
Computational Issues in Voting COMSOC 2007

Computational Social Choice: Spring 2007

Ulle Endriss

Institute for Logic, Language and Computation

University of Amsterdam

Ulle Endriss 1

Computational Issues in Voting COMSOC 2007

Plan for Today

Voting is the archetypical form of making a collective decision.

As we have seen last week, there are a range of different voting

rules, all either satisfying or violating various properties.

Today we will concentrate on some of the computational questions

that arise in the context of voting. For instance:

• For a complex voting rule (think of the Dodgson rule), how do

we actually compute the winner (; algorithms)? And what is

the computational complexity of doing so?

• The Gibbard-Satterthwaite Theorem tells us that manipulation

is always possible. But how hard is it, computationally, to

actually find a manipulating ballot?

We will concentrate on discussing a few complexity results

concerning manipulation in detail, and then give a broad overview

over (some of) the other recent work in the field.

Ulle Endriss 2

Computational Issues in Voting COMSOC 2007

Recap: Complexity Theory

• Given a class of problems parametrised by their “size”, how

hard it is to solve a problem of size n?

• Distinguish: time/space worst-case/average-case complexity

• Problems solvable in polynomial time (P) are considered

tractable, those requiring exponential time (EXPTIME) not.

• Take a problem that requires searching through a tree. If you

are lucky and go down the right branch at every node, you may

need only polynomial time, otherwise exponential time.

A nondeterministic algorithm is a (hypothetical) algorithm

with an “oracle” that tells us which branch to explore next.

• NP is the class of decision problems that can be solved by such

nondeterministic algorithms in polynomial time.

Ulle Endriss 3

Computational Issues in Voting COMSOC 2007

Recap: Complexity Theory (cont.)

• Equivalent definition: NP is the class of problems for which a

candidate solution can be verified in polynomial time.

• A decision problem is NP-hard iff it is at least as hard as any

of the problems in NP.

• A decision problem is NP-complete iff it is NP-hard and in NP.

• We do not know whether P = NP, but strongly suspect P 6= NP.

• NP-complete problems are generally considered intractable.

Unless P = NP, there can be no general algorithm solving

NP-complete problems efficiently.

• As a rule of thumb, NP-completeness means that a näıve

approach won’t work, but a sophisticated algorithm may well

give good results in practice.

Ulle Endriss 4

Computational Issues in Voting COMSOC 2007

Complexity of Manipulation in Voting

The motivation for studying the computational complexity of

manipulation in voting is this:

• The Gibbard-Satterthwaite Theorem shows that manipulability

is a universal problem in voting: there can always be a

situation where a voter has an incentive not to vote sincerely,

with all its repercussions . . .

• But if it were computationally intractable to actually find out

how to vote in order to manipulate successfully, then this may

be deemed an acceptable risk.

Note: If it is hard to determine the winner for a voting rule, then it

is also hard to manipulate that voting rule (; uninteresting cases).

Ulle Endriss 5

Computational Issues in Voting COMSOC 2007

Complexity of Manipulation in Voting: Overview

The seminal paper by Bartholdi, Tovey and Trick (1989) starts by

showing that manipulation is in fact easy for a range of commonly

used voting rules, and only then presents one system (a variant of

the Copeland rule) for which manipulation is NP-complete.

• We first present a couple of these easiness results, namely for

plurality voting and for the Borda count .

• We then present an NP-completeness result from a follow-up

paper by Bartholdi and Orlin (1991): the manipulation of

single transferable vote (STV) for electing a single winner is

NP-complete.

J.J. Bartholdi III, C.A. Tovey, and M.A. Trick. The Computational Difficulty

of Manipulating an Election. Soc. Choice and Welfare, 6(3):227–241, 1989.

J.J. Bartholdi III and J.B. Orlin. Single Transferable Vote Resists Strategic

Voting. Social Choice and Welfare, 8(4):341–354, 1991.

Ulle Endriss 6

Computational Issues in Voting COMSOC 2007

Manipulability as a Decision Problem

We can cast the problem of manipulability, for a particular voting

rule f , as a decision problem:

Manipulability(f)

Instance: Set of ballots for all but one voter; candidate c.

Question: Is there a ballot for the final voter such that c wins?

We will be interested in the computational complexity of this

problem in terms of the number of candidates.

Ulle Endriss 7

Computational Issues in Voting COMSOC 2007

Manipulating the Plurality Rule

Recall the plurality rule:

• Each voter submits a ballot showing the name of one of the

candidates. The candidate receiving the most votes wins.

The plurality rule is easy to manipulate (trivial):

• Simply vote for c, the candidate to be made winner by means

of manipulation. If manipulation is possible at all, this will

work. Otherwise not.

That is, we have Manipulability(plurality) ∈ P.

Ulle Endriss 8

Computational Issues in Voting COMSOC 2007

Borda Rule

Recall the Borda rule:

• Each voter submits a complete ranking of all the m candidates.

• For each voter that places a candidate first, that candidate

receives m−1 points, for each voter that place her 2nd she

receives m−2 points, and so forth.

The Borda count is the sum of all the points.

• The candidate with the highest Borda count wins.

Ulle Endriss 9

Computational Issues in Voting COMSOC 2007

Manipulating the Borda Rule

The Borda rule is also easy to manipulate. Use a greedy algorithm:

• Place c (the candidate to be made winner through

manipulation) at the top of your declared preference ordering.

• Then inductively proceed as follows: Check if any of the

remaining candidates can be put next into the preference

ordering without preventing c from winning. If yes, do so. If

no, terminate and say that manipulation is impossible.

After convincing ourselves that this algorithm is indeed correct, we

also get Manipulability(Borda) ∈ P.

Remark: Bartholdi et al. (1989) give a characterisation of a whole

range of voting rules (including plurality and Borda), all of which

are easy to manipulate.

J.J. Bartholdi III, C.A. Tovey, and M.A. Trick. The Computational Difficulty

of Manipulating an Election. Soc. Choice and Welfare, 6(3):227–241, 1989.

Ulle Endriss 10

Computational Issues in Voting COMSOC 2007

Single Transferable Vote (STV)

Recall the STV system:

To select a single winner , it works as follows (voters submit ranked

preferences for all candidates):

• If one of the candidates is the 1st choice for over 50% of the

voters (quota), she wins.

• Otherwise, the candidate who is ranked 1st by the fewest

voters gets eliminated from the race.

• Votes for eliminated candidates get transferred: delete removed

candidates from ballots and “shift” rankings (e.g. if your 1st

choice got eliminated, then your 2nd choice becomes 1st).

Ulle Endriss 11

Computational Issues in Voting COMSOC 2007

Intractability of Manipulating STV

The main theorem for today:

Theorem 1 (Bartholdi and Orlin, 1991) Manipulation of STV

for electing a single winner is NP-complete.

Proof: Recall that proving NP-completeness requires proving both

NP-hardness and NP-membership. The latter is easy:

• Winner determination can be done in polynomial time (as the

number of rounds is limited by the number of candidates).

• If someone guesses a preference ordering to be used for

manipulation, we only need to run the polynomial winner

determination algorithm to check whether it worked. X

As usual, the hard bit is to prove NP-hardness . . .

J.J. Bartholdi III and J.B. Orlin. Single Transferable Vote Resists Strategic

Voting. Social Choice and Welfare, 8(4):341–354, 1991.

Ulle Endriss 12

Computational Issues in Voting COMSOC 2007

Proving NP-hardness

The following decision problem is known to be NP-complete:

3-Cover

Instance: Sets S1, . . . , Sm with |Si| = 3; S =
S

m

i=1
Si with |S| = n.

Question: Is there an I ⊆ {1..m} with |I| = n/3 and
S

i∈I
Si = S?

The proof for NP-hardness of Manipulability(STV) works by reducing

3-Cover to the former: Given any instance of 3-Cover, we can

construct an election which a manipulator can manipulate successfully iff

he can solve the 3-Cover problem.

The proof itself is somewhat tedious. First define a long list of voter

preferences, carefully constructed such that one of two candidates will

win. Then analyse that to make sure the one we don’t want to win does

not gain transferred votes, a whole list of other candidates need to stay

in the game (blocking). This induces complex relationships between

entries in the manipulator’s ranking, which turn out to correspond to

3-Cover (see paper for details) . . .

Ulle Endriss 13

Computational Issues in Voting COMSOC 2007

More on the Complexity of Voting

Much of the remainder of the lecture will be devoted to an

overview of other recent results on the computational complexity of

various decision problems arising in the context of voting.

No proofs will be given, in most cases not even exact statements of

technical results. The focus is on showing what kind of questions

people have been asking.

This part of the lecture is largely based on the recent survey by

Faliszewski, Hemaspaandra, Hemaspaandra and Rothe (2006).

P. Faliszewski, E. Hemaspaandra, L.A. Hemaspaandra, and J. Rothe. A Richer

Understanding of the Complexity of Election Systems. Technical Report TR-

2006-903, Dept. of Computer Science, University of Rochester, 2006.

Ulle Endriss 14

Computational Issues in Voting COMSOC 2007

Winner Determination

For a given voting rule, what is the computational complexity of

computing the winner for a given set of ballots?

In fact, we can distinguish several related problems:

• Compute the (or rather, a) winner of an election.

• Check whether a given candidate is a winner.

• Check whether one given candidate beats another given

candidate according to some metric (e.g. the Borda count).

• Check whether a certain metric (score) for a given candidate is

greater/less than some value K.

For a wide range of voting rules, all of these problems will be

computationally easy. This certainly includes all voting rules for

which manipulation is easy.

Ulle Endriss 15

Computational Issues in Voting COMSOC 2007

Computing Dodgson Winners

The first paper studying the computational complexity of determining

the winner of an election is another important paper by Bartholdi, Tovey

and Trick (1989). Recall the Dodgson rule:

• A Dodgson winner is a candidate minimising the number of

“switches” in the voters’ linear preference orderings required to

make that candidate a Condorcet winner.

Bartholdi et al. (1989) have shown that the aforementioned decision

problems related to winner determination under the Dodson rule are

NP-hard. This has later been refined by Hemaspaandra et al. (1997) . . .

but that requires some advanced complexity theory.

J.J. Bartholdi III, C.A. Tovey, and M.A. Trick. Voting schemes for which it can

be difficult to tell who won the election. Soc. Choice Welf., 6(2):157–165, 1989.

E. Hemaspaandra, L.A. Hemaspaandra, and J. Rothe. Exact Analysis of Dodg-

son Elections. Journal of the ACM, 44(6):806–825, 1997.

Ulle Endriss 16

Computational Issues in Voting COMSOC 2007

Computing Banks Winners

If a voting rule allows for several winners (as most do, before

tie-breaking), then it can happen that checking whether a

particular candidate is one of the winners is easier than finding

some winner. This is what happens for the Banks rule:

• Pairwise majority contests define a graph over candidates

(“tournament”). A candidate is a Banks winner iff it is the top

vertex in a maximal subgraph that is a linear order.

Woeginger (2003) has shown that checking if a given candidate is a

Banks winner is NP-complete, while Hudry (2004) has shown that

an arbitrary Banks winner can be computed in quadratic time.

G.J. Woeginger. Banks Winners in Tournaments are Difficult to Recognize.

Social Choice and Welfare, 20(3):523–528, 2003.

O. Hudry. A Note on “Banks Winners in Tournaments are Difficult to Recog-

nize” by G.J. Woeginger. Social Choice and Welfare, 23(1):113–114, 2004.

Ulle Endriss 17

Computational Issues in Voting COMSOC 2007

Bribery in Elections

When checking for manipulability , the name of the manipulator is

part of the input. Similarly for an generalisation of the problem

where we are checking for manipulability by a group of voters.

Bribery is the problem of finding ≤ K voters such that a suitable

change of their ballots will make a given candidate c win.

Intuitively, bribery is harder than manipulation (because we also

have to choose the manipulators).

See Faliszewski et al. (2006) to find out more . . .

Ulle Endriss 18

Computational Issues in Voting COMSOC 2007

Controlling an Election

People have studied the computational complexity of a range of

different ways of controlling an election:

• Adding or removing candidates.

• Adding or removing voters.

• In “electoral college”-style elections, redefine districts (if your

party is likely to win with a huge majority in district A, it may

be advantageous to merge part of it with district B . . .).

Control may be either constructive (to ensure a given candidate

wins) or destructive (to ensure a given candidate does not win).

Again, see Faliszewski et al. (2006) to find out more . . .

Ulle Endriss 19

Computational Issues in Voting COMSOC 2007

Other Computational Issues

We have concentrated on computational issues in voting that have to do

with computational complexity. But there are also others:

• What is the communication complexity of different voting rules, i.e.

how much information needs to be exchanged to determine the

winner of an election? See e.g. Conitzer and Sandholm (2005).

• When there are too many alternatives (; combinatorial domains),

we need concise representation languages to transmit preferences.

What are the implications on voting? See e.g. Lang (2007).

• Finally, we may use computers to systematically analyse (classical)

questions in voting theory. For example, Trick (2006), analyses

which voting rules are implementable by means of binary trees.

V. Conitzer and T. Sandholm. Communication Complexity of Common Voting

Rules. Proc. EC-2005.

J. Lang. Vote and Aggregation in Combinatorial Domains with Structured

Preferences. Proc. IJCAI-2007.

M. Trick. Small Binary Voting Trees. Proc. COMSOC-2006.

Ulle Endriss 20

Computational Issues in Voting COMSOC 2007

Summary

This has been an introduction to computational issues in voting.

We have concentrated on complexity results:

• Problems of which the complexity has been analysed:

winner determination, manipulation, bribery, control

• Winner determination should be computationally easy.

• For manipulation, bribery and control , intractability results are

positive results.

For manipulation, they suggest that the Gibbard-Satterthwaite

Theorem may not matter than much in practice . . . but beware

that the quoted NP-hardness results are worst-case results;

manipulation may well be easy on average.

Ulle Endriss 21

Computational Issues in Voting COMSOC 2007

References

The following three papers are the main references for this lecture:

• J.J. Bartholdi III, C.A. Tovey, and M.A. Trick.

The Computational Difficulty of Manipulating an Election.

Social Choice and Welfare, 6(3):227–241, 1989.

• J.J. Bartholdi III and J.B. Orlin. Single Transferable Vote

Resists Strategic Voting. Soc. Choice Welfare, 8(4):341–354,

1991.

• P. Faliszewski, E. Hemaspaandra, L.A. Hemaspaandra, and

J. Rothe. A Richer Understanding of the Complexity of

Election Systems. Technical Report TR-2006-903, Dept. of

Computer Science, University of Rochester, 2006.

Maybe rather surprisingly, you can get quite a lot out of all three of

them even if you choose to skip all the technical bits!

Ulle Endriss 22

