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Overview

Introduction Describe weighted formulas and goal bases.

Review of properties of utility functions.

Expressivity Discussion of restrictions on goal base languages, and their
correspondence with properties of utility functions.

Uniqueness Demonstrate the uniqueness of representations in some languages.

Succinctness Consider the relative succinctness (efficiency of representation) of
several pairs of languages.

Complexity Review NP-hardness and -completeness.

Consider the difficulty of finding optimal assignments of goods in
some languages (efficiency of computation).

Applications An application of goal base languages to committee voting.
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Preferences and the Combinatorial Explosion

Preference orders on sets of items have compact representations:

> > >

But many kinds of resource allocation problems require agents to have preference

orderings over subsets of items:

{ , , , } > { , , } > { , , } >

{ , } > { , , } > { , } > { , } >

{ } > { , , } > { , } > { , } >

{ } > { , } > { } > { } > {}
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Efficient Representations

Given a set F of fruits there will be 2|F | subsets, which rapidly becomes too large
to handle. If we need full preferences from agents, we have to do something which
takes advantage of the structure of those preferences.

For example:

{( , 8), ( , 4), ( , 2), ( , 1)}

So whenever I have , it’s worth 4 to me, and so on. Since my preferences are
modular, we can write them in a concise way which takes advantage of that.

(Note that we’ve moved from ordinal to cardinal preferences, which will be the
subject of the rest of the lecture.)
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Weighted Formulas and Goal Bases

Definitions

◮ A weighted formula is a pair (ϕ, w), where ϕ is a propositional formula and
w ∈ R.

◮ A goal base is a set of weighted satisfiable formulas.

Examples
Goal bases:

∅ {(p, 42)} {(⊤,−2)} {(a, 1), (a ∧ a, 1)}

{

(a ∧ b,−5),

(

¬a ∨ d ,
22

7

)}

Not a goal base:

{(⊥, 3)}
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Goal Bases and Utility Functions

Definitions

◮ PS is a finite set of propositional variables.

◮ A utility function is a mapping u : 2PS → R.

◮ A model is a set M ⊆ PS (i.e., just the true atoms).

◮ Every goal base G generates a unique utility function uG :

uG (M) =
∑

{w : (ϕ, w) ∈ G and M |= ϕ}
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Expressivity: What Can I Say?

We can form a goal base language by taking any desired set of goal bases.

Given a goal base language, what utility functions can it express?

The goal base formalism suggests some subsets of goal bases to investigate:

◮ goal bases which use only a particular sort of formula, e.g., clauses or literals

◮ goal bases which use only a particular sort of weight, e.g., positive

Are there interesting correspondences between goal base languages and classes of
utility functions?
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Classes of Goal Bases

Definition
U(H , H ′) is the class of utility functions generated by goal bases meeting
restrictions H and H ′.

Here, we let H ⊆ LPS restrict the formulas of a goal base, and H ′ ⊆ R restrict
the weights.

Examples

U(atoms, pos) = atoms with positive weights
U(literals, {0, 1}) = literals with binary weights
U(cubes, all) = cubes with arbitrary weights
U(pclauses, neg) = positive clauses with negative weights

(Cubes and clauses are con- and disjunctions of literals, resp.)
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A Correspondence Theorem

Theorem
U(cubes, all) contains all utility functions.

Proof.
Given arbitrary u, define a corresponding G by states:

G =



































( p0 ∧ p1 ∧ p2 ∧ ... ∧ pn, u(PS) ),
( ¬p0 ∧ p1 ∧ p2 ∧ ... ∧ pn, u(PS \ {p0}) ),
( p0 ∧ ¬p1 ∧ p2 ∧ ... ∧ pn, u(PS \ {p1}) ),
( ¬p0 ∧ ¬p1 ∧ p2 ∧ ... ∧ pn, u(PS \ {p0, p1}) ),

...
...

...
( ¬p0 ∧ ¬p1 ∧ ¬p2 ∧ ... ∧ ¬pn, u(∅) )



































Corollary
U(all, all) is fully expressive.
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k-Additivity

A utility function u is k-additive if there is a mapping m : [PS]k → R such that

u(X ) =
∑

{m(Y ) : Y ⊆ X and Y ∈ [PS]k}

k-additive utility functions are those where there are no interactions among
subsets containing more than k items.

E.g., if u is 1-additive, then

u({a, b, c}) = u(∅) + u({a}) − u(∅) + u({b}) − u(∅) + u({c}) − u(∅)

which is the same as

u({a, b, c}) = m(∅) + m({a}) + m({b}) + m({c})

m(Y ) is just the utility that the set Y contributes whenever present. (m is unique
for each u. The map u 7→ m is called the Möbius inversion.)
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Another Correspondence Theorem

Theorem (Chevaleyre, Endriss, & Lang, 2006)
U(positive k-cubes, all) is the class of k-additive utility functions.

Proof.
If m is the k-additive mapping for u, define a goal base G from it:

G = {(p1 ∧ ... ∧ pj , w) : m({p1, ..., pj}) = w and j ≤ k}

Clearly, uG = u.

Conversely, if G ∈ U(positive k-cubes), then define m from it:

m(X ) = w for each (
∧

X , w) ∈ G

Since every
∧

X in G is a k-clause, m defines a k-additive function.

Many expressivity results may be derived from this one...
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Expressivity Summary

Formulas Weights Class of Utility Functions Reference

cubes all = all [CEL06, Prop. 4]
clauses all = all [CEL06, Prop. 4]
all all = all [CEL06, Prop. 4]
positive cubes all = all [CEL06, Prop. 4]
positive formulas all = all [CEL06, Prop. 4]
Horn all = all U&E
positive clauses all = normalized [CEL06, Prop. 5]
strictly positive formulas all = normalized [CEL06, Prop. 6]
k-cubes all = k-additive [CEL06, Prop. 2]
k-clauses all = k-additive [CEL06, Prop. 2]
k-formulas all = k-additive [CEL06, Prop. 2]
positive k-cubes all = k-additive [CEL06, Props. 1 & 2]
positive k-formulas all = k-additive [CEL06, Props. 1 & 2]
positive k-clauses all = normalized k-additive [CEL06, Prop. 3]
literals all = modular [CEL06, Prop. 7]
atoms all = normalized modular [CEL06, Prop. 8]
cubes positive = nonnegative [CEL06, Prop. 9]
formulas positive = nonnegative [CEL06, Prop. 9]
clauses positive ⊂ nonnegative [CEL06, Prop. 10]
strictly positive formulas positive = normalized monotonic [CEL06, Prop. 11]
positive clauses positive ⊂ normalized concave monotonic U&E
positive formulas positive = nonnegative monotonic U&E
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Uniqueness of Representations

A language has unique representations if every utility function it can represent is
generated by exactly one goal base in the language.

Languages with the uniqueness property are minimal with respect to the class of
utility functions to which they correspond. Any further restrictions will reduce
their expressivity.

Are there any such languages?

Yes, any language formed from a singleton class of goal bases is like this.

Are there any such (nontrivial!) languages?
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A Uniqueness Proof

Theorem
U(pclauses, all) has unique representations.

Proof
There are 2|PS| − 1 nonequivalent positive clauses, enumerated

ϕj =
∨

{pk : j & 2k = 1}

Each model i ∈ 2PS defines a constraint

ai1w1 + ... + aimwm = bi

where aĳ ∈ {0, 1} depending on whether clause j is true in state i , and
bi = u(Xi ). Neglecting state ∅ (since

∨

∅ = ⊥ is not a positive clause), we have...
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A Uniqueness Proof II

...this system










a11 · · · a1n

a21 · · · a2n

...
. . .

...
an1 · · · ann





















w1

w2

...
wn











=











b1

b2

...
bn











Any such system has a single unique solution when det(A) 6= 0.
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A Uniqueness Proof III

So A looks like this, for n = 1, 2, 3, ...:

A1 A2 A3

1 1 0 1

0 1 1

1 1 1

1 0 1 0 1 0 1

0 1 1 0 0 1 1

1 1 1 0 1 1 1

0 0 0 1 1 1 1

1 0 1 1 1 1 1

0 1 1 1 1 1 1

1 1 1 1 1 1 1

We can show that this pattern yields a nonzero determinant at all sizes, hence the
system has exactly one solution at all sizes. Thus, U(pclauses, all) has unique
representations.

Joel Uckelman (ILLC) Pref Rep with Weighted Formulas CSC lecture, 19 March 2007 16 / 36



What Good Is Uniqueness?

◮ Some languages have multiple languages with the uniqueness property:
U(pcubes, all) is also fully expressive and has unique representations (similar
proof).

◮ Uniqueness is useful when examining succinctness of languages.
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Succinctness

A given utility function may be represented by different goal bases:
E.g., for u(X ) = 1:

{(⊤, 1)} {(a ∧ b, 1), (a ∧ ¬b, 1), (¬a ∧ b, 1), (¬a ∧ ¬b, 1)}

One goal base is more succinct than the other.

For some pairs of languages, any goal base representable in one will have a shorter
representation in the other.

Succinctness measures how space-efficient languages are.
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A Definition of Succinctness

Definition
L � L′ (L′ is at least as succinct as L) iff there exist

◮ a function f : L → L′, and

◮ a polynomial p

such that for all G ∈ L

◮ uG = uf (G), and

◮ size(f (G)) ≤ p(size(G))

This is fine when L and L′ are equally expressive, but using this definition we
can’t compare them otherwise.
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A More General Definition

Definitions

◮ U(L) = {uG : G ∈ L} (the u.f. represented in the language)

◮ RepL(U) = {G ∈ L : uG ∈ U} (the L-reps. of a class of u.f.)

◮ L∩L′ = RepL(U(L) ∩ U(L′))
(the expressive intersection of L and L′ in L)

L � L′ (L′ is at least as succinct as L) iff there exist

◮ a function f : L∩L′ → L′
∩L, and

◮ a polynomial p

such that

◮ uG = uf (G), and

◮ size(f (G)) ≤ p(size(G))

for all G ∈ L∩L′ .

Joel Uckelman (ILLC) Pref Rep with Weighted Formulas CSC lecture, 19 March 2007 20 / 36



A Simple Strict Succinctness Result

Theorem
U(pclauses, all) ≺ U(clauses, all)

Proof.
U(pclauses, all) � U(clauses, all): Every pclause is a clause.

Consider the family un where un(X ) =

{

1 if X = PS

0 otherwise
(|PS| = n)

There is a linear clauses representation: {(⊤, 1), (
∨

{¬p : p ∈ PS},−1)}

Here is an exponential representation in pclauses:

{(

∨

X , wW

X

)

: ∅ ⊂ X ⊆ PS
}

wW

X =

{

1 if |X | is odd

−1 if |X | is even

By uniqueness, this is the sole pclauses representation of u.
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A Not-Quite-So-Simple Equivalence Result

Theorem
If Lcubes ⊆ Φ or Lclauses ⊆ Φ, Lcubes ⊆ Ψ or Lclauses ⊆ Ψ, and

Φ, Ψ ⊆ Lcubes∪clauses, then U(Φ, all) ∼ U(Ψ, all).

Proof
Suppose that G ∈ U(Φ, all). Enumerate (φi , wi) ∈ G and construct an equivalent
goal base G ′:

G0 = G

Gi+1 =

{

(Gi \ {(φi , wi)}) ∪ {(¬φi ,−wi), (⊤, wi)} if φi /∈ Ψ

Gi otherwise

and let G ′ = G|G |.

The transformation produces an equivalent goal base at each stage: Notice that
we can always replace a cube with a clause and ⊤, or a clause with a cube and ⊤.
The negation of a cube is a clause (and vice versa), and ⊤ is both a cube (

∧

∅)
and a clause (p ∨ ¬p). The final goal base, G ′, is in the target language.
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A Not-Quite-So-Simple Equivalence Result II

The transformation produces a goal base as succinct as the original: If φ is a
cube, then φ requires the same number of atoms and binary connectives as as ¬φ
(written as a clause); similarly, if φ is a clause. The only increase in size from G

to G ′ can come from the addition of ⊤, so we have that |G ′| ≤ |G | + 1.

Therefore, U(Φ, all) � U(Ψ, all), and by the same argument U(Ψ, all) � U(Φ, all);
hence U(Φ, all) ∼ U(Ψ, all).

Corollary
U(cubes, all) ∼ U(clauses, all)
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Succinctness Summary

Result Reference

positive clauses all ≺ clauses all U&E
positive clauses all ⊥ positive cubes all U&E
cubes all ≺ all all Chevaleyre
clauses all ≺ all all U&E
clauses all ∼ cubes all U&E
positive cubes all ≺ cubes all [CEL06, Prop. 13]
complete cubes all ⊥ positive cubes all [CEL06, p. 150]
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Finding Optimal Allocations

Definition
The decision problem Max-Utility(H , H ′) is defined as: Given a goal base
G ∈ U(H , H ′) and an integer K , check whether there is a model M ∈ 2PS where
uG (M) ≥ K .

Uses

◮ Finding an agent’s most preferred state

◮ Finding an optimal state overall, by goal base summation

◮ Similar to Winner Determination Problem in auctions and voting
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Max-Util Is Easy, Sometimes

First, notice that the complexity of testing whether uG (M) ≥ K is linear in the
size of G .

Theorem
Max-Util(positive, positive) ∈ P

Proof.
If G ∈ U(positive, positive), then PS is at least as good as any other state, since
PS |= ϕ and w > 0 for all (ϕ, w) ∈ G . Check whether uG (PS) ≥ K . This is
linear in the size of G .

Theorem
Max-Util(literals, all) ∈ P

Proof.
Suppose G ∈ U(literals, all). Make one pass over G , keeping a running tally of the
difference between p and ¬p weights for each p ∈ PS. When done, put any p

with a positive difference in M . Check whether uG (M) ≥ K . This is polynomial in
the size of G .
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NP-Completeness

A quick computational complexity refresher:

◮ NP is the class of decision problems for which solutions may be checked in
polynomial time. That is, if I guess a solution, you can verify whether it’s
correct in polynomial time (where the polynomial is in the size of the input).
Membership is an upper bound on complexity.

◮ A decision problem D is NP-hard if it is at least as hard as every other
problem in NP. Hardness is a lower bound on complexity.

◮ NP-hardness of a problem D is usually demonstrated by transforming
(polynomially!) a known NP-hard problem into D. This tells you that your
problem is at least as hard as the known NP-hard problem, and so is NP-hard
itself.

◮ A decision problem D is NP-complete if both D ∈ NP and D is NP-hard.
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Max-Util Is Hard, Sometimes

Definition
The decision problem Max k-Constraint Sat is defined as: Given a set C of
k-cubes in PS and an integer K , check whether there is a model M ∈ 2PS which
satisfies at least K of the k-cubes in C .

Max k-Constraint Sat is known to be NP-complete [ACGKMS99].

Theorem
Max-Util(k-cubes, positive) is NP-complete for k ≥ 2.

Proof.
NP-membership: Given any M , K we can polynomially check whether
uG (M) ≥ K .

NP-hardness: We exhibit a polynomial reduction of Max k-Constraint Sat to
Max-Util(k-cubes, positive): Given a set C of k-cubes and an integer K ,
construct a goal base G = {(c , 1) : c ∈ C}. Then there is a model M satisfying at
least K k-cubes in C iff there is a model M (actually, the same M) for which
uG (M) ≥ K .
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Complexity Summary

Formulas Weights Max-Utility Reference

cubes all NP R ⊃ R
+

clauses all NP R ⊃ R
+

all all NP [CEL06, p. 151]
positive cubes all NP positive cubes ⊃ positive k-cubes
positive clauses all NP positive clauses ⊃ positive k-clauses
positive formulas all NP positive formulas ⊃ positive cubes
Horn all NP Horn ⊃ negative clauses
strictly positive formulas all NP strictly positive formulas ⊃ positive cubes

k-cubes all NP, k ≥ 2 R ⊃ R
+

k-clauses all NP, k ≥ 2 R ⊃ R
+

k-formulas all NP, k ≥ 2 R ⊃ R
+

positive k-cubes all NP, k ≥ 2 U&E
positive k-clauses all NP, k ≥ 2 U&E
positive k-formulas all NP, k ≥ 2 k-formulas ⊃ k-cubes
literals all P [CEL06, p. 151]
atoms all P atoms ⊂ literals
cubes positive NP cubes ⊃ k-cubes
clauses positive NP clauses ⊃ k-clauses
Horn positive NP Horn ⊃ k-Horn
all positive NP all ⊃ k-clauses
positive cubes positive P positive cubes ⊂ positive formulas
positive formulas positive P [CEL06, p. 151]
positive clauses positive P positive clauses ⊂ positive formulas
strictly positive formulas positive P strictly positive formulas ⊂ positive formulas
k-cubes positive NP, k ≥ 2 U&E
k-clauses positive NP, k ≥ 2 [CEL06, p. 151]
k-Horn positive NP, k ≥ 2 U&E
k-formulas positive NP, k ≥ 2 k-formulas ⊃ k-clauses
positive k-cubes positive P positive k-cubes ⊂ positive formulas
positive k-formulas positive P positive k-formulas ⊂ positive formulas
positive k-clauses positive P positive k-clauses ⊂ positive formulas

Joel Uckelman (ILLC) Pref Rep with Weighted Formulas CSC lecture, 19 March 2007 29 / 36



So You Want to Elect a Committee... Are You Sure?

We always carry out by committee anything in which any one of us

alone would be too reasonable to persist.

—Frank Moore Colby (1865–1925), American essayist
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Extending Single-Winner Voting Methods

Suppose that we want to elect a committee with k seats from a field of n

candidates. How might we do it?

We could extend some single-winner voting method, such as

◮ Plurality voting: Each voter casts one vote for one candidate; the candidate
receiving the most votes is the winner.

◮ Approval voting: Each voter casts a maximum of one vote for each
candidate; the candidate receiving the most votes is the winner.

A naïve way of extending each would be to make the top k candidates winners.

Neither method is very expressive:

◮ Plurality can express only preferences where one candidate has utility 1 and
the rest utility 0.

◮ Approval can express preferences where a subset of candidates each has
utility 1 and each candidate in the complement has utility 0.

Maybe we can do something else to better reflect voter preferences...
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How Similar Are Two Approval Ballots?

Consider approval ballots as vectors of 0s and 1s. The Hamming distance between
two approval ballots is the number of places in which they differ.

Example
The Hamming distance between 00111 and 10101 is 2.

Instead of forming the committee from the top k vote-getters, we could make the
winning committee the one which minimizes the sum of Hamming distances to
the ballots cast:

committee c is a winner iff ∀c ′ ∈ C ,
∑

b∈B

H(c , b) ≤
∑

b∈B

H(c ′, b)

or which minimizes the maximum Hamming distance to any ballot:

committee c is a winner iff ∀c ′ ∈ C , max
b∈B

H(c , b) ≤ max
b∈B

H(c ′, b)

where C is the set of possible committees and B the set of ballots cast. [BKS06]

Problem: Do voters have the same similarity metric?
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Goal Bases as Ballots

Plurality voting and approval voting may be done with the goal base languages
U(atom, {1}) and U(atoms, {1}), respectively.

E.g., {(Gore, 1)} is a plurality ballot, and {(Gore, 1), (Nader, 1)} is an approval
ballot.

We can find the winner of an election using goal base ballots by summing the goal
bases:

G ⊕ G ′ =









ϕ,
∑

(ϕ,a)∈G

a +
∑

(ϕ,b)∈G ′

b



 : ϕ ∈ For(G ∪ G ′)







and then using Max-Util with increasing K to find an optimal state,
disregarding states which contain an inappropriate number of atoms.

(Notice that {(p, 1)} ⊕ {(p ∧ p, 1)} 6= {(p, 2)}.)
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A Committee Election Example

Common multi-winner voting systems cannot express nonmodular preferences
(same problem we had with the fruit basket at the start).

Suppose we have a voter with preferences like this:

Alice, Bob > neither > both

What ballot should this voter cast when using plurality or approval voting?

When we express ballots as goal bases, we have an obvious way to get more
expressivity: Use more formulas! Use more weights!

A voter with these preferences could express them like so in the full language:

{(a ∨ b, 1), (a ∧ b,−2)}

Fine, but we can’t let voters submit any goal bases as ballots...
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Committee Voting—What Next?

◮ Isn’t Max-Util too hard for committee voting? No, because complexity
depends on # of candidates and seats, not # of voters.

◮ What languages are good for committee voting? In terms of complexity? In
terms of expressivity? In terms of ease of use for voters?

◮ Can we avoid Gibbard-Satterthwaite?

Recall that G-S says (details omitted) that for ≥ 3 candidates, every voting
rule is dictatorial or manipulable. G-S relies on the assumption that a voter
be able to cast a sincere ballot. Suppose that we take a restricted language,
so that voters have no sincere option. If we put a distance metric on ballots,
we could then call the set of ballots nearest to the voter’s true preferences
the most sincere ones. Maybe we could get a weak form of strategyproofness
this way, by expanding the number of ballots which count as sincere.

◮ How hard is (standard) manipulation? Probably quite hard, given a
reasonable voting language.
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