Computational Social Choice: Spring 2007

Ulle Endriss
Institute for Logic, Language and Computation
University of Amsterdam
Plan for Today

Voting is the archetypical form of making a collective decision. As we have seen last week, there are a range of different voting rules, all either satisfying or violating various properties.

Today we will concentrate on some of the computational questions that arise in the context of voting. For instance:

- For a complex voting rule (think of the Dodgson rule), how do we actually compute the winner (~ algorithms)? And what is the computational complexity of doing so?

- The Gibbard-Satterthwaite Theorem tells us that manipulation is always possible. But how hard is it, computationally, to actually find a manipulating ballot?

We will concentrate on discussing a few complexity results concerning manipulation in detail, and then give a broad overview over (some of) the other recent work in the field.
Recap: Complexity Theory

- Given a class of problems parametrised by their “size”, how hard it is to solve a problem of size \(n \)?
- Distinguish: time/space worst-case/average-case complexity
- Problems solvable in \(\text{polynomial} \) time (P) are considered tractable, those requiring \(\text{exponential} \) time (EXPTIME) not.
- Take a problem that requires searching through a tree. If you are lucky and go down the right branch at every node, you may need only polynomial time, otherwise exponential time.
 A \textit{nondeterministic} algorithm is a (hypothetical) algorithm with an “oracle” that tells us which branch to explore next.
- NP is the class of decision problems that can be solved by such \textit{nondeterministic} algorithms in \(\text{polynomial} \) time.
Recap: Complexity Theory (cont.)

- Equivalent definition: NP is the class of problems for which a candidate solution can be verified in polynomial time.
- A decision problem is \textit{NP-hard} iff it is at least as hard as any of the problems in NP.
- A decision problem is \textit{NP-complete} iff it is NP-hard and in NP.
- We do not know whether P = NP, but strongly suspect P \neq NP.
- NP-complete problems are generally considered intractable. Unless P = NP, there can be no general algorithm solving NP-complete problems efficiently.
- As a rule of thumb, NP-completeness means that a naïve approach won’t work, but a sophisticated algorithm may well give good results in practice.
Complexity of Manipulation in Voting

The motivation for studying the computational complexity of manipulation in voting is this:

- The Gibbard-Satterthwaite Theorem shows that manipulability is a universal problem in voting: there can always be a situation where a voter has an incentive not to vote sincerely, with all its repercussions . . .

- But if it were computationally intractable to actually find out how to vote in order to manipulate successfully, then this may be deemed an acceptable risk.

Note: If it is hard to determine the winner for a voting rule, then it is also hard to manipulate that voting rule (⇒ uninteresting cases).
Complexity of Manipulation in Voting: Overview

The seminal paper by Bartholdi, Tovey and Trick (1989) starts by showing that manipulation is in fact easy for a range of commonly used voting rules, and only then presents one system (a variant of the Copeland rule) for which manipulation is NP-complete.

- We first present a couple of these easiness results, namely for plurality voting and for the Borda count.

- We then present an NP-completeness result from a follow-up paper by Bartholdi and Orlin (1991): the manipulation of single transferable vote (STV) for electing a single winner is NP-complete.

Manipulability as a Decision Problem

We can cast the problem of manipulability, for a particular voting rule \(f \), as a decision problem:

\[
\text{Manipulability}(f)
\]

Instance: Set of ballots for all but one voter; candidate \(c \).

Question: Is there a ballot for the final voter such that \(c \) wins?

We will be interested in the computational complexity of this problem in terms of the *number of candidates*.
Manipulating the Plurality Rule

Recall the plurality rule:

- Each voter submits a ballot showing the name of one of the candidates. The candidate receiving the most votes wins.

The plurality rule is easy to manipulate (trivial):

- Simply vote for c, the candidate to be made winner by means of manipulation. If manipulation is possible at all, this will work. Otherwise not.

That is, we have $\text{MANIPULABILITY}(\text{plurality}) \in P$.
Borda Rule

Recall the Borda rule:

- Each voter submits a complete ranking of all the m candidates.
- For each voter that places a candidate first, that candidate receives $m-1$ points, for each voter that place her 2nd she receives $m-2$ points, and so forth.

 The Borda count is the sum of all the points.

- The candidate with the highest Borda count wins.
Manipulating the Borda Rule

The Borda rule is also easy to manipulate. Use a greedy algorithm:

- Place \(c \) (the candidate to be made winner through manipulation) at the top of your declared preference ordering.

- Then inductively proceed as follows: Check if any of the remaining candidates can be put next into the preference ordering without preventing \(c \) from winning. If yes, do so. If no, terminate and say that manipulation is impossible.

After convincing ourselves that this algorithm is indeed correct, we also get \(\text{MANIPULABILITY}(\text{Borda}) \in \mathbb{P} \).

Remark: Bartholdi et al. (1989) give a characterisation of a whole range of voting rules (including plurality and Borda), all of which are easy to manipulate.

Single Transferable Vote (STV)

Recall the STV system:

To select a single winner, it works as follows (voters submit ranked preferences for all candidates):

- If one of the candidates is the 1st choice for over 50% of the voters (quota), she wins.

- Otherwise, the candidate who is ranked 1st by the fewest voters gets eliminated from the race.

- Votes for eliminated candidates get transferred: delete removed candidates from ballots and “shift” rankings (e.g. if your 1st choice got eliminated, then your 2nd choice becomes 1st).
Intractability of Manipulating STV

The main theorem for today:

Theorem 1 (Bartholdi and Orlin, 1991) Manipulation of STV for electing a single winner is NP-complete.

Proof: Recall that proving NP-completeness requires proving both NP-hardness and NP-membership. The latter is easy:

- Winner determination can be done in polynomial time (as the number of rounds is limited by the number of candidates).
- If someone guesses a preference ordering to be used for manipulation, we only need to run the polynomial winner determination algorithm to check whether it worked. ✓

As usual, the hard bit is to prove NP-hardness . . .

Proving NP-hardness

The following decision problem is known to be NP-complete:

3-Cover

Instance: Sets S_1, \ldots, S_m with $|S_i| = 3$; $S = \bigcup_{i=1}^{m} S_i$ with $|S| = n$.

Question: Is there an $I \subseteq \{1..m\}$ with $|I| = n/3$ and $\bigcup_{i \in I} S_i = S$?

The proof for NP-hardness of MANIPULABILITY(STV) works by reducing 3-COVER to the former: Given any instance of 3-COVER, we can construct an election which a manipulator can manipulate successfully iff he can solve the 3-COVER problem.

The proof itself is somewhat tedious. First define a long list of voter preferences, carefully constructed such that one of two candidates will win. Then analyse that to make sure the one we don’t want to win does not gain transferred votes, a whole list of other candidates need to stay in the game (blocking). This induces complex relationships between entries in the manipulator’s ranking, which turn out to correspond to 3-COVER (see paper for details) . . .
More on the Complexity of Voting

Much of the remainder of the lecture will be devoted to an overview of other recent results on the computational complexity of various decision problems arising in the context of voting.

No proofs will be given, in most cases not even exact statements of technical results. The focus is on showing what kind of questions people have been asking.

This part of the lecture is largely based on the recent survey by Faliszewski, Hemaspaandra, Hemaspaandra and Rothe (2006).

Winner Determination

For a given voting rule, what is the computational complexity of computing the winner for a given set of ballots?

In fact, we can distinguish several related problems:

- Compute the (or rather, a) winner of an election.
- Check whether a given candidate is a winner.
- Check whether one given candidate beats another given candidate according to some metric (e.g. the Borda count).
- Check whether a certain metric (score) for a given candidate is greater/less than some value K.

For a wide range of voting rules, all of these problems will be computationally easy. This certainly includes all voting rules for which manipulation is easy.
Computing Dodgson Winners

The first paper studying the computational complexity of determining the winner of an election is another important paper by Bartholdi, Tovey and Trick (1989). Recall the *Dodgson rule*:

- A Dodgson winner is a candidate minimising the number of “switches” in the voters’ linear preference orderings required to make that candidate a Condorcet winner.

Bartholdi *et al.* (1989) have shown that the aforementioned decision problems related to winner determination under the Dodson rule are NP-hard. This has later been refined by Hemaspaandra *et al.* (1997) … but that requires some advanced complexity theory.

Computing Banks Winners

If a voting rule allows for several winners (as most do, before tie-breaking), then it can happen that checking whether a particular candidate is one of the winners is easier than finding some winner. This is what happens for the Banks rule:

- Pairwise majority contests define a graph over candidates ("tournament"). A candidate is a Banks winner iff it is the top vertex in a maximal subgraph that is a linear order.

Woeginger (2003) has shown that checking if a given candidate is a Banks winner is NP-complete, while Hudry (2004) has shown that an arbitrary Banks winner can be computed in quadratic time.

Bribery in Elections

When checking for *manipulability*, the name of the manipulator is part of the input. Similarly for an generalisation of the problem where we are checking for manipulability by a group of voters.

Bribery is the problem of finding $\leq K$ voters such that a suitable change of their ballots will make a given candidate c win.

Intuitively, bribery is harder than manipulation (because we also have to choose the manipulators).

See Faliszewski *et al.* (2006) to find out more . . .
Controlling an Election

People have studied the computational complexity of a range of different ways of controlling an election:

- Adding or removing *candidates*.
- Adding or removing *voters*.
- In “electoral college”-style elections, redefine *districts* (if your party is likely to win with a huge majority in district A, it may be advantageous to merge part of it with district B . . .).

Control may be either *constructive* (to ensure a given candidate wins) or *destructive* (to ensure a given candidate does not win).

Again, see Faliszewski *et al*. (2006) to find out more . . .
Other Computational Issues

We have concentrated on computational issues in voting that have to do with computational complexity. But there are also others:

- What is the communication complexity of different voting rules, \textit{i.e.} how much information needs to be exchanged to determine the winner of an election? See e.g. Conitzer and Sandholm (2005).
- When there are too many alternatives (\textit{\sim} combinatorial domains), we need concise representation languages to transmit preferences. What are the implications on voting? See e.g. Lang (2007).
- Finally, we may use computers to systematically analyse (classical) questions in voting theory. For example, Trick (2006), analyses which voting rules are implementable by means of binary trees.

\begin{itemize}
\end{itemize}
Summary

This has been an introduction to computational issues in voting. We have concentrated on complexity results:

- Problems of which the complexity has been analysed: winner determination, manipulation, bribery, control
- Winner determination should be computationally easy.
- For manipulation, bribery and control, intractability results are positive results.

For manipulation, they suggest that the Gibbard-Satterthwaite Theorem may not matter than much in practice . . . but beware that the quoted NP-hardness results are worst-case results; manipulation may well be easy on average.
References

The following three papers are the main references for this lecture:

Maybe rather surprisingly, you can get quite a lot out of all three of them even if you choose to skip all the technical bits!