME(J) = m(J). Thus, if a
judgement aggregation rule F does not satisfy (MP), then F does not satisfy (SME)
either. That is, the Kemeny-Nash and parameterised Kemeny-Nash rule do not
satisfy (SME).
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Nehring and Pivato (2022) provide a formal definition for an ensemble of judge-
ment aggregation scenarios. The ESME requirement is a restriction on the collec-
tive judgements that are returned for such ensembles. Specifically, for an arbitrary
ensemble—which may contain any judgement aggregation scenario (Φ,Γin,Γout,J)
as (one of) its constituents—the axiom requires that a rule F is SME for (i) all the
constituent of the ensemble, as well as for (2) the ensemble, considered as a judge-
ment aggregation scenario on its own, as a whole. From what we said above, it is
clear that condition (i) is not met—regardless of the precise definition of an ensem-
ble of judgement aggregation scenarios—we establish that neither the Kemeny-Nash
rule, nor the parameterised Kemeny-Nash rule, satisfies (ESME)

3.3 Axiomatic Properties of the Kemeny-Nash Rule

To further study the axiomatic properties of the (parameterised) Kemeny-Nash rule
we examine four more axioms. We consider two axioms that are extensively appear-
ing in the judgement aggregation literature; majority preservation and a version
of neutrality. As we hypothesised (Section 2.3) that the (parameterised) Kemeny-
Nash rule—in contrast to the Kemeny rule—produces collective outcomes that are
sensitive to equity considerations, we also inspect two equity principles; the Sen-
Hammond equity and Pigou-Dalton principles, both of which are frequently studied
in the context of egalitarian welfare economics. In the judgement aggregation liter-
ature, both equity principles are studied by Botan et al. (2023).

Majority preservation. The first axiom we consider is majority preservation.
It requires that rule F maps any majority-consistent profile J ∈ J (Φ,Γin)

n, with
m(J) ∈ J (Φ,Γout), to the singleton set F (J) = {m(J)} that comprises the majori-
tarian judgement.

Majority Preservation (MP): For any majority-consistent profile J ∈ J (Φ,Γin)
n,

with m(J) ∈ J (Φ,Γout), majority preservation demands a rule F to (exclu-
sively) return F (J) = m(J) the majoritarian judgement.

Traditionally, majority preservation is considered to be an essential requirement.
Judgement aggregation was initiated by the problems that arise when the majori-
tarian judgement is inconsistent—not to take issue with majority voting itself. When
the majoritarian judgement is consistent, it is widely accepted that a judgement ag-
gregation rule should return that, and only that, judgement.3 Because of the ZE,
the (parameterised) Kemeny-Nash rule does not comply with majority preservation.
This can be seen as a serious deficiency.

We provide a direct argument to prove that the Kemeny rule Fkem satisfies (MP).

Proposition 3.10. The Kemeny rule Fkem satisfies (MP).

3This position is disputed by Botan et al. (2021).
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Proof. Let J ∈ J (Φ,Γin)
n, with m(J) ∈ J (Φ,Γout), be an arbitrary majority-

consistent profile with n judges. For an arbitrary feasible judgement J ∈ J (Φ,Γout)
and issue φ ∈ Φ, the Kemeny score for profile J is given by Skem(J , J) =

∑
φ∈J |NJ

φ |.
By definition, for every φ ∈ m(J), we have |NJ

φ | > |NJ
∼φ|—and the majoritarian

judgement m(J) maximises the Kemeny score.

Because of the ZE, the Kemeny-Nash rule does not comply with (MP); we provide a
counterexample below.

Proposition 3.11. The Kemeny-Nash rule Fkn does not satisfy (MP).

Proof. Consider the scenario (Φ,Γin,Γout,J) with agenda Φ based on the pre-agenda
Φ+ = {φ1, φ2} containing two propositional variables, trivial Γin = Γout = ⊤ (input
and output) constraints, and profile J = {J2

00, J
1
11}. Clearly, the majoritarian judge-

ment m(J) = J00 ∈ J (Φ,Γout) is feasible. However, Skn(J , J01) > Skn(J ,m(J));
profile J witnesses that the Kemeny-Nash rule Fkn violates (MP).

For the parameterised Kemeny-Nash rule the proof is more intricate; whether a
scenario witnesses that F λ

kn does not satisfy (MP) depends on the value of λ. In the
proof below we introduce a family of scenarios (Φ,Γin,Γout,J)[m], with m ∈ N an
arbitrary integer, such that (MP) is violated if λ ≤ (m− 1)2/m2. Put differently, to
satisfy (MP), we must have λ > (m− 1)2/m2, clearly violating the constraint λ≪ 1.

Proposition 3.12. The parameterised Kemeny-Nash rule F λ
kn does not satisfy (MP).

Proof. Given any integer m ∈ N, scenario (Φ,Γin,Γout,J)[m] is defined as follows.
The agenda Φ is based on the pre-agenda Φ+ = {φ1, . . . , φm} containing m proposi-
tional variables, the constraints Γin = Γout = ⊤ are trivially satisfied, and the profile
J = {J2

−, J
1
+} contains judgements J− = {¬φ1, . . . ,¬φm} and J+ = {φ1, . . . , φm}.

Clearly, profile J is majority-consistent, and the majoritarian judgement is given by
m(J) = J− ∈ J (Φ,Γout).

Now, for judgement J1 = {φ1,¬φ2, . . . ,¬φm} ∈ J (Φ,Γout) the parameterised
Kemeny-Nash score is given by Sλ

kn(J , J1, λ) = (m − 1)2, for all 0 < λ ≪ 1. For
the majoritarian judgement m(J) ∈ J (Φ,Γout) we have: Sλ

kn(J ,m(J), λ) = m2 · λ.
Ergo, for an arbitrary integer m ∈ N and some scenario (Φ,Γin,Γout,J)[m], to
satisfy (MP), we must have λ > (m− 1)2/m2—this is not allowed under the constraint
λ≪ 1.

Neutrality. Neutrality is an axiom that is widely accepted, but in many papers
a precise definition is omitted (Slavkovik, 2014).4 Broadly, the axiom says that an
aggregation rule should treat the issues in the agenda in an equitable manner. A
version called issue-neutrality has been formalised for resolute rules f by Grandi
and Endriss (2013) in the following way. For any profile J ∈ J (Φ,Γin)

n with n

4As an example, see Lang et al. (2011).
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judges and φ, ϑ ∈ Φ any two issues, if NJ
φ = NJ

ϑ then issue-neutrality requires that
φ ∈ f(J) if and only if ϑ ∈ f(J).

Issue-neutrality can be generalised for irresolute rules in multiple ways; Slavkovik
(2014) formalised the strongest possible variant which we adopt here. Their axiom,
strong issue-neutrality, requires that for any profile in which (any) two issues have
identical support, any collective judgement that is returned by F should either
include both issues, or none of them.

Strong Issue-Neutrality (SN): Irresolute rule F satisfies strong issue-neutrality if
for all profiles J ∈ J (Φ,Γin)

n and all φ, ϑ ∈ Φ issues it holds that: NJ
φ = NJ

ϑ

implies φ ∈ F (J) if and only if ϑ ∈ F (J), for all J ∈ F (J).

By considering again Example 2.13, which we used to illustrate the mechanisms of
the different rules, we show that none of the rules satisfies (SN). That is, all proofs
are based on the same counterexample.

Proposition 3.13. The Kemeny rule Fkem does not satisfy (SN).

Proof. Consider again the scenario (Φ,Γin,Γout,J) that was introduced in Exam-
ple 2.13. For profile J we have: NJ

φ1
= NJ

φ2
= {J1

1} = {φ1, φ2,¬φ3,¬φ4}1, while
judgement J = {φ1,¬φ2,¬φ3,¬φ4}1 ∈ Fkem(J) is returned by the Kemeny rule.

Proposition 3.14. The Kemeny-Nash rule Fkn does not satisfy (SN).

Proof. Consider the scenario (Φ,Γin,Γout,J) from Example 2.13; for this profile J
we have: NJ

φ1
= NJ

φ2
. However, judgement J = {φ1,¬φ2,¬φ3,¬φ4}1 ∈ Fkn(J) is

returned by the Kemeny-Nash rule.

Proposition 3.15. The parameterised Kemeny-Nash rule F λ
kn does not satisfy (SN).

Proof. Consider the scenario from Example 2.13. Again, for this profile J we have:
NJ

φ1
= NJ

φ2
= {J1

1}. However, judgement J = {φ1,¬φ2,¬φ3,¬φ4}1 ∈ F λ
kn(J) is

returned by the parameterised Kemeny-Nash rule, for any value 0 < λ ≪ 1 of the
parameter.

The Sen-Hammond Equity Principle. The Sen-Hammond Equity Principle
was originally formulated in the field of welfare economics. In essence, the principle
requires that if there is a pair i, j of agents and feasible allocations X,Y—such
that (i) the satisfaction of agent i is strictly higher than that of agent j (for both
allocations X and Y ) and (ii) agent j strictly prefers allocation Y over allocation
X—then, the collective welfare of allocation Y should be (weakly) higher than the
welfare of allocation X.

Botan et al. (2023) have adapted the principle for judgement aggregation. We
give the formal definition of their principle below.
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Sen-Hammond Equity (SHE): Let J ∈ J (Φ,Γin)
n be an arbitrary profile for n

judges, and let J, J ′ be complete and complement-free judgements. A judge-
ment aggregation rule F satisfies the Sen-Hammond equity principle if the
following is true. Whenever there exist judges i, j ∈ N such that:

Agr(Ji, J) > Agr(Ji, J
′) > Agr(Jj , J

′) > Agr(Jj , J) (3.7)

And, further, for all other judges i′ ∈ N \ {i, j} it holds:

Agr(Ji′ , J) = Agr(Ji′ , J
′) (3.8)

Then:

J ∈ F (J) implies J ′ ∈ F (J) (3.9)

That is, comparing complete and complement-free judgements J and J ′: if there
are judges i, j ∈ N such that (i) judge j is worse off than judge i, and (ii) judge j
strictly prefers judgement J ′ over J , while (iii) the remaining judges N \ {i, j} are
indifferent; then, if judgement J ∈ F (J) is returned, judgement J ′ ∈ F (J) should
be returned as well.

To begin, by use of a counterexample, we show that the Kemeny rule Fkem does not
satisfy (SHE).

Proposition 3.16. The Kemeny rule Fkem does not satisfy (SHE).

Proof. We consider a counterexample. Consider the scenario (Φ,Γin,Γout,J) with
agenda Φ based on the pre-agenda Φ+ = {φ1, φ2, φ3, φ4, φ5, φ6} containing six
propositional variables; the (input and output) constraints coincide and are triv-
ially true, Γin = Γout = ⊤. The profile J = {J1

1 , J
1
2} with two judges, contains

judgements J1 = {φ1, φ2, φ3, φ4, φ5, φ6} and J2 = {¬φ1,¬φ2,¬φ3,¬φ4,¬φ5, φ6}.
Now, consider J, J ′ ∈ J (Φ,Γout) feasible judgements J = {φ1, φ2, φ3, φ4, φ5, φ6},
and J ′ = {φ1, φ2, φ3,¬φ4,¬φ5,¬φ6}.

The premises of the Sen-Hammond principle (Equations 3.7 and 3.8) are sat-
isfied: Agr(J1, J) > Agr(J1, J

′) > Agr(J2, J
′) > Agr(J2, J), and N \ {1, 2} = ∅.

Thus, we are done if we show that judgement J ∈ Fkem(J) is selected while judge-
ment J ′ /∈ Fkem(J) is not selected. As the Kemeny rule Fkem selects exactly
the feasible judgements that accept the sixth propositional variable—i.e., for any
J∗ ∈ J (Φ,Γout), we have J∗ ∈ Fkem(J) if and only if φ6 ∈ J∗—this is indeed the
case.

By use of a counterexample we show that the Kemeny-Nash rule Fkn does not satisfy
(SHE).

Proposition 3.17. The Kemeny-Nash rule Fkn does not satisfy (SHE).
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3.3. Axiomatic Properties of the Kemeny-Nash Rule

Proof. We provide a counterexample. Consider the scenario (Φ,Γin,Γout,J) with the
agenda Φ based on the pre-agenda Φ+ = {φ1, φ2, φ3φ4, φ5φ6, φ7} containing seven
propositional variables. The input and output constraint Γin = Γout = c1 ∧ c2 ∧ c3
coincide, and are defined as the conjunction of the following clauses:

c1 = (φ1 ∨ φ2 ∨ φ3) ∨ (¬φ1 ∧ ¬φ2 ∧ ¬φ3 ∧ ¬φ4 ∧ ¬φ5)

c2 = ¬φ1 ∨ φ4 ∨ ¬φ6

c3 = ¬φ1 ∨ φ5 ∨ ¬φ6

The profile J = {J1
1 , J

1
2} contains two judgements:

J1 = {φ1, φ2, φ3, φ4, φ5, φ6, φ7}
J2 = {¬φ1,¬φ2,¬φ3,¬φ4,¬φ5, φ6, φ7}

In addition, we define the feasible judgements J, J ′ ∈ J (Φ,Γout) as follows:

J = J1

J ′ = {φ1, φ2, φ3¬φ4,¬φ5¬φ6, φ7}

Now, we have: Agr(J1, J) > Agr(J1, J
′) > Agr(J2, J

′) > Agr(J2, J) and profile J
satisfies the conditions for (SHE). However, it can be verified that F (J) = {J1, J2}.5
That is, judgement J ∈ F (J) is selected by the Kemeny-Nash rule while judgement
J ′ /∈ F (J) is not, which is prohibited by the (SHE) requirement.

We use the foregoing counterexample again, to show the parameterised Kemeny-
Nash rule F λ

kn does not satisfy (SHE).

Proposition 3.18. The parameterised Kemeny-Nash judgement aggregation rule
F λ
kn does not satisfy (SHE).

Proof. We use the scenario (Φ,Γin,Γout,J) that is defined in the proof of Propo-
sition 3.17. We established that given profile J , (SHE) demands that if judge-
ment J ∈ F (J) is selected by rule F , then the rule should return judgement
J ′ ∈ F (J) as well. We found that the Kemeny-Nash rule Fkn does not meet
this demand; the Kemeny-Nash score is maximised by judgements J1 and J2, with
Skn(J , J1) = Skn(J , J2) = 14. We now show that introducing the parameter

5We omit the derivation of the collective judgements. They can be obtained by iterating through
the possible Kemeny-Nash scores Skn(J , J

∗) in the following way. We start by asking whether there
is a feasible judgement J∗ ∈ J (Φ,Γout) such that Agr(Ji, J

∗) = 7, for some judge i ∈ {1, 2}. As
the judgements J1 and J2 differ on five issues; the other agent, denote it as J−i, has Agr(J−i, J

∗) ∈
{0, 1, 2}. We observe that both judgements J1 and J2 have a Kemeny-Nash score of 7·2 = 14 (which
is maximal under the constraint that Agr(Ji, J

∗) = 7 for some judge i ∈ {1, 2}). Subsequently, we
look for a judgement J∗ ∈ J (Φ,Γout) such that (i) Agr(Ji, J

∗) = 6 for some judge i ∈ {1, 2}, and
(ii) Skn(J , J

∗) ≥ 14. Using the same steps as before, we conclude that such a judgement J∗ does
not exist. After all possible configurations of individual agreements are exhausted, we conclude
that F (J) = {J1, J2}.
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3.3. Axiomatic Properties of the Kemeny-Nash Rule

0 < λ ≪ 1 does not effect the set of collective judgements; i.e., we show that
Fkn(J) = F λ

kn(J), for all 0 < λ≪ 1.
For all judgements J∗ ∈ J (Φ,Γout), with J

∗ /∈ {J1, J2}, that are not antipodal to
any of the judgements contained in profile J we have: Skem(J , J

∗) = Sλ
kn(J , J

∗, λ),
for all 0 < λ ≪ 1. Moreover, for a judgement J̃ ∈ {J1, J2} that is antipodal to a
judgement in the profile we have: Sλ

kn(J , J̃ , λ) ≤ 7λ < 14, for all 0 < λ≪ 1.

Pigou-Dalton principle. The Pigou-Dalton principle (PD) was originally formu-
lated in the context of welfare economics, it is studied by (a.o.) Dubey (2016) and
Hara et al. (2008). In welfare economics, (PD) is a requirement on the possibility
of inequality reducing trades. In particular, it demands that the collective welfare
of an allocation a—in which an inequality-reducing transfer between two agents is
possible—is weakly lower than that of allocation a′ (obtained after the transfer).

Below we consider the formulation by Botan et al. (2023), which is adapted to
the framework of judgement aggregation.

Pigou-Dalton principle (PD): Let J ∈ J (Φ,Γin)
n be an arbitrary profile with n

judges, including judges i, j ∈ N , and consider a pair J, J ′ of complete and
complement-free judgements. The principle restricts the behaviour of a rule
F on any profile J that satisfies the following conditions:

Agr(Ji, J) > Agr(Ji, J
′) ≥ Agr(Jj , J

′) > Agr(Jj , J) (3.10)

Agr(Ji, J) + Agr(Jj , J) = Agr(Ji, J
′) + Agr(Jj , J

′) (3.11)

Agr(Ji′ , J) = Agr(Ji′ , J
′) for all i′ ∈ N \ {i, j} (3.12)

For any profile J ∈ J (Φ,Γin)
n that satisfies these conditions, the Pigou-Dalton

principle requires that J ∈ F (J) implies J ′ ∈ F (J).

Clearly, the Kemeny rule Fkem satisfies (PD); it is required that the Kemeny score
of judgement J (before the transfer) is identical to the score of judgement J ′ (after
the transfer). For the sake of completeness, we provide a formal proof.

Proposition 3.19. The Kemeny rule Fkem satisfies (PD).

Proof. Let J ∈ J (Φ,Γin)
n be a profile with n judges, including judges i and j. If

Equations 3.10-3.12 are satisfied for feasible judgements J, J ′ ∈ J (Φ,Γout), we have:

Skem(J , J) = Skem(J , J
′) + Agr(Ji, J) + Agr(Jj , J)−Agr(Ji, J

′)−Agr(Jj , J
′)

= Skem(J , J
′)

That is, if judgement J ∈ Fkem(J) is returned by the Kemeny rule, then judgement
J ′ ∈ Fkem(J) is also returned.

By using a proof by contradiction we show that the Kemeny-Nash rule Fkn satisfies
(PD).
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3.3. Axiomatic Properties of the Kemeny-Nash Rule

Proposition 3.20. The Kemeny-Nash rule Fkn satisfies (PD).

Proof. Given a profile J ∈ J (Φ,Γin)
n with n judges, including judges i, j ∈ N , and

feasible judgements J, J ′ ∈ J (Φ,Γout), such that Equations 3.10-3.12 are fulfilled,
we derive Skn(J , J

′) ≥ Skn(J , J).

For the sake of contradiction, assume that Skn(J , J) > Skn(J , J
′). Using Equa-

tion 3.12 we obtain:

Agr(Ji, J) ·Agr(Jj , J) > Agr(Ji, J
′) ·Agr(Jj , J ′)

Which we can rewrite as:

log Agr(Ji, J) + logAgr(Jj , J) > log Agr(Ji, J
′) + logAgr(Jj , J

′)

Let T = Agr(Ji, J) + Agr(Jj , J). We define dA = Agr(Ji, J) − 1
2T > 0, and dA′ =

Agr(Ji, J
′)− 1

2T > 0; by Equation 3.10 we have dA > dA′. Using Equation 3.10 we
obtain:

log

(
1

2
T + dA

)
+ log

(
1

2
T − dA

)
> log

(
1

2
T + dA′

)
+ log

(
1

2
T − dA′

)
From which we derive:

log(−(dA)2) > log(−(dA′)2)

As dA > dA′, the above expression is a contradiction. We conclude that Skn(J , J
′) ≥

Skn(J , J); i.e., if judgement J ∈ Fkn(J) is returned by the Kemeny-Nash rule, then
judgement J ′ ∈ Fkn(J).

We show that under the restriction that 0 < λ ≤ 1
2 , the parameterised Kemeny-Nash

rule satisfies (PD). As λ should be a (very) small non-zero parameter, we are satisfied
with this result, and do not consider the cases that λ > 1

2 .

Proposition 3.21. Under the restriction of 0 < λ ≤ 1
2 , the parameterised Kemeny-

Nash rule F λ
kn satisfies (PD).

Proof. We show that the proposition is true for any scenario (Φ,Γin,Γout,J) in which
the agenda is based on the pre-agenda that contains m propositional variables, the
input and output constraint are trivially true (i.e., Γin = Γout = ⊤, and the profile
contains two antipodal judgements. From the argument it is clear that allowing
other agendas, constraints, or profiles does not effect the validity of the argument.

Take arbitrary m ∈ N. Consider the scenario (Φ,Γin,Γout,J) in which the agenda Φ
is based on the pre-agenda Φ+ = {φ1, . . . , φm} containing m propositional variables;
the input and output constraint Γin = Γout = ⊤ are trivially satisfied. Further let

the profile J = {J1
in, Jin

1
contain two judgements that are antipodal.
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If (PD) is violated there must be judgements J, J ′ ⊆ ϕ such that:

Agr(overlineJin, J) > Agr(overlineJin, J
′) ≥ Agr(Jin, J

′) > Agr(Jin, J)

Because the Kemeny-Nash rule satisfies (PD) (Proposition 3.20), we must have
Agr(Jin, J) = 0; thus, J = overlineJin. Let us try to construct the judgement J ′

that satisfies the conditions to violate (PD). To minimise the parameterised Kemeny-
Nash score Sλ

kn(J , J
′) we minimise the product Agr(overlineJin, J

′) · Agr(Jin, J ′);
i.e., Agr(Ji, J

′) = Agr(Ji, J) − 1. Any judgement J ′ that is obtained from judge-
ment overlineJin by ‘flipping’ one accepted judgement (i.e., any judgement with
|J ′ ∩ overlineJin| = m− 1) satisfies this condition.

Now, for the parameterised Kemeny-Nash scores we have:

Sλ
kn(J , J) = m · λ

Sλ
kn(J , J

′) = m− 1

That is, for λ > m−1
m —we have J ∈ F λ

kn(J), while J
′ /∈ F λ

kn(J)—we cannot construct
a judgement J ′ such that(PD) is violated.

The reader can verify that introducing non-trivial constraints—or allow more
than two judgements in the profile, or taking non-antipodal judgements that are the
relevant judgements in the profile (there may only be two judgements for which the
agreements differ)—does not effect the validity of the proof

3.4 Concluding Remarks

In this chapter we studied the axiomatic properties of the (parameterised) Kemeny-
Nash rule.

Nehring and Pivato (2022) showed that the Kemeny rule is characterised by the
following set of axioms: {(C), (R),(ESME)}. They further showed that (JC) and (C)
together imply (R), allowing an alternative characterisation. We considered the four
different axioms one-by-one. We showed the the Kemeny-Nash rule satisfies none of
the axioms, while the parameterised variant satisfies (C), (R) and (JC). The results
indicate that the axiomatic properties of the parameterised Kemeny-Nash rule are
significantly better than those of the Kemeny-Nash rule.

Further, we saw that neither variants of the Kemeny-Nash rule satisfied (MP), an
axiom that is conventionally seen as a fundamental requirement. We studied two
fairness axioms that are widely used in the literature ((SHE) and (PD)), on the basis
of these axioms we cannot distinguish the Kemeny rule from the Kemeny-Nash rule
(or the parameterised Kemeny-Nash rule); this is a negative result.
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Chapter 4

Theoretical Analysis II:
Computational Complexity

After the seminal work of Arrow (1951) social choice theory was mainly concerned
with studying the axiomatic properties of procedures (both existing and newly in-
troduced) for different kinds of collective decision problems. Initially researchers
neglected whether the procedures they studied (or introduced) were feasible in prac-
tice; they overlooked that the computational effort that was needed to use the pro-
cedures was often restrictive, and sometimes even prohibitive (Brandt et al., 2016).
This changed over the course of the last fifty years, in which social choice theo-
rists became increasingly aware of the computational resources needed to apply a
procedure in practice. Around the turn of the century this shift culminated in the
emergence of a new research area: computational social choice.1

In computational social choice, an essential aspect of a collective decision problem
procedure, is how computationally challenging it is to determine the outcome—
given an instance of the collective decision problem—also referred to as the outcome
determination problem. More precisely, for a particular aggregation rule F , the
outcome determination problem is to compute a collective judgement J ∈ F (J),
given an input scenario (Φ,Γin,Γout,J). In this chapter we study the outcome
determination problem for the Kemeny, the Kemeny-Nash and the parameterised
Kemeny-Nash rule.

In Section 4.1 we elaborate on the formal definition of the outcome determination
problem in judgement aggregation. Section 4.2 introduces basic machinery from
computational complexity theory that we use to obtain our results. Finally, in
Section 4.3, we present our results.

We assume the reader has some acquaintance with the very basic notions of
complexity theory; e.g., the complexity classes P and NP, a deterministic Turing
machine as a model for computation and a polynomial-time (many-one) reduction.
For more information, we recommend the textbook by Arora and Barak (2009).

1The term ‘computational social choice’, as a means to delineate a particular research area, was
first used in 2006 (Brandt et al., 2016).
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4.1. Outcome Determination in Judgement Aggregation

4.1 Outcome Determination in Judgement Aggregation

In this section we take a closer look at the outcome determination problem in judge-
ment aggregation. In particular, we define two decision problems (i.e., problems
that have a yes or no answer) that encompass an upper and lower bound on the
complexity of the outcome determination problem.

The content of this section heavily relies on the work of Endriss et al. (2020).
In particular, Endriss et al. (2020) studied the different formalisations of the out-
come determination problem that have been studied in the literature. From the
corresponding decision problems, they singled out the most general variant, as well
as the most restricted variant. The former problem is used to establish an upper
bound, while the latter is used to derive a lower bound on the complexity of the
outcome determination problem. The decision problems with which we conclude
this section, are the ones that were singled out by the authors.

For a fixed aggregation rule F , the outcome determination problem is (informally)
defined as: ‘Given an input scenario (Φ,Γin,Γout,J), also referred to as an instance,
compute a collective judgement J ∈ F (J).’2 Clearly, this problem cannot be an-
swered with ‘yes’ or ‘no’; on the face of it, it is not a decision problem.

However, for the purpose of studying the complexity, we may formulate a decision
problem that can be used to solve the original problem, if we were allowed to make
multiple queries. Then, the complexity of the original problem is upper bounded
by the complexity of querying the formulated decision problem multiple times (as
many times as is necessary to solve the original problem).

Example 4.1. Suppose we have a scenario (Φ,Γin,Γout,J) with |Φ+| = m issues
in the pre-agenda. To compute a collective judgement, we could iterate over all
complete and complement-free judgements J and query: ‘Is judgement J ∈ F (J) a
collective judgement?’ With at most 2m queries we would find (or rather, stumble
upon) a valid solution. △

The approach above works, but is uninformed; the large number of queries (ex-
ponential in the size of the input instance) leads to an upper bound that is not tight.
Our aim then, is to formulate a more informed decision problem that, in a similar
way as above, can be used to solve the original problem. Moreover, to describe the
complexity of a particular problem, it is customary to derive both an upper and a
lower bound on the complexity; for the lower bound, we introduce a second decision
problem.

We denote the problem involving the upper bound as OutDet(F ). Important is
that, given any judgement aggregation scenario (Φ,Γin,Γout,J), we can construct
a collective judgement J ∈ F (J) by solving OutDet(F ) a polynomial number of
times.3 As we indicated in Chapter 2, the judgement aggregation framework we have

2This problem has been formalised in various ways; for the different formal definitions we refer
to Endriss et al. (2020).

3Polynomial in the size of the input scenario (Φ,Γin,Γout,J).
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4.1. Outcome Determination in Judgement Aggregation

been using, is the most general framework that is known in the literature; problem
OutDet(F ) should work for any scenario that can be described in this framework.

The problem that is used to derive a lower bound is denoted as OutDet
∗
(F ). For

this problem, we require that there is no scenario (Φ,Γin,Γout,J) for which we can
construct a collective judgement J ∈ F (J) by solving OutDet

∗
(F ) a polynomial

number of times.4 In order to establish a lower bound on the complexity of the
outcome determination problem we should use the most restricted judgement aggre-
gation framework, rather than the most general one.

The most restricted framework that appears in the literature is studied by (a.o.)
Grandi (2012) and Grandi and Endriss (2013). In this framework the agenda Φ ⊆ L
only contains literals; further, there is a single constraint (i.e., Γin = Γout) that only
contains variables that appear in the agenda Φ. The input space of OutDet

∗
(F )

consists of all scenarios that meet these restrictions.

The minimal conditions we outlined above do not determine the decision problems
directly; in the judgement aggregation literature, multiple variants have been pro-
posed. Endriss et al. (2020) have singled out the formulations that yield solutions
that are universally valid. That is, for the lower boundOutDet

∗
(F ), they identified

the most restricted variant of the outcome determination problem, in the judgement
aggregation literature. Conversely, for the upper bound OutDet(F ), the most
general decision problem was specified. We provide the formal definitions below.

OutDet(F )
Instance: An agenda Φ, constraints Γin and Γout, a profile J ∈ J (Φ,Γin)

n,
and subsets L,L1, . . . , Lu ⊆ Φ of the agenda, for u ≥ 0.
Question: Is there a judgement set J∗ ∈ F (J) such that L ⊆ J∗ and
Li ⊈ J∗ for each i ∈ {1, . . . , u}?

OutDet
∗
(F )

Instance: An agenda Φ, constraints Γin and Γout, a profile J ∈ J (Φ,Γin)
n,

and a formula φ∗ ∈ Φ from the agenda.
Question: Is there a judgement set J∗ ∈ F (J) such that φ∗ ∈ J∗?

Note that OutDet(F ) can, indeed, be used to solve the original problem of
computing a collective judgement. Given any scenario (Φ,Γin,Γout,J) we con-
struct a collective judgement J∗ ∈ F (J) as follows. We fix an arbitrary ordering
φ1, . . . , φm ∈ Φ+ of the issues in the pre-agenda. Starting from scratch, for the
first issue φ1, we compute whether there is a collective judgement J∗ ∈ F (J) such
that {φ1} ⊆ J∗ (i.e., we set L = {φ1} and u = 0). If the answer is ‘yes’, our
next step is to compute whether there is a collective judgement J∗ ∈ F (J) such

4If we allow the existence of a scenario (Φ,Γin,Γout,J) that can be solved with OutDet
∗
(F ),

by making a polynomial number of queries, then we would have to establish that there is no other
scenario (Φ′,Γ′

in,Γ
′
out,J

′) for which it is strictly easier to compute a collective judgement J ∈ F (J ′).
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that {φ1, φ2} ⊆ J∗; otherwise, if ‘no’, we continue by evaluating whether there is
a collective judgement J∗ ∈ F (J) such that {∼φ1} ⊆ J∗. Continuing this way, we
either arrive at a complete collective judgement J∗ ∈ F (J), or decide that such a
judgement does not exist, in at most 2m = |Φ| queries. That is, we can solve the
original problem, by solving the decision problem OutDet(F ) a polynomial num-
ber of times; the latter problem correctly encompasses the complexity of the former
problem.

Considering the problem for the lower bound, OutDet
∗
(F ), we note that it

cannot be used to construct a collective judgement. That is, the problem indeed
encompasses a lower bound on the complexity of the outcome determination prob-
lem. On the other hand, it can be recognised that OutDet

∗
(F ) is a special case of

OutDet(F ). Although OutDet
∗
(F ) cannot be used to solve the original problem

entirely, it is reasonable to suggest that it captures an important aspect of the sought
complexity, which increases the likelihood that we arrive at a tight lower bound.

4.2 Background

Computational complexity theory is the formal study of the resources required to
solve computational problems. In this section we describe the computational com-
plexity theory tools that we use to obtain our results (which are presented in the
next section). We start with the definitions of two auxiliary notions, those of a truth
assignment and of an alphabet. To continue, we recapitulate fundamental notions
in complexity theory, e.g., complexity classes, completeness and polynomial-time
many-one reductions. We assume the reader to have seen these concepts before.
Finally, we describe relevant complexity classes, and corresponding complete prob-
lems.

Let Σ denote a finite set of symbols, or alphabet. A string (or instance) over alpha-
bet Σ is a concatenation of alphabet symbols. We use Σn and Σ∗ to denote the set
of all strings with length n and all strings of finite length, respectively. A formal
language L over an alphabet Σ is a subset L ⊆ Σ∗ of strings. In the previous section
we described decision problems informally as problems that are answered with ‘yes’
or ‘no’. Using formal notation, a decision problem is defined as a language L ⊆ Σ∗,
over some alphabet Σ, specifying the positive instances.

For a propositional formula φ, we denote the set of all variables that appear
in the formula as var(φ). By a slight abuse of notation, for a set of propositional
formulas S, we use var(S) to denote the set of all variables var(S) =

⋃
φ∈S var(φ),

that appear in any of the formulas. A (partial) truth assignment α : var(φ) → {0, 1}
maps variables to truth values; α(φ) is 0 if φ is false, and 1 if φ is true. With φ[α]
we denote the formula that is obtained after instantiating the variables that are
assigned by α with their assigned truth value α(φ). Again, by a slight abuse of
notation, for any assignment α : var → {0, 1} that is complete—i.e., all variables in
var(φ) are designated by α—we let φ[α] denote the truth value of formula φ.
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In computational complexity we distinguish different complexity classes. A com-
plexity class C is a collection of computational problems that are relatable in terms
of complexity, for some bounded resource (such as time or memory space). We only
consider complexity classes of decision problems. Typical examples are the classes
P and NP, which contain the decision problems that can be decided and verified by
a polynomial-time deterministic Turing machine, respectively.

A problem P is said to be hard for class C if, in some mathematical well-defined
way, there is no problem Q in the class C that is harder than problem P . For
decision problems hardness is established via many-one reductions. A many-one
reduction maps instances of some decision problem L1 to instances of another deci-
sion problem L2, such that the reduced instance is in language L2 if and only if the
original instance is in language L1. Of particular importance are reductions that are
polynomial-time computable.

Formally, a polynomial-time many-one reduction from problem L1 to problem L2

is a polynomial-time computable function f : Σ∗ → Σ∗ such that x ∈ L1 if and only
if f(x) ∈ L2. If problem L1 is (polynomial-time) reducible to problem L2—denoted
as L1 ≤p L2—having an efficient algorithm to decide language L2 implies that we can
at least efficiently decide all instances of language L1 (and possibly other instances as
well). In other words, we establish that problem L2 is at least as hard as problem L1.
All reductions we describe are polynomial-time many-one reductions (and hereafter
we often refer to them simply as reductions).

A problem is complete for class C if it is both contained in class C, and hard
for class C. The satisfiability problem Sat, asking whether a Boolean formula is
satisfiable, is a classic example of an NP-complete problem.

Sat
Instance: A Boolean formula φ in conjunctive normal form.
Question: Is there a truth assignment that satisfies φ?

Regarding theoretic results, we distinguish membership results from hardness
results. A membership result, stating that a particular problem P is in a class C,
establishes an upper bound on the complexity of a problem. On the other hand,
hardness results, stating that a particular problem P is hard for class C, entail a
lower bound on the complexity of problem P .

Besides the classes P and NP, two classes that will be relevant are Θp
2 and ∆p

2. The
class ∆p

2 contains all decision problems that can be decided by a polynomial-time
deterministic Turing machine that has access to an NP oracle—the oracle can solve
any instance of the particular NP problem in a single time step. The class Θp

2 is a
subset of ∆p

2, for which the number of oracle queries is restricted to be logarithmic
in the size of the input. That is, Θp

2 contains the problems that can be solved
by a polynomial-time deterministic Turing machine that can query an NP oracle
a logarithmic number of times. Accordingly, the class Θp

2 may also be denoted as
PNP[log], while ∆p

2 can be denoted as PNP.
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The following problem is known to be complete for Θp
2 (Endriss et al., 2020).5

Max-Model
Instance: A satisfiable propositional formula φ, and a variable x∗ ∈ var(φ).
Question: Is there a model α of φ that sets x∗ to true, such that there is
no other model of φ that sets more variables in var(φ) to true than α?

To conclude this section, we give another problem that is used in the derivation of
our results.

Agr-k
Instance: An agenda Φ, constraints Γin and Γout, a profile J ∈ J (Φ,Γin)

n,
and an integer k ∈ N.
Question: Is there a feasible judgement set J∗ ∈ J (Φ,Γout) such that∑

Jin∈J (J(Jin) ·Agr(Jin, J∗)) ≥ k?

Clearly this problem is in NP; a certificate can be checked in polynomial time.

4.3 Results

Here we present our computational complexity results for the outcome determination
problem for the Kemeny, for the Kemeny-Nash, and for the parameterised Kemeny-
Nash rule. For the Kemeny rule, we recapitulate the proof by Endriss et al. (2020),
showing that the outcome determination problem is Θp

2-complete. For both the
Kemeny-Nash and parameterised Kemeny-Nash rule we establish that the outcome
determination problem is in ∆p

2 and hard for Θp
2. That is, for the Kemeny-Nash and

the parameterised Kemeny-Nash rule, the derived lower and upper bound on the
complexity of the outcome determination problem do not coincide, and we have no
guarantee that the established bounds are tight.

4.3.1 Outcome Determination for the Kemeny Rule

To start, we reiterate the proof by Endriss et al. (2020), and show that the outcome
determination problem for the Kemeny rule is in Θp

2.

5In the literature Max-Model is commonly formulated slightly different, accepting any propo-
sitional formula φ as valid input (see, e.g., Krentel (1988), Wagner (1990), and Chen and Toda
(1995)). With a simple reduction we can show that the problem, as we define it here, is not easier
than its more common formulation; which guarantees that our formulation is Θp

2-complete.
Let Max-Model∗ denote the common formulation of the problem, which differs from our formu-

lation only in that it accepts any propositional formula φ as input. We show that Max-Model∗ is
polynomial-time reducible to Max-Model. For any propositional formula φ, we define φ′ as the
disjunction of φ and the conjunction of the negations of all variables that appear in φ. Thus, we
define: φ′ = φ∨

∧
x∈var(φ) ¬x. As φ′ is satisfiable by construction, (φ′, x∗) is a well-formed instance

for Max-Model. Now, any truth assignment that sets at least one variable to true is a model for
φ′ if and only if it is a model for φ; the reduction works.
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Theorem 4.1 (Endriss et al., 2020). The outcome determination problem for the
Kemeny rule Fkem is in Θp

2.

Proof. Using the general judgement aggregation framework (with arbitrary con-
straints), we show that OutDet(Fkem) is in Θp

2 (see Section 4.1). We do this by
describing a polynomial-time algorithm that has access to an NP oracle, and solves
the problem with at most O(log |Φ+|+ log n) queries.

By querying the oracle, the algorithm first checks if there exists a feasible judge-
ment J∗ ∈ J (Φ,Γout) such that the Kemeny score Skem(J , J) ≥ k exceeds a given
value k. This is an NP problem; by selecting an NP-complete problem for the oracle,
we can solve any instance of the problem in a single time step. For an arbitrary fea-
sible judgement J∗ ∈ J (Φ,Γout) and any profile J ∈ J (Φ,Γin)

n, the Kemeny score
is upper bounded by Skem(J , J

∗) ≤ n · |Φ+|. Using binary search we can determine
the maximal Kemeny score kmax with O(log |Φ+|+ log n) queries.

We now solve the original decision problem with one more query: ‘Is there a
judgement set J∗ ∈ J (Φ,Γout) such that Skem(J , J

∗) = kmax, L ⊆ J∗, and Li /∈ J∗

for all i ∈ {1, . . . , u}?’ This problem is in NP, and any instance can be solved with
a single oracle query. The answer to this final question is ‘yes’ if and only if such
a feasible judgement J∗ exists. The algorithm runs in polynomial time, queries the
oracle at most O(log |Φ+|+ log n) times, and correctly solves the problem. Thereby
we establish that the problem is in Θp

2.

To continue, we present the proof by Endriss et al. (2020), showing that the outcome
determination problem for the Kemeny rule Fkem is hard for Θp

2.

Theorem 4.2 (Endriss et al.,2020). The outcome determination problem for the
Kemeny rule Fkem is hard for Θp

2.

Proof. Using the restricted judgement aggregation framework—in which the input
and output constraint coincide, and solely contain propositional variables that ap-
pear in the agenda—we show that OutDet

∗
(Fkem) is hard for Θp

2 (see Section 4.1).
We construct a polynomial-time reduction from Max-Model (see Section 4.2) to
OutDet

∗
(Fkem).

Let (ψ, x∗), with var(ψ) = {x1, . . . , xn}, be any instance of Max-Model. With-
out loss of generality, we let x∗ = x1. We use the following reduction to obtain an
instance (Φ,Γin,Γout,J , φ

∗) of the outcome determination problem OutDet
∗
(Fkem)

for the Kemeny rule.
To begin, we introduce n(n + 1) propositional variables zi,j , for all 1 ≤ i ≤ n

and 1 ≤ j ≤ n+ 1. We define the agenda Φ as follows:

Φ = {xi,¬xi, zi,j ,¬zi,j | 1 ≤ i ≤ n, 1 ≤ j ≤ n+ 1}

Next, we define the following input and output constraints:

Γin = Γout =
∨

1≤i≤n

 ∧
1≤j≤n+1

zi,j

 ∨

ψ ∧
∧

1≤i≤n

1≤j≤n+1

¬zi,j
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J J1 J2 · · · Jn−1 Jn m(J)

x1 0 1 1 · · · 1 1
x2 1 0 1 · · · 1 1
...

...
. . .

...
...

xn−1 1 · · · 1 0 1 1
xn 1 · · · 1 1 0 1

z1,1 1 0 0 · · · 1 0
z1,1 0 1 0 · · · 1 0
...

...
. . .

...
...

zn−1,1 0 · · · 0 1 0 0
zn,1 0 · · · 0 0 1 0
...

...
...

z1,n+1 1 0 0 · · · 0 0
z2,n+1 0 1 0 · · · 0 0

...
...

. . .
...

...
zn−1,n+1 0 · · · 0 1 0 0
zn,n+1 0 · · · 0 0 1 0

Figure 4.1: Construction of the profile J in the proof of Theorem 4.2. Figure taken
from Endriss et al. (2020).

We define the profile containing |J | = n judgements as illustrated in Figure 4.1.
Lastly, we let φ∗ = x1.

We explain the idea behind the reduction below. First, we note that for any instance
(Φ,Γin,Γout,J , φ

∗) that is produced with the reduction, and any feasible judgement
J∗ ∈ J (Φ,Γout), the Kemeny score Skem(J , J

∗) solely depends on the intersection
J∗ ∩ m(J). In particular, for any two issues φ,φ′ ∈ m(J) in the majoritarian
judgement we have |NJ

φ | = |NJ
φ′ | = n− 1, and we can express the Kemeny score as

follows:

Skem(J , J
∗) = |J∗ ∩m(J)| · (n− 1) + |J∗ \m(J)|

Consequently, for feasible judgements J∗, J ′ ∈ J (Φ,Γout), we have Skem(J , J
∗) ≥

Skem(J , J
′) if and only if |J∗ ∩ m(J)| ≥ |J ′ ∩ m(J)|. That is, the Kemeny rule

selects the feasible judgements that maximise the intersection with the majoritarian
judgement m(J).

Now, the idea behind the reduction is as follows. Again, let (ψ, x∗), with var(ψ) =
{x1, . . . , xn}, be an arbitrary instance of Max-Model, and let (Φ,Γin,Γout,J , φ

∗)
denote the reduced instance. If the collective judgement does not satisfy ψ, then
it must accept n + 1 variables

∧
1≤j≤n+1 zi,j , for some 1 ≤ i ≤ n. That is, any

collective judgement that does not satisfy ψ must deviate from the majoritarian
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judgement m(J) on at least n+1 issues. On the other hand, any feasible judgement
that satisfies ψ can deviate from the majoritarian judgement m(J) on at most n
issues—the number of variables that appear in ψ.

Thus, for any feasible judgement that is consistent with ψ, the Kemeny score is
strictly higher than it is for any judgement that is not consistent with ψ. Further,
the more variables xi ∈ var(ψ) that are collectively accepted, the higher the Kemeny
score. Intuitively it is clear that the collective judgements corresponds to a maximal
models (i.e., maximal number of variables is set to true) for ψ.

To make this precise, we show that for any instance (ψ, x∗) of Max-Model, the
instance is a positive instance if and only if the reduced instance (Φ,Γin,Γout,J , φ

∗)
is a positive instance of OutDet

∗
(Fkem). Concretely, there exists a model α :

var(ψ) → {0, 1} that sets (i) a maximal number of variables to true, and (ii) sets
variable x1 to true, if and only if there exists a collective judgement J∗ ∈ Fkem(J)
that accepts issue φ∗ ∈ J∗.

To begin, we prove that for any positive instance (ψ, x∗) of Max-Model, with
var(ψ) = {x1, . . . , xn} and φ∗ = x1, the reduced instance (Φ,Γin,Γout,J , φ

∗) is in
OutDet

∗
(Fkem). Suppose there is a truth assignment α : var(ψ) → {0, 1} that

(i) sets a maximal number of variables to true, and (ii) sets x1 to true. Consider
the following feasible judgement: J∗ = {xi | 1 ≤ i ≤ n, α(xi) = 1} ∪ {¬xi | 1 ≤
i ≤ n, α(xi) = 0} ∪ {¬zi,j | 1 ≤ i ≤ n, 1 ≤ j ≤ n + 1}. We show that judgement
J∗ ∈ Fkem(J) is a collective judgement.

For the sake of contradiction, suppose there exists a feasible judgement J ′ ∈
J (Φ,Γout) such that |J ′ ∩m(J)| > |J∗ ∩m(J)|. Since judgement J ′ ∈ J (Φ,Γout) is
feasible, we have either (i) zi,j ∈ J ′, for some 1 ≤ i ≤ n, and for all 1 ≤ j ≤ n + 1,
or (ii) J ′∪ψ is satisfiable and ¬zi,j ∈ J ′, for all 1 ≤ i ≤ n, and all 1 ≤ j ≤ n+1. As
ψ is satisfiable by definition, we can rule out the former option: if (i), judgement J ′

must deviate from m(J) on at least n+1 issues, while (ii) implies that judgement J ′

deviates from m(J) on at most n issues. Thus, J ′ ∪ ψ is satisfiable.

Now, consider the assignment α′ : var(ψ) → {0, 1} that is defined as follows:
α′(xi) = 1 if xi ∈ J ′, and α′(xi) = 0 otherwise, for all 1 ≤ i ≤ n. Assignment α′

satisfies ψ and sets more variables to true than assignment α; this contradicts our
assumption that α sets a maximal number of variables to true.

We conclude that the existence of a model α—that sets a maximal number of
variables in var(ψ) to true and that sets x1 to true—implies that there is a collective
judgement J∗ ∈ Fkem(J) that accepts issue φ

∗ ∈ J∗.

We now show that for any instance (Φ,Γin,Γout,J , φ
∗), if there exists a collective

judgement J∗ ∈ Fkem(J) that accepts issue φ
∗, then there is a model α : var(ψ) →

{0, 1} that sets a maximal number of variables to true and sets x1 to true. Assume
that there exists a collective judgement J∗ ∈ Fkem(J) that accepts issue φ∗ ∈ J∗.
Examine the truth assignment α : var(ψ) → {0, 1} that is defined as: α(xi) = 1 if
xi ∈ J∗ and α(xi) = 0 otherwise, for all 1 ≤ i ≤ n. Since judgement J∗ ∈ J (Φ,Γout)
is feasible, it must be that either (i) zi,j ∈ J∗, for some 1 ≤ i ≤ n, and for all
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1 ≤ j ≤ n + 1, or (ii) J∗ ∪ ψ is satisfiable and ¬zi,j ∈ J∗, for all 1 ≤ i ≤ n, and all
1 ≤ j ≤ n + 1. As ψ is satisfiable by assumption, the former option can be ruled
out: if (i), judgement J∗ must deviate from m(J) on at least n + 1 issues, while
(ii) implies that judgement J∗ deviates from m(J) on at most n issues. Thus, we
establish that α satisfies ψ. Further, because x1 = φ∗ ∈ J∗, we know that α sets x1
to true. We demonstrate that there is no assignment α′ : var(ψ) → {0, 1} that sets
more variables to true than α.

To get a contradiction, we assume that there exists a truth assignment α′ :
var(ψ) → {0, 1} that sets more variables to true than α. Consider the following
feasible judgement: J ′ = {xi | 1 ≤ i ≤ n, α′(xi) = 1} ∪ {¬xi | 1 ≤ i ≤ n, α′(xi) =
0} ∪ {¬zi,j | 1 ≤ i ≤ n, 1 ≤ j ≤ n + 1}. For feasible judgement J ′ ∈ J (Φ,Γout)
we have |J ′ ∩m(J)| > |J∗ ∩m(J)|, which is contradictory to our assumption that
J∗ ∈ Fkem(J) is a collective judgement.

We conclude that α is a model for ψ that sets a maximal number of variables to
true and that sets x1 to true.

4.3.2 Outcome Determination for the Kemeny-Nash Rule

Continuing with the results for the Kemeny-Nash rule Fkn, we show that the outcome
determination problem is in ∆p

2.

Theorem 4.3. The outcome determination problem for the Kemeny-Nash rule Fkn

is in ∆p
2.

Proof. Using the general judgement aggregation framework (with arbitrary con-
straints), we show that OutDet(Fkn) is in ∆p

2 (see Section 4.1). The proof resem-
bles the proof of Theorem 4.1. We describe a polynomial-time algorithm that uses at
most O(n · log |Φ+|) queries to an NP oracle, and that correctly solves the problem.

By querying the oracle, we first check if there exists a feasible judgement J∗ ∈
J (Φ,Γout) such that the Kemeny-Nash score Skn(J , J) ≥ k exceeds a given value k.
This is an NP problem; by selecting an NP-complete problem for the oracle, we
can solve any instance in a single time step. For an arbitrary feasible judgement
J∗ ∈ J (Φ,Γout) and any profile J ∈ J (Φ,Γin)

n, the Kemeny-Nash score is upper
bounded by Skn(J , J

∗) ≤ |Φ+|n. Using binary search, we can determine the maximal
Kemeny-Nash score kmax with O(n · log |Φ+|) queries.

We now solve the original problem with one more query: ‘Is there a judgement
set J∗ ∈ J (Φ,Γout) such that Skn(J , J

∗) = kmax, L ⊆ J∗, and Li /∈ J∗ for all i ∈
{1, . . . , u}?’ This is an NP problem; any instance is solved with a single oracle query.
The answer to this final question is ‘yes’ if and only if such a feasible judgement J∗

exists. Thus, the algorithm runs in polynomial time, queries the oracle at most
O(n·log |Φ+|) times, and correctly solves the problem. We conclude that the problem
is in ∆p

2.

Next, we show that the outcome determination problem for the Kemeny-Nash rule
Fkn is hard for Θp

2.
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Theorem 4.4. The outcome determination problem for the Kemeny-Nash rule Fkn

is hard for Θp
2.

Proof. Using the restricted judgement aggregation framework—in which the input
and output constraint coincide, and solely contain propositional variables that ap-
pear in the agenda—we show that OutDet

∗
(Fkn) is hard for Θp

2 (see Section 4.1).
We provide a polynomial-time reduction from Max-Model (see Section 4.2) to
OutDet

∗
(Fkn). The reduction is equivalent to the reduction that we used for the

Kemeny rule, in the proof of Theorem 4.2. In particular, we show that for any
instance (Φ,Γin,Γout,J , φ

∗) that is produced with the reduction, the outcomes of
the Kemeny and the Kemeny-Nash rule coincide; i.e., Fkem(J) = Fkn(J).

Let (Φ,Γin,Γout,J , φ
∗) be any judgement aggregation scenario that is produced

with the reduction from the proof of Theorem 4.2. We show that any feasible
judgement J∗ ∈ J (Φ,Γout) is collectively accepted J∗ ∈ Fkem(J) by the Kemeny
rule if and only if the judgement J∗ ∈ Fkn(J) is collectively accepted by the Kemeny-
Nash rule.

For the forward direction, let judgement J∗ ∈ Fkem(J) be any collective judgement
that is selected by the Kemeny rule, further let J ′ ∈ J (Φ,Γout) be an arbitrary
feasible judgement. By the definition of the Kemeny rule we have:

∑
Jin∈J

(J(Jin) ·Agr(Jin, J∗)) ≥
∑
Jin∈J

(
J(Jin) ·Agr(Jin, J ′)

)
That is, the sum of individual agreements is maximised by judgement J∗. More-
over, for any two judgements Jin, J

′
in ∈ J contained in the profile, it holds that

|Agr(Jin, J∗)−Agr(Jin, J
∗)| ≤ 1. Thus, even if we neglect the output constraint Γout,

it is impossible to distribute the total agreement more equally over the individual
judgements. But then, by Equation 2.4, judgement J∗ ∈ argmax

J∈J (Φ,Γout)

∏
Jin∈J Skn(J , J)

is collectively accepted by the Kemeny-Nash rule.

For the other direction, assume that judgement J∗ ∈ Fkn(J) is collectively ac-
cepted by the Kemeny-Nash rule. Let J ′ ∈ Fkem(J) be an arbitrary feasible judge-
ment that is accepted by the Kemeny rule. For the sake of contradiction, assume that∑

Jin∈J (J(Jin) ·Agr(Jin, J∗)) <
∑

Jin∈J (J(Jin) ·Agr(Jin, J ′)). From the argument
above it is clear that

∏
Jin∈J (J(Jin) · Agr(Jin, J

′)) >
∏

Jin∈J (J(Jin) · Agr(Jin, J
∗)),

contradicting our assumption that J∗ ∈ Fkn(J) is collectively accepted by the
Kemeny-Nash rule.

We have shown that for any judgement aggregation scenario (Φ,Γin,Γout,J , φ
∗)

that is produced with the reduction, presented in the proof of Theorem 4.2, it
holds that Fkem(J) = Fkn(J) the outcomes of the Kemeny and Kemeny-Nash rule
coincide. From Theorem 4.2, it follows that the outcome determination problem
OutDet

∗
(Fkn) for the Kemeny-Nash rule is hard for Θp

2.
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4.3.3 Outcome Determination for the Parameterised Kemeny-Nash
Rule

To conclude, we present the results for the complexity of the outcome determination
problem in judgement aggregation for the parameterised Kemeny-Nash rule F λ

kn. We
start by showing that the problem is contained in ∆p

2.

Theorem 4.5. The outcome determination problem for the parameterised Kemeny-
Nash rule F λ

kn is in ∆p
2.

Proof. Using the general judgement aggregation framework (with arbitrary con-
straints), we show that OutDet(F λ

kn) is in ∆p
2 (see Section 4.1). The proof takes

after the proofs of Theorems 4.1 and 4.3. We describe a polynomial-time algorithm
that uses at most O (n(log |Φ+| − log λ)) queries to an NP oracle, and that correctly
solves the problem.

By querying the oracle, we check if there is a feasible judgement J∗ ∈ J (Φ,Γout)
such that the parameterised Kemeny-Nash score Sλ

kn(J , J) ≥ k exceeds a given
value k. This is an NP problem; by selecting an NP-complete problem for the
oracle, we can solve any instance in unit time. For an arbitrary feasible judgement
J∗ ∈ J (Φ,Γout) and any profile J ∈ J (Φ,Γin)

n, the parameterised Kemeny-Nash
score is upper bounded by Sλ

kn(J , J
∗) ≤ |Φ+|n. If none of the judgements in profile J

is antipodal to judgement J∗, i.e., if J∗ /∈ J , then the parameterised Kemeny-Nash
score is an integer value. Otherwise, the score is divisible by λn. This gives a
total of (|Φ+|n + 1) +

(
⌊λ−1|Φ+|⌋n

)
possible values for kmax. Consequently, using

binary search, the value of kmax can be determined with O (n(log |Φ+| − log λ))
oracle queries.

Again, we solve the original problem with one more query: ‘Is there a judgement
set J∗ ∈ J (Φ,Γout) such that Sλ

kn(J , J
∗) = kmax, L ⊆ J∗, and Li /∈ J∗ for all

i ∈ {1, . . . , u}?’ This is an NP problem that can be solved with a single oracle
query. The answer is ‘yes’ if and only if such a feasible judgement J∗ exists. Thus, the
algorithm runs in polynomial time, queries the oracle at most O (n(log |Φ+| − log λ))
times, and correctly solves the problem. Therefore the problem is in ∆p

2.

Regarding the lower bound on the complexity of the outcome determination problem,
we show that for the parameterised Kemeny-Nash rule this problem is hard for Θp

2.

Theorem 4.6. The outcome determination problem for the parameterised Kemeny-
Nash rule F λ

kn is hard for Θp
2.

Proof. Using the restricted judgement aggregation framework (input and output
constraint coincide, and solely contain propositional variables that appear in the
agenda), we show that OutDet

∗
(F λ

kn) is hard for Θp
2 (see Section 4.1). We provide

a polynomial-time reduction from Max-Model (see Section 4.2) to OutDet
∗
(F λ

kn).
The reduction we provide is the one that we already used for the Kemeny rule, in
the proof of Theorem 4.2. As we argued above—in the proof of Theorem 4.4—for
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any instance that is produced with this reduction, the outcomes of the Kemeny
rule coincide with the outcomes of the Kemeny-Nash rule. Here we show that, for
any such instance, the outcomes of the Kemeny-Nash rule and the outcomes of the
parameterised Kemeny-Nash coincide, too. Thereby we establish that the outcome
determination problem for the parameterised Kemeny-Nash rule is hard for Θp

2.

Let (Φ,Γin,Γout,J , φ
∗) be any judgement aggregation scenario that can be pro-

duced with the reduction presented in the proof of Theorem 4.2; we show that
Fkn(J) = F λ

kn(J). First note that for any feasible judgement J ′ ∈ J (Φ,Γout), the
parameterised Kemeny-Nash score Sλ

kn(J , J
′) ̸= Skn(J , J

′) is effected by λ, if and
only if the judgement J ′ ∈ J is antipodal to one of the judgements in the profile.

Now, let Jin ∈ J be any judgement that is contained in the profile. It is easy
to verify that for any judgement J ′

in ∈ J , contained in the profile, it holds that
Agr(J ′

in, Jin) ≤ 2(n + 2)—equality holds for any J ′
in ̸= Jin. On the other hand, we

know that for any judgement J∗ ∈ Fkn(J) that is selected by the Kemeny-Nash
rule it holds that Agr(J ′

in, J
∗) ≥ (n − 1)(n + 1). Thus, independent of the value

of 0 < λ ≪ 1, for all n > 3,6 and for all judgements J ′
in ∈ J contained in the

profile, we have: Agr(J ′
in, J

∗) > Agr(J ′
in, Jin). That is, for n > 3, the outcomes of

the Kemeny-Nash rule are not effected by introducing the parameter 0 < λ≪ 1.

We demonstrated that for any judgement aggregation scenario (Φ,Γin,Γout,J , φ
∗)

with n > 3, that can be constructed with the reduction in the proof of Theorem 4.2,
it holds that Fkn(J) = F λ

kn(J), the outcomes of the Kemeny-Nash and the param-
eterised Kemeny-Nash rule coincide. From Theorems 4.2 and 4.4, it follows that
the outcome determination problem OutDet

∗
(F λ

kn) for the parameterised Kemeny-
Nash rule is hard for Θp

2.

6Computational complexity studies the asymptotic behaviour of computational problems; it is
not a problem that the proof does not work for n ≤ 3.
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Chapter 5

Experimental Analysis

In the previous two chapters our approach was theoretical. In this chapter we study
the empirical properties of the (parameterised) Kemeny-Nash rule. The experimen-
tal approach may help us to uncover general, albeit not universal, patterns in the
outcomes of the Kemeny-Nash rule; in particular, in comparison to the outcomes of
the Kemeny rule. Such patterns point to properties that are satisfied most of the
time, but not always. Of course, as social choice theory procedures are meant to be
applied in real-world scenarios, such properties are relevant.

Thus, with our experimental analysis we aim to establish general relations be-
tween the Kemeny and (parameterised) Kemeny-Nash rule. Further, we hope to
get an idea of how these relations depend on the scenario under investigation. In a
nutshell, the idea is to compare the outcomes of the Kemeny and (parameterised)
Kemeny-Nash rule on a wide range of different judgement aggregation scenarios
(Φ,Γ,J).1

The remainder of this chapter is structured as follows. In Section 5.1 we present
the partial scenarios—consisting of an agenda Φ and constraint Γ—that have been
investigated. Subsequently we give an overview of the relevant parts of our im-
plementation (Section 5.2). We continue in Section 5.3 by describing (the theory
behind) our evaluation procedure. Section 5.4 contains all information that would
enable one to reproduce the results (at least in theory). We list relevant machine
specifications, software requirements and specify the parameters that are used in the
different experiments. In Section 5.5 we present the results, which are discussed in
Section 5.6.

Our implementation is based on the jaggpy library,2 and publicly available on
GitHub.3

1For all investigated scenarios the input and output constraint coincide, so we do not distinguish
an input and output constraint.

2https://pypi.org/project/jaggpy/
3https://github.com/paulinebaanders/ThesisAI-JA
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5.1. Partial Scenarios

5.1 Partial Scenarios

We used ten partial scenarios, consisting of an agenda Φ and a single constraint Γ.
(In the rest of this chapter—when it is clear from the context that we consider a
partial scenario—we may refer to it simply as a scenario.) For each partial scenario
we specify the pre-agenda Φ+, the constraint Γ and provide the following figures:

• 2|Φ
+|: Total number of binary valuations over the agenda issues (here a valu-

ation must be complete but may be inconsistent).

• |J (Φ,Γ)|: Number of consistent judgements. (As our partial scenarios only
have a single constraint, this figure equals the number of rational judgements,
and equals the number of consistent judgements.)

• |{J | J, J ∈ J (Φ,Γ)}|: Number of consistent-antipodal judgements J . Judge-
ment J ∈ J (Φ,Γ) is consistent-antipodal if and only if its antipodal J ∈
J (Φ,Γ) is also consistent.

Further, for each scenario, we sketch a real-world situation in which the judgement
aggregation scenario may be relevant.

Our first partial scenario corresponds to the situation we saw in the Introduction
(Chapter 1), where a group of judges decides the liability of a defendant. The
Juridical Verdict Contract (JVC) scenario can be summarised as follows:

Juridical Verdict Contract (JVC)
Pre-agenda: Φ+ = {φ1, φ2, φ1 ∧ φ2}
Constraint: Γ = ⊤
# Total bin: 2|Φ

+| = 8
# Consistent: |J (Φ,Γ)| = 4

# Antipodal: |{J | J, J ∈ J (Φ,Γ)}| = 2

Here φ1 may stand for ‘a valid contract was in place’, φ2 for ‘there was a breach’
and φ1 ∧ φ2 for ‘the defendant is liable’.

Our next partial scenario corresponds to the (complete) scenario we examined in
Example 2.13, which was also used to prove that none of our rules satisfy (SN)

(Propositions 3.13-3.15). The Car Mechanics (CM) partial scenario is taken from
Endriss et al. (2020), and may arise when a group of mechanics judge which elements
of a car are broken. The scenario may be summarised as follows:

Car Mechanics (CM)
Pre-agenda: Φ+ = {φ1, φ2, φ3, φ4}
Constraint: Γ = ¬φ1 ∨ (¬φ2 ∧ ¬φ4) ∨ ¬φ3

# Total bin: 2|Φ
+| = 16

# Consistent: |J (Φ,Γ)| = 13

# Antipodal: |{J | J, J ∈ J (Φ,Γ)}| = 10
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In this scenario the propositional formula φi may correspond to ‘element i works’.
Then, the constraint says that a consistent judgement must either identify element
1, element 3, or both element 2 and element 4 as broken.

The Self-Driving Car (SDC) scenario may occur in a self-driving car that is process-
ing information coming from different sensors. It may be summarised as follows:

Self-Driving Car (SDC)
Pre-agenda: Φ+ = {φ1, φ2, φ3, φ4, φ1 → (φ3 ∧ φ4), φ2 ∨ φ3, φ1 ∧ φ2}
Constraint: Γ = ⊤
# Total bin: 2|Φ

+| = 128
# Consistent: |J (Φ,Γ)| = 16

# Antipodal: |{J | J, J ∈ J (Φ,Γ)}| = 2

Here the variable φ1 may express ‘swerve’, φ2 may mean ‘high probability of ac-
cidental death’, φ3 may signify ‘car damage’ and φ4 may mean ‘driver in danger’.
Then, the other formulas in the pre-agenda express statements that may be relevant
for the car to compute whether it should swerve or not. For example, the formula
φ1 → (φ3 ∧ φ4) states ‘swerve implies car damage and driver in danger’.

Our next partial scenario is taken from Lang et al. (2011). The Government Reg-
ulation (GR) scenario may be used by a government that aims to establish rules
related to the COVID-19 disease. It can be represented as follows:

Government Regulation (GR)
Pre-agenda: Φ+ = {φ1, φ2, φ3, φ4, φ5, φ1 → (φ2 ∨ φ3), φ1 → (φ4 ∨ φ5)}
Constraint: Γ = ⊤
# Total bin: 2|Φ

+| = 128
# Consistent: |J (Φ,Γ)| = 32

# Antipodal: |{J | J, J ∈ J (Φ,Γ)}| = 2

Here the literals φ1, φ2, φ3, φ4, and φ5 may be interpreted as ‘positive test’, ‘in-
fected’, ‘apparatus faulty’, ‘verify test’ and ‘quarantine’, respectively. Then, formula
φ1 → (φ2 ∨ φ3) denotes that ‘if positive test, then infected or apparatus faulty’
(one could deny this statement by assuming that there is a human error involved).
Finally, formula φ1 → (φ4 ∨ φ5) states that ‘a positive test implies verification or
quarantine’.

The following partial scenarios encode (strict) preference aggregation with three
(PA3) and four (PA4) alternatives, respectively. In general, a preference aggregation
scenario with m alternatives can be encoded in judgement aggregation as follows:
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Preference Aggregation m (PAm)
Pre-agenda: Φ+(m) = {φij | i, j ∈ {1, . . . ,m}, i < j}
Constraint:

∧
i,j,k∈{1,...,m}

i<j<k

((φij ∨ ¬φik ∨ φjk) ∧ (¬φij ∨ ¬φjk ∨ φik))

# Total bin: 2|Φ
+(m)| = 2

m(m − 1)/2

# Consistent: |J (Φ,Γ,m)| = m!

# Antipodal: |{J | J, J ∈ J (Φ,Γ,m)}| = m!

In this representation a variable φij could indicate that alternative i is strictly pre-
ferred over alternative j. To see that the number of consistent judgements equals
m!, we have to realise that every permutation (of the m alternatives) corresponds
to exactly one consistent judgement. The number of consistent-antipodal judge-
ments equals the number of consistent judgements: for every permutation, also the
permutation in reverse order corresponds to exactly one consistent judgement.

Finally we consider the pre-agenda that consists ofm positive, logically independent,
literals; i.e., Φ+ = {φ1, . . . , φm}. We consider pre-agendas with three (PL3), four
(PL4), six (PL6) and seven (PL7) positive literals. We can represent the Positive
Literals m (PLm) scenario, for arbitrary m, as follows:

Positive Literals m (PLm)
Pre-agenda: Φ+ = {φ1, . . . , φm}
Constraint: Γ = ⊤
# Total bin: 2|Φ

+| = 2m

# Consistent: |J (Φ,Γ)| = 2m

# Antipodal: |{J | J, J ∈ J (Φ,Γ)}| = 2m

In this case φi, for any i ∈ {1, . . . ,m}, may correspond to any statement; the sole
requirement is that φi is logically independent of φj , for all j ∈ {1, . . . ,m} \ {i}.

To conclude, in Table 5.1 we provide an overview of the partial scenarios (including
relevant statistics) that might be helpful for reference.

5.2 Implementation

In this section we discuss the relevant parts of our implementation. The design of
our code is to facilitate a comparison between (the returned collective judgements
of) the Kemeny and Kemeny-Nash rule—on a wide range of different judgement
aggregation scenarios. In the implementation we can distinguish four components.
To start, we briefly outline these components.

The first component is based on the jaggpy library, it contains a scenario ob-
ject and solver methods. Together they deal with all the formal requirements of
judgement aggregation, including the translation from propositional logic to a for-
mal computer language. Second, we have the encodings of the aggregation rules;
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|Φ+| |J (Φ,Γ)| |J (Φ,Γ)|
2|Φ+|

|{J | J, J ∈ J (Φ,Γ)}|
|J (Φ,Γ)|

Juridical Verdict Contract (JVC) 3 4 1/2 1/2
Car Mechanics (CM) 4 13 13/16 10/13
Self-Driving Car (SDC) 7 16 1/8 1/8
Government Regulation (GR) 7 32 2/8 1/16
Preference Aggregation 3 (PA3) 3 4 3/4 1
Preference Aggregation 4 (PA4) 6 24 3/8 1
Positive Literals 3 (PL3) 3 8 1 1
Positive Literals 4 (PL4) 4 16 1 1
Positive Literals 6 (PL6) 6 64 1 1
Positive Literals 7 (PL7) 7 128 1 1

Table 5.1: Overview of partial scenarios (characterised by an agenda Φ and con-
straint Γ). |J (Φ,Γ)| symbolises the number of consistent judgements, while |Φ+|
indicates the number of issues in the pre-agenda. The fraction |J (Φ,Γ)|/2|Φ

+| stands
for the ratio between the total number of binary valuations of the pre-agenda
issues (may be inconsistent) and the number of consistent judgements. Finally,
|{J | J, J ∈ J (Φ,Γ)}|/|J (Φ,Γ)| represents the proportion between consistent-antipodal
judgements (judgement J is consistent-antipodal if J, J ∈ J (Φ,Γ)) and consistent
judgements. (See Section 5.1 for more detailed information about the scenarios.)

these encodings are used by the solver methods to compute the outcome of a par-
ticular judgement aggregation scenario. The profile iteration component deals with
the generation of (many) admissible profiles that are tested for a particular par-
tial scenario. Finally, the fourth component consists of procedures we use for the
evaluation of the collective judgements that are selected by the different rules.

In the remainder of this section we discuss the former three components: the
scenario object and solver methods, the encodings of the aggregation rules and the
procedure to iterate through profiles.4 We conclude the section with a side-note on
profile representation; in our implementation profiles are represented as multisets.

Scenario object and solver methods. This part is based on the jaggpy library.
Minor modifications to the original code included fixing some bugs, and restructuring
the code to better fit our purpose (of testing many different profiles corresponding
to one partial scenario).

The user specifies a partial scenario—that is a pre-agenda Φ+ and (input and
output) constraints Γin and Γout, in a .jagg file. The propositional formulas that
appear in the (pre-)agenda and constraints may contain logical connectives (∨,∧,→
,¬). The constraints may not include variables that do not occur in the (pre-)agenda.

With the jaggpy library we can construct two different solver objects: a Brute

4The evaluation procedures are interesting from a theoretical point of view, rather than from an
operational point of view; we review the procedures in a dedicated section (Section 5.3).
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Force (BF) solver, or an ASP solver. We did preliminary experiments to compare
the time efficiency of the different methods. For our purpose, the BF solver was
shown to be abundantly faster than the ASP solver. All experiments hereafter are
performed with the BF solver. For the results of the preliminary experiments, and a
more detailed explanation, see Section 5.5.5. Briefly, in large part, the efficiency of
the BF solver can be ascribed to pre-computations that are executed once for every
partial scenario; this time is negligible when, for every partial scenario, we test many
(often hundreds of thousands) different profiles. The solver methods can be used
to compute the set of collective judgements of the scenario, for various judgement
aggregation rules.

Aggregation rules. Although the solver objects of the jaggpy library include
implementations for some of our rules; in our implementation they were implemented
anew, to better suit our modified jaggpy code. Like the original jaggpy library, our
encodings of the rules depend on the solver method that is used; most of our rules
are implemented twice (both for the BF solver and for the ASP solver).

For the BF solver we implemented the Kemeny and MaxHam anew, and added
an implementation for the Kemeny-Nash, parameterised Kemeny-Nash and MaxEq
rules.5 In the ASP solver we implemented a new version of the Kemeny rule,
and added implementations for the Kemeny-Nash, and parameterised Kemeny-Nash
rules. For the ASP solver, the rules are implemented twice; once using the method of
optimisation (ASP-OPT), where we use the ASP build-in aggregate #maximize. The
other version (ASP-SAT) employs the method of saturation, which was introduced
by Eiter and Gottlob (1995).

Profile iteration. For every partial scenario we want to investigate a large number
of (admissible) profiles for n agents. Thus, given a partial scenario (Φ,Γ) and a
number of judges n, we require a large multiset P , with J (Φ,Γ)n as underlying
set.6 Subsequently, we compute the collective judgements (returned by the different
rules) for every profile J ∈ P one-by-one. That is, we iterate over the profiles in
P . The iteration itself is self-explanatory; here we explain how we construct the
multiset of profiles P .

If feasible—see Section 5.4 for the exact conditions—we iterate over all admissible
profiles; i.e., we set P = J (Φ,Γ)n. Otherwise, we randomly draw |P | profiles from
J (Φ,Γ)n (with replacement). Because we sample with replacement P may indeed
contain duplicates. Although it is not entirely correct, for the sake of readability,
we may write P ⊆ J (Φ,Γ)n.

A weak point regarding our profile iteration procedure is that all profiles are
ascribed equal probability. Especially when judgement aggregation is used to reach
consensus about a factual matter—as opposed to choose an alternative based on
individual preferences—this procedure is quite problematic. Often consensus should

5In Section 5.3 we define—and explain why we implemented—the MaxHam and MaxEq rule.
6As explained below, P may contain duplicates, hence it is a multiset (and not a set).
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be reached among a group of experts—judges, mechanics, sensors in a self-driving
car, professors judging the work of a student, etc.—it is not realistic that judgements
in such a group are randomly distributed.

Side-note on profile representation. In our implementation profiles are rep-
resented as multisets. Although the tuple representation is more common in the
judgement aggregation literature, we choose the multiset representation because
this makes the total number of profiles much smaller (see Section 2.1). That is,
by using this representation the number of profiles, contained in a full iteration is
greatly diminished.

5.3 Evaluation

In this section we explain the metrics and procedures we have used to evaluate the
computed collective judgements. The qualitative and quantitative analysis form the
main part of our experimental procedure; they are discussed in Section 5.3.1 and
Section 5.3.2, respectively. In both parts our goal is to classify the Kemeny-Nash
rule, according to its fairness and efficiency properties, and determine how these
properties are effected by the λ parameter. To do this, we compare the Kemeny-
Nash rule to the Kemeny rule (an efficient procedure pur sang, see Section 2.3), and
to two rules that count as downright fair (the MaxHam rule and the MaxEq rule,
which we introduce below).

Section 5.3.3 is devoted to our analysis of the Variance-Increasing Zero-Effect
(VIZE). When we introduced the VIZE, in Section 2.4, we suggested that it has a
negative influence on the quality of the collective judgements of the Kemeny-Nash
rule. We argued that introducing the λ parameter, with 0 < λ≪ 1, would alleviate
the extent of this effect (and its negative consequences). We measure the extent of
the VIZE, with particular emphasis on the role of the λ parameter. In combination
with the results of the qualitative analysis this allows us to test our hypotheses.

We also studied the (average) number of collective outcomes that is returned per
profile, for the four different rules. This is a relevant figure; when a judgement ag-
gregation rule returns multiple collective judgements, the individuals are faced with
the (non-trivial) decision of determining the final collective judgement (singular).
This part of the evaluation procedure is self-explanatory, and not further discussed
in this section.

5.3.1 Qualitative Analysis

This section is devided in two parts: the ideas behind (which should be the justifi-
cation of) our qualitative metrics, and the formal definitions of these metrics.
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Motivation

Here we review the ideas behind our approach. In outline we measure the quality of
an outcome in terms of efficiency and fairness. In economic theory, utilitarian and
egalitarian approaches—respectively, prioritising efficiency and fairness—are often
contrasted (Botan et al., 2021; Moulin, 1988). We already saw that maximising
average utility is a pre-eminently utilitarian approach (Section 2.3). Hence, under
the assumption of Hamming preferences, the Kemeny rule is a utilitarian rule. In
that way, we could assess the efficiency of an arbitrary rule F by comparing the
average utilities of F and Fkem. We searched for similar egalitarian benchmarks,
and corresponding rules, to assess the fairness of a judgement aggregation rule.
We found two benchmarks that can be used to assess the fairness of a judgement
aggregation rule: lowest agreement and maximal agreement difference.

We introduced the Kemeny-Nash rule to apply Nash Social Welfare (NSW) max-
imisation to judgement aggregation. In other fields, both within the scope of social
choice theory as well as outside of it, maximising NSW is known to yield solutions
that are both efficient and fair (Caragiannis et al., 2019; Varian, 1974). This sup-
ports our choice to evaluate outcomes in terms of efficiency and fairness.

In economic theory, fairness is associated with egalitarian approaches, while effi-
ciency is linked to utilitarian approaches. In our discussion of social welfare functions
(Section 2.3) we saw that maximising utilitarian social welfare amounts to maximis-
ing the average utility. Under the assumption of Hamming preferences—which is
widely accepted in judgement aggregation (see Section 2.3)—the Kemeny rule max-
imises utilitarian social welfare. Now, we have two important ingredients: a criterion
for efficiency (average agreement) and a rule that optimises it (Kemeny rule). It is
natural to ask ourselves whether we can find similar measures (and corresponding
rules) to judge the fairness of a rule.

While maximising utilitarian social welfare amounts to maximising the average
agreement, maximising egalitarian social welfare means maximising the minimal
utility (Endriss, 2010). So, again assuming Hamming preferences, maximising the
minimal agreement is tantamount to maximising egalitarian social welfare. In the
literature the rule that does this is known as the MaxHam (or MaxHamming) rule,
and studied by (among others) Botan et al. (2021), Endriss et al. (2020), and Lang
et al. (2011).

Definition 5.1. Given any profile J ∈ J (Φ,Γ)n with n judges, the MaxHam judge-
ment aggregation rule (Fmh) is defined as:7

Fmh(J) = argmax
J∈J (Φ,Γ)

min
J ′∈J

Agr(J ′, J)

The definition states that, for any profile J ∈ J (Φ,Γ)n, the MaxHam rule picks
out the consistent judgements J ∈ J (Φ,Γ) that maximise the minimal agreement,

7When the input and output constraints do not coincide, i.e., if Γin ̸= Γout, then Γout should be
substituted for Γ.
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minJ ′∈J Agr(J ′, J). Just as we can use the average agreement to judge the efficiency
of a rule, we can use the lowest agreement to judge the fairness of a rule.

However, Botan et al. (2021) argue that there are settings for which maximising
the lowest agreement is not a good safeguard for fair solutions. In particular, in
settings where not only the absolute utility (agreement) an individual enjoys is
relevant, but also how it compares to the utility (agreement) of other individuals.
That is, it is relevant whether individuals in a society envy each other. The authors
argue that, for these settings, the maximal utility difference—assuming Hamming
preferences, equal to the maximal agreement difference—is a suitable criterion to
measure fairness. The criterion gives rise to the definition of the MaxEq rule, which
was newly intorduced to the judgement aggregation literature. The rule is formally
defined below.

Definition 5.2 (Botan et al., 2021). Given any profile J ∈ J (Φ,Γ)n with n judges,
the MaxEq judgement aggregation rule is defined as:8

Fmh(J) = argmin
J∈J (Φ,Γ)

(
max
J ′′∈J

Agr(J ′′, J)− min
J ′∈J

Agr(J ′, J)

)
.

The definition says that the rule selects the consistent judgements J ∈ J (Φ,Γ)
that minimise the difference between the maximal agreement, maxJ ′′∈J Agr(J ′′, J),
and the minimal agreement, minJ ′∈J Agr(J ′, J).

We found three measures: average agreement, minimal agreement and maximal
agreement difference. We will now procede to formally define the metrics that we
based on these measures.

Definitions of the Metrics

We now translate our ideas from above into precise mathematical language. Given
any profile J ∈ J (Φ,Γ)n with n judges, it is straightforward to define the average
agreement, lowest agreement, and maximal agreement difference—for a particular
collective judgement J ∈ J (Φ,Γ). But our metrics (for arbitrary rule F ) are to
be computed on a (large) multiset of different profiles, each corresponding to a
(possibly non-singular) set of collective judgements (selected by rule F ). We want
to generalise the straightforward definitions for one profile, and a single collective
judgement, to definitions for a multiset of profiles, each corresponding to a set of
collective judgements. Moreover, to facilitate the comparison of results obtained
from different experiments, we would like to somehow standardise our metrics.

We begin with the straightforward definitions, for the different criteria, based
on a single profile and a single collective judgement. We define a weighted average
to generalise the definitions to be applicable to a multiset of profiles. Finally, we
standardise the generalised definition to obtain our final metrics.

8When the input and output constraints do not coincide, i.e., if Γin ̸= Γout, then Γout should be
substituted for Γ.
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To repeat, as relevant criteria, we found the average agreement, lowest agreement
and maximal agreement difference. The former criterion measures the efficiency of
a rule, while the latter two evaluate the fairness of a rule. For an arbitrary profile
J ∈ J (Φ,Γ)n, with n agents, and consistent judgement J ∈ J (Φ,Γ) we define the
following measures. For the average agreement we define Ŝavg as follows:

Ŝavg(J , J) =
1

n
·
∑
J ′∈J

(
J(J ′) ·Agr(J ′, J)

)
(5.1)

Similarly, for the lowest agreement we define Ŝlow:

Ŝlow(J , J) = min
J ′∈J

Agr(J ′, J) (5.2)

Finally, for the maximal agreement difference, we define:

Ŝmd(J , J) = max
J ′′∈J

Agr(J ′′, J)− min
J ′∈J

Agr(J ′, J) (5.3)

We now want to generalise the definitions above, to be computable on a multiset
of profiles, for a particular judgement aggregation rule. Let P ⊆ J (Φ,Γ)n be an
arbitrary multiset of profiles for n judges, and F an arbitrary judgement aggregation
rule. For ⊙ ∈ {avg, low,md} we define the (weighted average) score S⊙:

9

S⊙(F, P ) =
1

|P |
·
∑
J∈P

(
P (J)

|F (J)|
·

∑
J∈F (J)

Ŝ⊙(J , J)

)
(5.4)

That is, for every profile J ∈ P , we compute Ŝ⊙(J , J) for all corresponding collective
judgements J ∈ F (J), and take the average. Subsequently, we take the average over
the different profiles.

Finally, to be able to compare the results obtained from different experiments, we
standardise the scores Savg, Slow, and Smd in the following way. The scores are opti-
mised by the Kemeny (Fkem), MaxHam (Fmh) and MaxEq (Fme) rule, respectively.
To standardise the scores, we divide the score of rule F by the score of the rule
that optimises it. The formal definitions of our (final) qualitative metrics are given
below.

Definition 5.3. For any given judgement aggregation rule F and any given multiset
of profiles P ⊆ J (Φ,Γ)n with n judges, the average agreement metric is defined as
follows:

Agravg(F, P ) =
Savg(F, P )

Savg(Fkem, P )

See Equations (5.4) and (5.1) for the definition of Savg.
9S⊙ is a weighted average in the sense that the weight of a particular collective judgement

J ∈ J (Φ,Γ), for a profile J ∈ J (Φ,Γ)n, depends on the cardinality P (J) and on the number of
collective judgements that are selected for profile J .

65



5.3. Evaluation

Definition 5.4. For any given judgement aggregation rule F and any given multiset
of profiles P ⊆ J (Φ,Γ)n with n judges, the lowest agreement metric is defined as
follows:

Agrlow(F, P ) =
Slow(F, P )

Slow(Fmh, P )

See Equations (5.4) and (5.2) for the definition of Slow.

Definition 5.5. For any given judgement aggregation rule F and any given multiset
of profiles P ⊆ J (Φ,Γ)n with n judges, the maximal agreement difference metric is
defined as follows:

Agrmd(F, P ) =
Smd(F, P )

Smd(Fme, P )

See Equations (5.4) and (5.3) for the definition of Smd.

Although the metrics formally depend on the multiset of profiles P ⊆ J (Φ,Γ)n

that is tested, the idea is (of course) that we take P large enough, so that the results
do not depend on the particular multiset of profiles that has been tested. For this
reason, the explicit dependence on P , the multiset of tested profiles, is often omitted.

5.3.2 Quantitative Analysis

Our idea for this part of the experimental analysis is to formulate a criterion for
the distance between different judgement aggregation rules. In particular, it would
be interesting to have a measure for the distance between the Kemeny-Nash rule
and the egalitarian rules on one side, and the Kemeny-Nash and Kemeny rule on
the other side. It would also be interesting to compare these distances to the dis-
tance between the egalitarian rules and the Kemeny rule. The quantitative analysis
provides a different way—next to the qualitative analysis—to determine the place
of the Kemeny-Nash rule on the spectrum of egalitarian and utilitarian approaches.
Finally, it would be interesting to see if the results of the quantitative and qualita-
tive analysis are well matched. That is, whether rules that select judgements with
similar qualities are also rules that are nearby.

The remainder of this section is structured as follows. Our metric is based on
the set-theoretic concept of symmetric difference. Our exposition starts with an
introduction of this concept. Next, we explain how the concept can be used as a
metric for the distance between different judgement aggregation rules. To conclude,
we outline our expectations for the results of the quantitative analysis.

In set theory, the symmetric difference between two sets, say A and B, is denoted
as A△ B; it contains the elements that are in exactly one of the two sets, A or B.
That is, the symmetric difference between A and B equals the union (of A and B)
minus the intersection (of A and B). Formally, the symmetric difference may be
defined as:

A△B = (A ∪B) \ (A ∩B)
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If A and B are subsets of some other set S, i.e., A,B ⊆ S; then the cardinality of the
symmetric difference—|A△B|—can be seen as a measure for the distance between
the two subsets, see the example below.10

Example 5.1. Let S = {1, . . . , 5} and suppose we have three subsets, A,B,C ⊆ S:
A = {1, 2}, B = {1, 5} and C = {2, 3, 4}. Then we have |A△ B| = 2, |A△ C| = 3
and |B △ C| = 5. We can see that the (cardinality) of the symmetric difference of
two (sub)sets depend on the cardinality of the individual (sub)sets, and the number
of elements they have in common. Roughly, larger sets must have more elements in
common (than smaller sets) for them to be at the same distance. This makes sense
for a measure of the distance between two sets. △

To use the notion of symmetric difference to study judgement aggregation rules,
we focus on the set of consistent judgements, J (Φ,Γ). By definition a judgement
aggregation rule is a function that, for any profile J ∈ J (Φ,Γ)n, returns a subset
of consistent judgements: F (J) ⊆ J (Φ,Γ). Thus, for arbitrary rules F, F ′, and any
profile J ∈ J (Φ,Γ)n we have: F, F ′ ⊆ J (Φ,Γ). Now, if we are to determine the
distance between the rules F, F ′—on the basis of a single (arbitrary) profile J—we
can employ the notion of symmetric difference as follows:

D̂(F, F ′,J) = |F (J)△ F ′(J)| (5.5)

Where D̂(F, F ′,J) is a measure for the distance between the two rules.11

However, in our analysis we want to determine the distance between two rules
on the basis of a (large) multiset of profiles, P ⊆ J (Φ,Γ)n. It is straightforward to
modify the definition of D̂ accordingly. We simply take the average of the profiles
contained in P :

D(F, F ′,J) =
1

|P |
·
∑
J∈P

(
P (J) · |F (J)△ F ′(J)|

)
(5.6)

Finally, to facilitate the similarity between results obtained from different partial
scenarios, we normalise the above definition; we divide by the cardinality of the set
of consistent judgements. The formal definition of our symmetric difference metric,
denoted as d△, is given below.

10This measure is in fact a (formal) metric (on S). The formal definition of a metric, as well
as the proof that the symmetric difference is such a metric, is beyond the scope of this thesis; for
details we refer to the book by Halmos (1974), Chapter 8.

11We emphasise that, given profile J ∈ J (Φ,Γ)n, this metric is defined on the set of consistent
judgements J (Φ,Γ); i.e., the set F (J) △ F ′(J) contains consistent judgements: F (J) △ F ′(J) ⊆
J (Φ,Γ). It does not contain agenda issues: F (J) △ F ′(J) ⊈ Φ. To define the metric on the set
of consistent judgements has the advantage that we do not need to pay special attention to the
number of judgements that is returned by the different rules; we compute the symmetric difference
directly over the set of returned judgements (and not over the elements that are contained in these
sets). On the negative side, the metric does not differentiate between any two distinct judgements
(see Example 5.2 below).
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Definition 5.6. The symmetric difference between two given judgement aggregation
rules F and F ′, relative to a given multiset of profiles P ⊆ J (Φ,Γ)n with n judges,
is defined as follows:12

d△(F, F ′, P ) =
1

|P | · |J (Φ,Γ)|
∑
J∈P

(
P (J) · |F (J)△ F ′(J)|

)
Because |F (J)△ F ′(J)| ≤ |J (Φ,Γ)|, this metric is guaranteed to lie between 0

and 1.

As we mentioned above, the symmetric difference of two sets depends on the car-
dinality of the individual sets and the cardinality of their intersection; it does not
depend on the (dis)similarity between the elements that are not included in both
sets. In our application to judgement aggregation, this means that we do not account
for the similarity (or agreement) between any two distinct collective judgements, see
the example below. This can be seen as a frailty of our metric.

Example 5.2. Take the PL3 (Positive Literals 3, see Section 5.1) partial scenario;
and let F, F ′, and F ′′ be arbitrary judgement aggregation rules. Further, suppose
that for some profile J ∈ J (Φ,Γ)n we have:

F (J) = {J}, with J = {φ1, φ2, φ3}
F ′(J) = {J ′}, with J ′ = {φ1, φ2,¬φ3}
F ′′(J) = {J ′′}, with J ′′ = {¬φ1,¬φ2,¬φ3}

That is, for profile J the rules each return a single collective judgement, and no two
rules return the same collective judgement. Judging from the returned judgements
on profile J , it would be reasonable to suggest that the distance between rule F
and F ′ is smaller than the distance between F and F ′′. After all, if we compare the
agreement between the different pairs of collective outcomes, we have: Agr(J, J ′) <
Agr(J, J ′′). However, according to our metric, the two distances are equal. Since,
for any J, J, J ′′, with J ̸= J ′ and J ̸= J ′′, we have: |{J} △ {J ′}| = |{J} △ {J ′′}|.
That is, the metric does not differentiate between any two non-identical collective
judgements. △

12We note that a potential weakness of this measure is that we do not take the total number of
judgements that are returned by rules F and F ′ (respectively, |F (J)| and |F ′(J)|) into account.

To see the point, assume that rules F and F ′ always return 4 collective judgements (i.e., |F (J)| =
|F ′(J)| = 4), and the cardinality of the intersection |F (J) ∩ F ′(J)| = 4 is also always 4. Further,
suppose that for that rules F̃ and F̃ ′ always return 2 collective judgements (i.e., |F̃ (J)| = |F̃ ′(J)| =
2), and the cardinality of the intersection |F̃ (J)∩ F̃ ′(J)| = 2 is also always 2. Everything else being
equal, the symmetric difference between F and F ′ is twice as large as the symmetric difference
between F̃ and F̃ ′; the results are not comparable.

Initially we were not aware of this weakness. However, our results showed that we never measure
the symmetric difference between two rules that (on average) are very irresolute. Because of that,
it is reasonable to suggest that our results are not too much effected by this weakness, and we left
the definition as presented here.
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To conclude, we lay down our expectations for the quantitative analysis. From what
is said above, it is clear that we expect the distance between the Kemeny-Nash and
the Kemeny rule, as well as the distance between the Kemeny-Nash and the egali-
tarian rules, to be smaller than the distance between the egalitarian rules and the
Kemeny rule. Whether the results of the quantative analysis and the qualitative
analysis will be congruent—in the sense that rules with solutions that are qualita-
tively comparable are near to each other—is hard to predict. It could be the case
that, because the symmetric difference metric does not differentiate between any
two distinct elements (i.e., consistent judgements), the results of the quantitative
and qualitative analysis are not well aligned. In other words; two distinct consistent
judgements, J, J ′ ∈ J (Φ,Γ) with J ̸= J ′, might be very similar in a qualitative
way—but this similarity is not accounted for by our quantitative metric—possibly
resulting in a discrepancy between the results of our qualitative and quantitative
analysis.

5.3.3 Variance-Increasing Zero-Effect

As explained in Section 2.4—in an earlier stage of this work—we assumed that in
some cases the ZE might damage the economic efficiency of the Kemeny-Nash rule
disproportionally, compared to the gained economic equity. In an attempt to set
the ‘bad’ instances of the ZE apart from other instances, we introduced the VIZE
(Definition 2.12). In our experimental analysis of the ZE we measured the extent of
the VIZE. We extended Definition 2.12, to define it on a multiset of profiles, in the
following way.

Definition 5.7. For a judgement aggregation rule F , with F ∈ {Fkn, F
λ
kn}, and a

multiset of profiles P ⊆ J (Φ,Γ)n with n judges, the VIZE is defined as follows.

VIZE(F, P ) =
1

|P |
∑
J∈P

 1

|F (J)|
∑

J∈F (J)

VIZE(J)


With VIZE(J) ∈ {0, 1} as in Definition 2.12.

5.4 Experimental Setup

We now give a full specification of our experimental setup. We include computational
resources, software requirements and parameter settings. We begin with a note on
terminology.

Note on terminology. Here we refer to an experiment as the composite of a
partial scenario (Φ,Γ) and a specified number of judges n. For ease of exposition,
we refer to an experiment by the name of the partial scenario (see Section 5.1)
with an explicit specification of the number of judges. For example, we refer to the
experiment with partial scenario JVC and n = 5 judges as JVC(n = 5).
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Computational resources. All experiments were done on an Intel Comet Lake
1.6GHz machine with 7.4GB RAM. For our implementation we used Python 3

(v. 3.8.0).13 For visualisation we made use of the matplotlib (v. 3.5.1) library.14

To process propositional formulas (from the input file) we employed the pyparsing
(v. 3.0.7) and nnf (v. 0.3.0) library.15,16 To construct the generator for profile it-
eration, we used the more itertools (v. 8.12.0) library.17 Finally, for the ASP
implementations, to solve the ASP program we used the ASP solver Clingo,18 ac-
cessed through the clingo (v. 5.5.1) library.19

Parameter settings. We tested ten partial scenarios, each with three different
numbers of judges; a total of 30 experiments. In each experiment we examined nine
different settings of the λ parameter:

λ ∈ {0.00, 0.01, 0.05, 0.10, 0.15, 0.25, 0.35, 0.45, 0.55}

The growing increments were chosen after test experiments showed that the influence
of a fixed increment ∆λ decreases, as λ increases.

The total number of profiles, for a single partial scenario, becomes highly in-
tractable as the number of judges grows. For example, consider the CM partial
scenario with |J (Φ,Γ)| = 13 consistent judgements (see Section 5.1). If we test this
partial scenario for n = 50 judges, CM(n = 50), the number of corresponding pro-
files equals |J (Φ,Γ)50| ≈ 2.2 · 1012. Whenever the total number of profiles exceeded
2.5 · 105, we did not do a full iteration, but used the sampling procedure instead.
In the rule, the number of samples that were taken for a particular experiment de-
pended on the total number of profiles. Because most of our metrics do not depend
on the value of λ, whenever we observed that results that should not depend on λ
were still varying, we deviated from this rule (and took more samples). In Table 5.2
we show the total number of different profiles and the number of profiles that were
tested (for the different number of judges n ∈ {5, 15, 50}) for every partial scenario.
When all profiles where tested, ‘n/a’ is indicated for the number of samples.

5.5 Results

In this section we present the obtained results. We focus on the general (average)
patterns in the data, with particular emphasis on the role of the λ parameter. The
exposition here is straightforward, the results are discussed in more detail in the
next section. We (roughly) treat the results in order of importance: we begin with

13https://www.python.org/
14https://pypi.org/project/matplotlib/
15https://pypi.org/project/pyparsing/
16https://pypi.org/project/nnf/
17https://pypi.org/project/more-itertools/
18https://potassco.org/clingo/
19https://pypi.org/project/clingo/
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Profiles Samples

JVC

5 judges 56 n/a
15 judges 8.2 · 102 n/a
50 judges 2.3 · 104 n/a

CM

5 judges 6.2 · 103 n/a
15 judges 1.7 · 107 2.5 · 105
50 judges 2.2 · 1012 2.5 · 105
SDC

5 judges 1.6 · 104 n/a
15 judges 1.6 · 108 2.5 · 105
50 judges 2.1 · 1014 2.5 · 105
GR

5 judges 3.8 · 105 2.5 · 105
15 judges 5.1 · 1011 2.5 · 105
50 judges 2.3 · 1022 1.0 · 106
PA3

5 judges 2.5 · 102 n/a
15 judges 1.6 · 104 n/a
50 judges 3.5 · 106 1.0 · 106

Profiles Samples

PA4

5 judges 9.8 · 104 n/a
15 judges 1.6 · 1010 2.5 · 105
50 judges 5.7 · 1018 5.0 · 105
PL3

5 judges 7.9 · 102 n/a
15 judges 1.7 · 105 n/a
50 judges 2.6 · 108 5.0 · 105
PL4

5 judges 1.6 · 104 n/a
15 judges 1.6 · 108 2.5 · 105
50 judges 2.1 · 1014 1.0 · 106
PL6

5 judges 1.0 · 107 2.5 · 105
15 judges 4.4 · 1015 5.0 · 105
50 judges 3.7 · 1032 1.0 · 106
PL7

5 judges 3.1 · 108 2.5 · 105
15 judges 6.8 · 1019 5.0 · 105
50 judges 3.8 · 1044 1.0 · 106

Table 5.2: Summary of parameter settings, including the total number of profiles
that corresponded to a partial scenario. ‘n/a’ indicates that the full iteration
procedure was used.
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the results of the qualitative analysis, followed by the results from the quantitative
analysis. We continue with the results of the Variance-Increasing Zero-Effect (VIZE).
Finally, we present some results that are concerned with the time performance of
the implementation.

5.5.1 Qualitative Analysis

Broadly, the results of the qualitative analysis can be separated into two groups:
experiments for which the quality of the solutions was affected by the value of λ,
and experiments for which this was not the case.20 Other than that, the different
experiments exhibited largely the same patterns: The Kemeny-Nash rule produces
solutions that convincingly combine efficiency and fairness, and although increasing
the λ parameter had a small (positive) effect on the average agreement (Agravg), this
effect was outweighed by the effect on the lowest agreement (Agrlow) and maximal
agreement difference (Agrmd). Because of this, in our presentation of the results,
we focus on averages, rather than single experiments. Having said this, we end this
section with the results of three single experiments that deviate from the general
pattern.

To recapitulate, see Section 5.3 for more details, we have three different metrics:
average agreement metric (Agravg), lowest agreement metric (Agrlow) and maximal
agreement difference metric (Agrmd). The former metric is a measure for the effi-
ciency of a rule, while the latter two pertain to the fairness of a rule. The metrics are
defined in a relative way; they are optimised by the Kemeny, MaxHam and MaxEq
rule (respectively to aforementioned order). This is done in the following way: take
Agravg (which is optimised by the Kemeny rule) and suppose that for some profile
J the average agreement of the Kemeny and Kemeny-Nash solution are, respec-
tively, 4 and 5.21 Then, for the Kemeny-Nash rule, the corresponding metric score
is Agravg = 4

5 . For the Kemeny rule this score is 1 by definition. For readability, we
may refer to (e.g.) the average agreement metric simply as the average agreement.

Figure 5.1 shows the average results of the qualitative analysis, where the average
is taken over all 30 experiments. The three different colours designate the different
metrics, while different line styles are used to discriminate the rules. In particular,
for the different metrics: Agravg (blue), Agrlow (black) and Agrmd(red). Rule-wise:
Kemeny-Nash (solid), Kemeny (dotted), MaxHam (dashed) and MaxEq (dashed-
dotted). Now—this is the fundamental result of this chapter—Figure 5.1 shows
that Kemeny-Nash rule outperforms the Kemeny rule when it comes to fairness.
Especially when λ = 0, the Agrlow and the Agrmd for the Kemeny-Nash rule are

20As a boundary, we specify that the quality is affected if the symmetric difference (metric) of
the solutions for λ = 0.55 and the solutions for λ = 0 is at least 0.01. (With one exception—
PL6(n = 50) (symmetric difference metric was 0.0065)—this corresponds to the requirement that
the relative change (in at least one of three) is at least 0.05.

21For simplicity we assume that |Fkem(J)| = |Fkem(J)| = 1; in other cases the metric is an average
of the different solutions.
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Figure 5.1: Results of the qualitative analysis, averaging over all experiments. On
the x-axis we have the value of λ; the y-axis shows the metric scores. The solid
lines indicate the metrics for the Kemeny-Nash rule: average agreement Agravg
(blue), lowest agreement Agrlow (black) and maximal agreement difference Agrmd
(red). The dotted lines are for the Kemeny rule: Agrlow (black) and Agrmd (red).
Finally, the Agravg for the MaxHam and MaxEq rules are the dashed and dotted-
dashed blue lines. For all metrics it holds that 1 is the optimal (and attainable)
score; the further the score is from this value, the lower the quality of the solution.
(See Section 5.3 for formal definitions of the metrics.) Notably, on average, the
Kemeny-Nash rule yields solutions that are comparable to those of the Kemeny
rule in terms of efficiency, but they are significantly better in terms of fairness.
Increasing the λ parameter resulted in an increase of efficiency; but the increase is
small compared to the corresponding decrease in fairness.

closer to the optimal values than they are for the Kemeny rule (revealed by the
dotted lines being consistently further away from 1 than their corresponding solid
line). We can further see that increasing λ does have a positive effect on Agravg.
However, this effect is small compared to the negative impact on both Agrlow and
Agrmd (the slope of the solid blue line is smaller than the slope of both the red and
the black solid line).

As mentioned above, in some experiments the results were not (significantly)
effected by increasing λ. In a similar fashion as above, Figure 5.2 shows the average
results of the qualitative analysis; here the averages of the experiments that were
not effected by variation of the λ parameter (5.2a) are separated from those that
were effected (5.2b). Figure 5.2b shows, even more clearly than before, that the
experiments that were effected by the variation of the λ parameter, were effected
in a negative way. That is, the decrease of Agrlow and the increase in Agrmd are
crucially larger than the increase of Agravg. As λ increases, we see that the quality
of the Kemeny-Nash solutions approaches the quality of the Kemeny solutions; the
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(a) Experiments without λ dependence. (b) Experiments with λ dependence.

Figure 5.2: Results of the qualitative analysis, averaging over the experiments that
were not affected by variation of the λ parameter (left) and averaging over the
experiments that were affected by the variation of λ (right). For both figures, we
have the value of λ on the x-axis and the metric score on the y-axis. The solid lines
indicate the metrics for the Kemeny-Nash rule: average agreement Agravg (blue),
lowest agreement Agrlow (black) and maximal agreement difference Agrmd (red).
The dotted lines are for the Kemeny rule: Agrlow (black) and Agrmd (red). Finally,
the Agravg for the MaxHam and MaxEq rules are the dashed and dotted-dashed
lines (blue). For all metrics it holds that 1 is the optimal (and attainable) score;
the further the score is from this value, the lower the quality of the solution. (See
Section 5.3 for formal definitions of the metrics. It is notable that (for λ = 0)
the fairness (of the produced collective judgements) was significantly lower for the
experiments that were not affected by the λ parameter. From the data of the
experiments that were affected by λ; generally speaking, we can say that if the
collective judgements are affected by λ, then this effect is negative. That is, the
drop in the fairness of the collective judgements clearly outweighs the small increase
in efficiency.

fairness advantages of the Kemeny-Nash rule are exchanged for a slight increase in
efficiency. Finally, comparing Figure 5.2a and 5.2b: We see that, for λ = 0, the
fairness of the solutions for the Kemeny-Nash and Kemeny rule, are remarkably
lower for the experiments that were not effected by the increase of λ. In contrast,
for the MaxHam and MaxEq rule, the efficiency of the solutions was comparable
across the two kind of experiments.

To conclude this section, we show the results for the experiments PA3(n = 50),
PL3(n = 50) and PL4(n = 50) in Figure 5.3. These experiments clearly deviate
from the average patterns. In the three experiments the quality of the Kemeny-Nash
solutions is equal to the quality of MaxHam rule. In addition, for PA3(n = 50) and
PL3(n = 50), the quality of the Kemeny-Nash solutions also equals the quality of
the MaxEq solutions. Moreover, for PA3(n = 50) and PL3(n = 50), a large increase
of Agravg is accompanied by a negligible change in both Agrmd and Agrlow . For
PL4(n = 50), the change in Agravg is larger than the increase of Agrmd (but smaller
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than the decrease in Agrlow).

5.5.2 Quantitative Analysis

To repeat, in the quantitative analysis we measured the symmetric difference metric
of the Kemeny and Kemeny-Nash rule.22 Further we computed the symmetric dif-
ferences of the Kemeny-Nash rule and the egalitarian rules; i.e., symmetric difference
of Kemeny-Nash and MaxHam rule and that of the Kemeny-Nash and MaxEq rule.
Similarly, we measured the symmetric difference of the Kemeny and MaxHam rule
and that of the Kemeny and MaxEq rule. On average, the results show that the
symmetric difference between the Kemeny and Kemeny-Nash rule is smaller than
the other symmetric differences. Moreover, the symmetric difference between the
Kemeny-Nash and MaxHam rule is smaller than that of the Kemeny and MaxHam
rule; similarly, Kemeny-Nash and MaxEq rule is smaller than Kemeny and MaxEq
rule. Figure 5.4 shows the average results. On the x-axis we have the value of the
λ parameter; the y-axis shows the value of the symmetric difference metric, d△.
The purple line depicts the symmetric difference of the Kemeny and Kemeny-Nash
rule. The brown lines show the symmetric differences between Kemeny-Nash and
MaxHam (solid) and between Kemeny-Nash and MaxEq (dashed). Similarly, the
grey lines represent the symmetric differences between the Kemeny and MaxHam
rules (solid) and between the Kemeny and MaxEq rule (dashed).

Not all experiments followed the average patterns. In the PL4(n = 50) exper-
iment we had that the symmetric difference between Kemeny and MaxHam was
smaller than the symmetric difference between Kemeny-Nash and MaxHam, for
λ ∈ {0.45, 0.55}. Similarly, for λ ∈ {0.45, 0.55} in PL4(n = 50), we had that the
symmetric difference between Kemeny and MaxEq was smaller than the symmetric
difference of the Kemeny-Nash and MaxEq rule. In five experiments—PA3(n = 15),
PA3(n = 50), PA4(n = 50), PL3(n = 50) and PL4(n = 50)—we had that for
λ = 0, the symmetric difference between the Kemeny and Kemeny-Nash rule was
greater than the symmetric difference between the Keney-Nash and MaxHam rule.
Moreover—for PA3(n = 50), PL3(n = 50) and PL4(n = 50), with λ = 0—we had
that the symmetric difference of the Kemeny and Kemeny-Nash rule was also greater
than that of the Kemeny-Nash and MaxEq rule. Figure 5.5 shows the results of the
quantitative analysis for the experiments that did not follow the average trends.

5.5.3 Zero-Effect Analysis

In all ten experiments with n = 5 judges, the Variance-Increasing Zero-Effect (VIZE)
did not occur. Figure 5.6 shows the average VIZE, averaged over the experiments
with n = 15 and n = 50 judges. On the x-axis we have the value of λ. It is
noteworthy that, in general, the VIZE decreases as λ increases. The step from
λ = 0.45 to λ = 0.55 is an exception; here the VIZE (slightly) increases. For 11/20
single experiments the VIZE increased from λ = 0.45 to λ = 0.55, for the other

22When clear from context, we may simply refer to the metric as the symmetric difference.

75



5.5. Results

(a) PA3(n = 50). (b) PL3(n = 50).

(c) PL4(n = 50).

Figure 5.3: Results of the qualitative analysis for PA3(n = 50) (upper left),
PL3(n = 50) (upper right) and PL4(n = 50) (below). The experiments are out-
liers; in these experiments the quality of the Kemeny-Nash solutions are equal to the
quality of the MaxHam and MaxEq solutions (for PA3(n = 50) and PL3(n = 50)).
For PL4(n = 50) the quality of the Kemeny-Nash solutions is equal to the qual-
ity of the solutions of the MaxHam rule. Moreover, the experiments are outliers
because of the effect that increasing λ from 0.00 to 0.01 has on the quality of the
solutions. For PA3(n = 50) and PL3(n = 50), the increase in Agravg is large, while
the increase in Agrmd and the decrease in Agrlow are negligible. For PL4(n = 50),
also when λ increases from 0.00 to 0.01, the increase in Agravg is significantly larger
than the increase in Agrmd (but still crucially smaller than the decrease in Agrlow).
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Figure 5.4: Results of the quantative analysis, averaging over all experiments.
On the x-axis we have the value of λ; the y-axis shows the symmetric difference
metric. The purple line represents the symmetric difference for the Kemeny and
Kemeny-Nash rules. The brown lines show the symmetric difference between the
Kemeny-Nash and egalitarian rules: symmetric difference between Kemeny-Nash
and MaxHam rule (solid) and between the Kemeny-Nash and MaxEq rule (dashed).
The grey lines indicate the symmetric difference between the Kemeny and MaxHam
rule (solid), and between the Kemeny and MaxEq rule (dashed).

experiments the VIZE decreased on this interval. For all experiments the increase
of the VIZE was non-positive on the range of λ = 0 to λ = 0.45.

In an attempt to find an analytical expression for the VIZE, we make the following
proposal. Given a multiset of profiles P ⊆ J (Φ,Γ) with n judgements, for the
Kemeny-Nash rule Fkn we propose the following approximation for the VIZE (that
depens on P only through the number of judgement n):

VIZE(Fkn, P ) ≈ C · exp(
√
n) · |{J | J, J ∈ J (Φ,Γ)}|

|J (Φ,Γ)|
· 1

|J (Φ,Γ)|
, with C ∈ R (5.7)

We propose that the VIZE increases as:

(i) The number of judgements in the profile increase (the more judgements in the
profile, the more consistent judgements are ‘occupied’ [i.e., appear in the pro-
file], the higher the probability that two antipodal judgements are occupied);

(ii) The number of consistent antipodal judgements, divided by the total number
of consistent judgement, increases (the greater this number, the higher the
probability that any two judgements in the profile are antipodal);

(iii) The number of consistent judgements decreases (if there are only a few con-
sistent judgements, the probability that a judgement is occupied is higher, so
the probability that an antipodal pair is occupied is also higher).
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(a) PA3(n = 15). (b) PA4(n = 50).

(c) PA3(n = 50). (d) PL3(n = 50). (e) PL4(n = 50).

Figure 5.5: Experiments that did not follow the average symmetric difference
trends. On the x-axis we have the value of λ, and on the y-axis the symmet-
ric difference metric. The purple line depicts the symmetric difference between
Kemeny and Kemeny-Nash, the solid brown line between Kemeny-Nash and Max-
Ham and the dashed brown line between Kemeny-Nash and MaxEq. The solid and
dashed grey lines show the symmetric difference between Kemeny and MaxHam
and that of Kemeny and MaxEq (respectively). In all (presented) experiments the
symmetric difference of Kemeny-Nash and MaxHam was smaller than the symmet-
ric difference of Kemeny and Kemeny-Nash (for λ = 0). For the lower experiments
we also have that the symmetric difference metric of Kemeny-Nash and MaxEq is
smaller than the metric of Kemeny and Kemeny-Nash (also for λ = 0).
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Figure 5.6: Results of the Variance-Increasing Zero-Effect (VIZE) analysis, aver-
aging over all experiments with n = 15 and n = 50 judges. On the x-axis we have
the value of the λ; the y-axis shows the value of VIZE. It is noteworthy that, as λ
increases, the VIZE decreases; except from λ = 0.45 to λ = 0.55, here the value of
the VIZE increases.

We believe that these relations make at least some sense, but the approximation
should be really seen as a first guess. The particular relations we used (e.g.,
VIZE∝ exp(

√
n)) are rather arbitrary, chosen to fit the data. In Table 5.3 we

present the measured value of the VIZE(Fkn, P ) (left) and, assuming our presented
approximation, the induced proportionality constant C (right). For experiments
that were not (significantly) effected by introducing the λ parameter, we print the
values in bold. We included average values for the experiments that were not (sig-
nificantly) effected by the value of λ, and for the experiments that were effected,
separately.

We hypothesised (in Section2.4) that increasing λ leads to a reduction of the
VIZE. If this is true, it would be reasonable to suggest that if the VIZE is already
small before the introduction of λ, the results of the experiment are not (or less)
significantly effected by λ. On average, we can see that both assumptions are (to
some extent) supported by the data.

Considering the proposed analytical expression for the VIZE, we see that the
different experiments imply very different proportionality constants; the proposed
analytical expression is actually not really substantiated by the data.

5.5.4 Number of Solutions

As we mentioned above, the (average) number of solutions that a rule returns for
a single profile is a relevant figure. If this number is larger than 1, the individuals
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VIZE(Fkn, P )

n = 5 n = 15 n = 50

0.0000 .0135 .0363
0.0000 .0362 .2735
0.0000 .0104 .0069
0.0000 .0024 .0015
0.0000 .0082 .0729
0.0000 .0017 .0014
0.0000 .0476 .3052
0.0000 .0212 .2036
0.0000 .0037 .0149
0.0000 .0029 .0052

Avg. no λ effect

.0000 .0038 .0027

Avg. λ effect

.0000 .0258 .1305

Proportionality Constant C

n = 5 n = 15 n = 50

1.2 6.0 147.2
1.6 8.0 196.2
0.6 2.8 69.7
0.1 0.4 9.2
0.4 2.0 49.1
0.0 0.1 2.3
1.2 6.0 147.2
0.6 3.0 73.6
0.1 0.8 18.4
0.1 0.4 9.2

Avg. no λ effect

0.3 0.7 6.9

Avg. λ effect

1.3 5.2 100.2

Table 5.3: VIZE (for λ = 0) and proportionality factor compared. Numbers for
scenarios that were not affected by λ are printed in bold. Evidently, on average,
these experiments have a lower VIZE and a lower proportionality factor.

are faced with the (non-trivial) problem of selecting a single outcome from the set
of ‘best’ outcomes.

Figure 5.7 shows the average number of returned solutions for the different rules:
Kemeny-Nash (yellow), Kemeny (blue), MaxHam (black) and MaxEq (red). It is
noteworthy that moving from λ = 0 to λ = 0.01, the number of returned solutions
for the Kemeny-Nash rule exhibits a significant drop, from 1.77 to 1.08. For λ > 0
the number of solutions of the Kemeny-Nash rule is lower than that of the Kemeny,
MaxHam and MaxEq rule. It is also remarkable that the number of returned so-
lutions for the Kemeny and Kemeny-Nash rule is crucially lower than that of the
MaxHam and MaxEq rule.

5.5.5 Time Analysis

We tested the time performance for our different methods—BF, ASP with opti-
misation (ASP OPT) and ASP with saturation (ASP SAT)—with different rules.
For the ASP SAT method roughly half of the scenarios did not terminate for the
Kemeny-Nash rule (λ = 0) and n = 5 judges. For this reason the method is deemed
useless for the purpose of this work, and the time results are not included.

For the BF solver and ASP OPT solver, the average time performance (over the
ten partial profiles) are shown in Table 5.4. We show the time required to generate
the scenario object (second column) and the times needed for a BF solver and ASP
OPT solver iteration (third and fifth column, respectively). In our implementation
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Figure 5.7: Average number of solutions, returned for a single profile, for the
different rules. The x-axis shows the value of λ. The lines indicate the number of
solutions (per profile) for the Kemeny-Nash rule (yellow), the Kemeny rule (blue),
the MaxHam rule (black), and the MaxEq rule (red). It is notable that the number
of solutions for the Kemeny-Nash rule shows a quick drop (1.77 to 1.08) when
λ = 0 is increased to λ = 0.01. When λ is further increased, the average number of
collective judgements is not further effected. For λ ≥ 0.01 the number of solutions
for the Kemeny-Nash rule is lower than for any of the other rules.

both methods require the creation of the scenario object. However, for the ASP
(OPT) solver this step could be circumvented; for that reason we also include the
sum of scenario creation and BF solver iteration (fourth column). To compare the
time performance of the different methods we should compare the fourth and fifth
column. It can be seen that for n = 5 judges the time performance for the BF solver
and ASP OPT solver are comparable, but the ASP solver is faster. For the Kemeny
rule with n = 15 judges, and n = 50 judges, the BF solver was significantly faster.
For the Kemeny-Nash rule, with λ = 0, the ASP method failed to terminate (in
any of the partial scenarios) for n = 50 judges; for n = 15 judges the BF solver
was significantly faster. Finally, for the Kemeny-Nash rule with λ = 0.05, the ASP
solver did not terminate for n = 15 and n = 50 judges (in any of the ten partial
scenarios).

The results validate our choice to use the BF solver method for the final experi-
ments.

5.6 Discussion

Here we discuss the results of the different parts of our analysis. Briefly, we can be
happy about the results of the qualitative analysis, because they convincingly show
that the Kemeny-Nash rule (indeed) provides solutions that are both fair (compared
to the Kemeny rule) and efficient (compared to the egalitarian rules). This alone
makes a further study of the Kemeny-Nash rule relevant. With our results we have
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Rule (Judges) Scen. (s) BF (s) Scen. + BF (s) ASP OPT (s)

Kemeny rule

5 judges 6.68 · 10−2 1.62 · 10−4 6.69 · 10−2 4.08 · 10−2

15 judges 6.14 · 10−2 4.47 · 10−4 6.18 · 10−2 1.15 · 10−1

50 judges 5.99 · 10−2 1.10 · 10−3 6.10 · 10−2 1.04

Kemeny-Nash rule (λ = 0)

5 judges 6.68 · 10−2 1.63 · 10−4 6.69 · 10−2 4.14 · 10−2

15 judges 6.14 · 10−2 4.48 · 10−4 6.18 · 10−2 1.20
50 judges 5.99 · 10−2 1.10 · 10−3 6.10 · 10−2 n/a

Kemeny-Nash rule (λ = 0.05)

5 judges 6.68 · 10−2 2.16 · 10−4 6.70 · 10−2 4.35 · 10−2

15 judges 6.14 · 10−2 4.75 · 10−4 6.19 · 10−2 n/a
50 judges 5.99 · 10−2 1.20 · 10−3 6.11 · 10−2 n/a

Table 5.4: Average (over ten partial scenarios) time performance of the BF solver
method and the ASP (with optimisation) solver method, for the Kemeny and
Kemeny-Nash rule (for λ = 0 and λ = 0.05). The second column shows the
time required to create the scenario object. The third and fifth column show the
(average) time of one solver iteration. Both solver methods (BF and ASP) require
creation of the scenario object, however for the ASP solver it would be easy to
circumvent this step. The results show that, even if we sum the time needed to
create the scenario and the time needed for a BF solver iteration, the BF method
is significantly faster for n = 15 and n = 50 judges. For n = 5 judges, the time
performance is comparable, albeit the ASP method was a bit faster.
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not been able to explain how the structure of a particular scenario relates to the
(qualitative and quantitative) results for that scenario. In particular, while we were
able to abstract general patterns in the data, we were not able to explain why
particular scenarios did not follow the general trend(s). Moreover, we do not know
how the structure of the scenario determines whether or not the scenario is affected
by variation of the λ parameter.

Qualitative analysis. The results validate the hypothesis that the Kemeny-Nash
rule mitigates the efficiency of the Kemeny rule with the fairness of the egalitarian
rules (MaxHam and MaxEq). On average, the efficiency of the Kemeny-Nash rule
was significantly higher than the efficiency of the egalitarian rules. Conversely,
the fairness of the Kemeny-Nash solutions was crucially better than the fairness of
the Kemeny solutions. In 3/30 experiments this average pattern was not followed.
In PA3(n = 50), PL3(n = 50) and PL4(n = 50), the quality of the Kemeny-Nash
solutions coincided with the quality of the solutions of one (or both) of the egalitarian
rules.

We hypothesised that introducing the λ parameter has a positive effect on the
quality of the solutions (as it decreases the VIZE). This hypothesis is countered
by the results. Overall we saw that (when λ increased) the increase in Agravg
was small, compared to the decrease of Agrlow and to the increase of Agrmd. The
experiments PA3(n = 50) and PL3(n = 50) are a clear exception to this rule, for
these experiments changing λ from 0.00 to 0.01 is clearly improving the quality of
the solutions.

Further, we saw that in 15/30 experiments the λ parameter had no (fundamental)
effect on the quality of the solutions. Moreover, we saw that the quality of the
solutions of this group of experiments was significantly lower for the Kemeny and
Kemeny-Nash rule—compared to the experiments that did depend on λ, for λ = 0.
We were unable to find out what features of an experiment determine the influence
of the λ parameter, or determine the average quality of the solutions.

Quantitative analysis. On average, the results show that (for λ = 0) the sym-
metric differences between the Kemeny-Nash and Kemeny rule is smaller than the
symmetric difference of both the Kemeny-Nash and MaxHam rule and the Kemeny-
Nash and MaxEq rule. On average, the solutions of the Kemeny-Nash rule lie closer
to those of the Kemeny rule than those of the MaxHam and MaxEq rules. This is
in correspondence with the results of the qualitative analysis; for the Kemeny-Nash
rule, Agravg was consistently closer to 1 than both Agrlow and Agrmd.

Moreover, we saw that the symmetric difference between the Kemeny-Nash rule
and the MaxHam (MaxEq) rule was lower than the symmetric difference between
the Kemeny and MaxHam (MaxEq) rule. This also corresponds to the results of the
qualitative analysis: Agrlow (Agrmd) were generally closer to 1 for the Kemeny-Nash
rule (compared to the Kemeny rule).
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Variance-Increasing Zero-Effect analysis. The results have shown that the
VIZE is not so helpful to understand the difference between the Kemeny-Nash and
Kemeny judgement aggregation rules.

As we expected, as λ increases, the VIZE (generally) decreases; but this decrease
was not accompanied by a better quality of the solutions. The results show that
the VIZE increases in the step from λ = 0.45 to λ = 0.55; the reason for this is not
known.

Running time: BF versus ASP. In our implementation the time performance
of the ASP solver was either comparable to that of the BF solver, or it was signifi-
cantly slower. This is contrary to what one would expect: De Haan and Slavkovik
(2019) and Botan et al. (2021) argue that ASP encodings should be particularly
suitable for solving judgement aggregation problems. We note that our ASP encod-
ing is ‘wrapped’ in a python package, which is moreover integrated with a BF solver
method; we suggest that this could be the reason that the full potential of the ASP
framework is not utilised in our implementation.

Number of solutions. From our examination of the (average) number of collec-
tive outcomes that is returned for a single profile, for the different rules, we learned
that this number is significantly higher (approximately four times) for the egalitar-
ian rules than it is for the Kemeny-Nash and Kemeny rule. Further, we learned that
the average number of solutions quickly drops (from 1.77 to 1.08) when λ = 0 is
increased to λ = 0.01. Contrary to our results of the qualitative analysis, this is an
argument in favour of setting λ to a small non-zero value.
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Chapter 6

Conclusion

In this chapter we summarise our results and suggest directions for future research.

6.1 Thesis Summary

In this thesis we studied a modification to the Kemeny rule; we introduced the
Kemeny-Nash judgement aggregation procedure. While the Kemeny rule can be
interpreted as maximising utilitarian social welfare, by maximising the product of
individual utilities, the Kemeny-Nash rule maximises Nash social welfare instead. In
other areas of social choice theory, notably in the fair division literature, maximising
Nash social welfare is known to provide solutions that are both fair and efficient.

Alongside the Kemeny-Nash rule, we introduced the parameterised Kemeny-
Nash rule. In the parameterised variant—when we maximise the product of indi-
vidual utilities—all zero-terms are replaced by a small positive value 0 < λ≪ 1.

In the main body of this work (Chapters 3, 4, and 5) used different tools to examine
the collective judgements that are returned by the Kemeny-Nash rule, and set them
apart from the judgements that are returned by the Kemeny rule. In subsequent
order, we studied axiomatic properties, the computational complexity of the outcome
determination problem, and we did experiments. Below we summarise the main
results for each of the chapters.

In Chapter 3 we studied the characterisation of the Kemeny rule by Nehring and
Pivato (2022). While the Kemeny-Nash rule satisfied none of the three axioms ((C),
(R), and (ESME)) that characterise the Kemeny rule, the parameterised Kemeny-Nash
rule did satisfy two of them ((C) and (R)).

For the other axioms we studied, neither the Kemeny-Nash, nor its parameterised
variant, satisfied (MP), this can be seen as a serious deficit of the rules. Further, we
studied two equity principles ((SHE) and (PD)),

In Chapter 4 we showed that the outcome determination problem for both the
Kemeny-Nash rule, as well as the parameterised Kemeny-Nash rule, is contained
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in ∆p
2, and hard for Θp

2. Although we were not able to show completeness, if the
problems are complete for some class C, the possibilities of C are narrowed down.
For the Kemeny rule the outcome determination problem is known to be complete
for Θp

2.

In Chapter 5 we did an experimental analysis. The analysis convincingly showed
that the collective judgements that are computed by the Kemeny-Nash rule are sig-
nificantly better in terms of fairness, and only slightly worse in terms of efficiency,
than the collective judgements that are produced by the Kemeny rule. Our hy-
pothesis that the instances of the VIZE—roughly, scenarios for which the spread of
the individual utilities is higher under the Kemeny-Nash rule, than under the Ke-
meny rule—was refuted. The Kemeny-Nash rule outperformed the parameterised
Kemeny-Nash rule.

6.2 Future Work

Even though we were unable to set the fairness of the Kemeny-Nash rule apart from
the fairness of the Kemeny rule, our experimental analysis substantiates a further
study of the Kemeny-Nash rule. To summarise important open questions of this
work; it would be relevant to (i) find or introduce fairness properties that distinguish
the Kemeny-Nash rule from the Kemeny rule, (ii) further analyse completeness of
the outcome determination problem for the Kemeny-Nash rule, and (iii) determine
in what circumstances the Kemeny-Nash rule be (particularly) suitable; we suggest
that finding an analytical expression for the VIZE might be helpful in this respect.

Finally, although we did consider different judgement aggregation scenarios in
our experimental approach, in no part of this work we treated the structure of the
agenda in any principled manner. As we mentioned in the In other judgement
aggregation problems—especially problems of an axiomatic nature—examining the
structure of the agenda led to new insights. Thus, a suggestion for future research
would be to study how the structure of the agenda influences the behaviour of the
Kemeny-Nash rule.
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