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Plan for Today

Last time have discussed the various parameters pertaining to the
specification of a MARA problem. Today we will talk about
approaches to solving such a MARA problem . . .

• Distinction of centralised and distributed allocation procedures

– Brief mentioning of (centralised) auction protocols (to be
discussed in depth in a future lecture)

– Brief mentioning of the practical aspects of implementing
distributed resource allocation systems (Contract Net)

• Properties of distributed resource allocation procedures:

– Guaranteeing convergence to a socially desirable allocation
by means of a sequence of local negotiation steps

– Different aspects of complexity of the above
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Allocation Procedures

To solve a MARA problem, we firstly need to decide on an
allocation procedure. This is a complex issue, involving at least:

• Protocols: What types of deals are possible? What messages
do agents have to exchange to agree on one such deal?

• Strategies: What strategies can agents use for a given protocol?
How can we incentivise agents to behave in a certain way?

• Algorithms: How do we solve the computational problems
faced by agents when engaged in negotiation?
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Centralised vs. Distributed Negotiation

An allocation procedure to determine a suitable allocation of
resources may be either centralised or distributed:

• In the centralised case, a single entity decides on the final
allocation, possibly after having elicited the preferences of the
other agents. Example: combinatorial auctions

• In the distributed case, allocations emerge as the result of a
sequence of local negotiation steps. Such local steps may or
may not be subject to structural restrictions (for instance, the
protocol may only allow for bilateral deals).

Which approach is appropriate under what circumstances?
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Advantages of the Centralised Approach

Much recent work on negotiation and resource allocation
(particularly in the MAS community) has concentrated on
centralised approaches, in particular on combinatorial auctions.

There are several reasons for this:

• The communication protocols required are relatively simple.

• Many results from economics and game theory , in particular on
mechanism design, can be exploited.

• Recent advances in the design of powerful algorithms for
winner determination in combinatorial auctions.
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Disadvantages of the Centralised Approach

But there are also some disadvantages to the centralised approach:

• Can we trust the centre (the auctioneer)?

• Does the centre have the computational resources required?
(but beware: distributing it doesn’t dissolve NP-hardness)

• Less natural to take an initial allocation into account (in an
auction, usually the auctioneer owns everything to begin with).

• Less natural to model step-wise improvements.

• Arguably, only the distributed approach is a serious
implementation of the MAS paradigm (that is, while
admittedly being difficult, we would really like to understand
how to make distributed decision making work . . . ).
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Auction Protocols

Auctions are centralised mechanisms for the allocation of goods
amongst several agents. Agents report their preferences (bidding)
and the auctioneer decides on the final allocation (and on prices).

• Distinguish direct and reverse auctions (auctioneer buying).

• Bidding may be open-cry (English) or by sealed bids.

• Open-cry: ascending (English) or descending bids (Dutch).

• Pricing rule: first-price or second-price (Vickrey).

• Combinatorial auctions: several goods, sold/bought in bundles.

(Auctions will be the subject of a future lecture.)

R.P. McAfee and J. McMillan. Auctions and Bidding Journal of Economic

Literature, 25:699–738, 1987.

P. Cramton, Y. Shoham, and R.Steinberg (eds.). Combinatorial Auctions,

MIT Press, 2006.
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The Contract Net Protocol

Originally developed for task decomposition and allocation, but
also applicable to distributed negotiation over resources. Each agent
may assume the roles of manager and bidder . The Contract Net
protocol is a one-to-many protocol matching an offer by a manager
to one of potentially many bidders. There are four phases:

• Announcement phase: The manager advertises a deal to a
number of partner agents (the bidders).

• Bidding phase: The bidders send proposals to the manager.

• Assignment phase: The manager elects the best bid and
assigns the resource(s) accordingly.

• Confirmation phase: The elected bidder sends a confirmation.

R.G. Smith. The Contract Net Protocol: High-level Communication and Con-

trol in a Distributed Problem Solver. IEEE Trans. Comp., 29:1104–1113, 1980.
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Extensions

The immediate adaptation of the original Contract Net protocol
only allows managers to advertise a single resource at a time, and a
bidder can only offer money in return for that resource (not other
items). Possible extensions:

• Allow for negotiation over the exchanges of bundles of items.

• Allow for deals without explicit utility transfers (monetary
payments). The announcement phase remains the same, but
bids are now about offering resources in exchange, not money.

• Allow agents to negotiate several deals concurrently and to
decommit from deals within a certain period.

• In levelled-commitment contracts, agents are also allowed to
decommit, but have to pay a pre-defined penalty .

Refer to the MARA Survey for references to these works.
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Properties of Allocation Procedures

We may study different properties of allocation procedures:

• Termination: Is the procedure guaranteed to terminate
eventually?

• Convergence: Will the final allocation be optimal according to
our chosen social welfare measure?

• Incentive-compatibility: Do agents have an incentive to report
their valuations truthfully? (; mechanism design)

• Complexity results: What is the computational complexity of
finding a socially optimal allocation of resources?

Next, we are going to see an example for a convergence property . . .
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Negotiating Socially Optimal Allocations

We are now going to analyse a specific model of distributed
negotiation (defined on the next slide).

We are not going to talk about designing a concrete negotiation
protocol, but rather study the framework from an abstract point of
view. The main question concerns the relationship between

• the local view: what deals will agents make in response to their
individual preferences?; and

• the global view: how will the overall allocation of resources
evolve in terms of social welfare?

U. Endriss, N. Maudet, F. Sadri and F. Toni. Negotiating Socially Optimal

Allocations of Resources. Journal of AI Research, 25:315–348, 2006.
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An Abstract Negotiation Framework

• Finite set of agents A and finite set of indivisible resources R.

• An allocation A is a partitioning of R amongst the agents in A.
Example: A(i) = {r5, r7} — agent i owns resources r5 and r7

• Every agent i ∈ A has got a utility function ui : 2R → R.
Example: ui(A) = ui(A(i)) = 577.8 — agent i is pretty happy

• Agents may engage in negotiation to exchange resources in
order to benefit either themselves or society as a whole.

• A deal δ = (A,A′) is a pair of allocations (before/after).

• A deal may come with a number of side payments to
compensate some of the agents for a loss in utility.
A payment function is a function p : A → R with

∑
i∈A

p(i) = 0.

Example: p(i) = 5 and p(j) = −5 means that agent i pays e5,
while agent j receives e5.
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The Local/Individual Perspective

A rational agent (who does not plan ahead) will only accept deals
that improve its individual welfare:

I A deal δ = (A,A′) is called individually rational iff there exists
a payment function p such that ui(A′)− ui(A) > p(i) for all
i ∈ A, except possibly p(i) = 0 for agents i with A(i) = A′(i).

That is, an agent will only accept a deal iff it results in a gain in
utility (or money) that strictly outweighs a possible loss in money
(or utility).
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The Global/Social Perspective

As emphasised in earlier lectures, there are many different (fairness
or efficiency) criteria that we could use to define our goals.

For now, suppose that as system designers we are interested in
maximising utilitarian social welfare:

swu(A) =
∑

i∈Agents

ui(A)

Observe that there is no need to include the agents’ monetary
balances into this definition, because they’d always add up to 0.

While the local perspective is driving the negotiation process, we
use the global perspective to assess how well we are doing.
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Example

Let A = {ann, bob} and R = {chair , table} and suppose our agents
use the following utility functions:

uann({ }) = 0 ubob({ }) = 0

uann({chair}) = 2 ubob({chair}) = 3

uann({table}) = 3 ubob({table}) = 3

uann({chair , table}) = 7 ubob({chair , table}) = 8

Furthermore, suppose the initial allocation of resources is A0 with
A0(ann) = {chair , table} and A0(bob) = { }.

Social welfare for allocation A0 is 7, but it could be 8. By moving
only a single resource from agent ann to agent bob, the former
would lose more than the latter would gain (not IR). The only
possible deal would be to move the whole set {chair , table}.
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Linking the Local and the Global Perspectives

It turns out that individually rational deals are exactly those deals
that increase social welfare:

Lemma 1 (Rationality and social welfare) A deal δ = (A,A′)
with side payments is individually rational iff swu(A) < swu(A′).

Proof: “⇒”: Rationality means that overall utility gains outweigh
overall payments (which are = 0).

“⇐”: The social surplus can be divided amongst all deal
participants by using, say, the following payment function:

p(i) = ui(A′) − ui(A) − swu(A′)− swu(A)
|A|︸ ︷︷ ︸
> 0 X

Discussion: The lemma confirms that individually rational
behaviour is “appropriate” in utilitarian societies.
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Convergence

It is now easy to prove the following convergence result (originally
stated by Sandholm in the context of distributed task allocation):

Theorem 1 (Sandholm, 1998) Any sequence of IR deals will
eventually result in an allocation with maximal social welfare.

Proof: Termination follows from our lemma and the fact that the
number of allocations is finite So let A be the terminal allocation.
Assume A is not optimal, i.e. there exists an allocation A′ with
swu(A) < swu(A′). Then, by our lemma, δ = (A,A′) is individually
rational ⇒ contradiction. X

Discussion: Agents can act locally and need not be aware of the
global picture (convergence is guaranteed by the theorem).

T. Sandholm. Contract Types for Satisficing Task Allocation: I Theoretical

Results. Proc. AAAI Spring Symposium 1998.
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Multilateral Negotiation

On the downside, outcomes that maximise social welfare can only
be guaranteed if the negotiation protocol allows for deals involving
any number of agents and resources:

Theorem 2 (Necessity of complex deals) Any deal δ = (A,A′)
may be necessary, i.e. there are utility functions and an initial
allocation such that any sequence of individually rational deals
leading to an allocation with maximal social welfare would have to
include δ (unless δ is “independently decomposable”).

The proof involves the systematic definition of utility functions
such that A′ is optimal and A is the second best allocation.

Independently decomposable deals (to which the result does not
apply) are deals that can be split into two subdeals concerning
distinct sets of agents.
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Negotiation in Restricted Domains

Most work on negotiation in MAS is concerned with bilateral
negotiation or auctions. ; Multilateral negotiation is difficult!

Maybe we can guarantee convergence to a socially optimal
allocation for structurally simpler types of deals if we restrict the
range of utility functions that agents can use?

First, two negative results:

• Theorem 2 continues to hold even when all agents have to use
monotonic utility functions. [R1 ⊆ R2 ⇒ ui(R1) ≤ ui(R2)]

• Theorem 2 continues to hold even when all agents have to use
dichotomous utility functions. [ui(R) = 0 ∨ ui(R) = 1]
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Modular Domains

A utility function ui is called modular iff it satisfies the following

condition for all bundles R1, R2 ⊆ R:

ui(R1 ∪R2) = ui(R1) + ui(R2)− ui(R1 ∩R2)

That is, in a modular domain there are no synergies between items; you

can get the utility of a bundle by adding up the utilities of its elements.

I Negotiation in modular domains is feasible:

Theorem 3 (Modular domains) If all utility functions are modular,

then individually rational 1-deals (each involving just one resource)

suffice to guarantee outcomes with maximal social welfare.

We also know that the class of modular utility functions is maximal: no

strictly larger class could still guarantee the same convergence property.

Y. Chevaleyre, U. Endriss, and N. Maudet. On Maximal Classes of Utility

Functions for Efficient one-to-one Negotiation. Proc. IJCAI-2005.
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Simulation and Experiments
While we know from Theorem 3 that 1-deals (blue) guarantee an optimal

result, an experiment (20 agents, 200 resources, modular utilities)

suggests that general bilateral deals (red) achieve the same goal faster:

The graph shows how utilitarian social welfare (y-axis) develops as agents

attempt to contract more an more deals (x-axis) amongst themselves.

Graph generated using the MADRAS platform of Buisman et al. (2007).

H. Buisman, G. Kruitbosch, N. Peek, and U. Endriss. Simulation of Negotia-

tion Policies in Distributed MARA. Proc. ESAW-2007.
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Communication Complexity

• Last time’s NP-completeness results concern the computational
complexity of an abstract problem: finding a socially optimal
allocation somehow (not necessarily by negotiation).

• What we are really interested in is the complexity of actual
negotiation processes.

• So we should also consider the communication complexity of
negotiating socially optimal allocations: focus on the length of
negotiation processes and the amount of information
exchanged, rather than just on computational aspects.

U. Endriss and N. Maudet. On the Communication Complexity of Multilateral

Trading. Journal of Autonomous Agents and MAS, 11(1):91–107, 2005.
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Aspects of Complexity

(1) How many deals are required to reach an optimal allocation?

– communication complexity as number of individual deals

– technical results to follow

(2) How many dialogue moves are required to make one such deal?

– affects communication complexity as number of moves

(3) How expressive a communication language do we require?

– Minimum requirements: propose, accept , reject
+ content language to specify multilateral deals

– affects communication complexity as number of bits
exchanged

(4) How complex is the reasoning task faced by an agent when
deciding on its next dialogue move?

– computational complexity (local rather than global view)
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Number of Deals

There are two results on upper bounds pertaining to the first variant
of our negotiation framework (with side payments, general utility
functions, and aiming at maximising utilitarian social welfare):

Theorem 4 (Shortest path) A single rational deal is sufficient
to reach an allocation with maximal social welfare.

Proof: Use Lemma 1 [δ = (A,A′) is IR iff swu(A) < swu(A′)]. X

Theorem 5 (Longest path) A sequence of rational deals can
consist of up to |A||R| − 1 deals, but not more.

Proof: No allocation can be visited twice (same lemma) and there
are |A||R| distinct allocations ⇒ upper bound follows.
To show that the upper bound is tight , we need to show that it is
possible that all allocations have distinct social welfare . . . X
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Path Length in Modular Domains

If all agents are using modular utility functions and only negotiate
1-deals, then we obtain the following bounds:

• Shortest path: ≤ |R|

• Longest path: ≤ |R| · (|A| − 1)

There are similar results for a framework without monetary side
payments (where the goal is to reach a Pareto optimal allocation).

Dunne (2005) has also worked on the topic of communication
complexity in distributed negotiation, but generally this is still very
much an under-explored area . . .

P.E. Dunne. Extremal Behaviour in Multiagent Contract Negotiation. Journal

of Artificial Intelligence Research, 23:41–78, 2005.
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More on Convergence

Generally, it is interesting to see for what kind of combination of
deals and optimality criteria we can get convergence results:

• Deals: structural constraints and rationality criteria

• Optimality criteria: various SWOs, degrees of envy, . . .

For example, the result (Theorem 1) we have discussed in detail
shows that by using the rationality criterion given by our definition
of individual rationality and by not imposing any structural
constraints, we can guarantee convergence with respect to the
optimality criterion given by the notion of utilitarian social welfare.
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More on Convergence (cont.)
Known results include the following:

• Pareto optimal outcomes can be guaranteed by means of rational

deals without money

• Outcomes maximising egalitarian social welfare by means of a

specifically designed class of deals (need to give up selfishness)

• Envy-free outcomes by means of IR deals, under various side

conditions (supermodular utilities, specific payments, . . . )

• The work on envy-freeness can also be extended to scenarios with

negotiation (and envy) “modulo a graph” . . .

U. Endriss, N. Maudet, F. Sadri and F. Toni. Negotiating Socially Optimal

Allocations of Resources. Journal of AI Research, 25:315–348, 2006.

Y. Chevaleyre, U. Endriss, S. Estivie, and N. Maudet. Reaching Envy-free

States in Distributed Negotiation Settings. Proc. IJCAI-2007.

Y. Chevaleyre, U. Endriss, and N. Maudet. Allocating Goods on a Graph to

Eliminate Envy. Proc. AAAI-2007.
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Summary

We have discussed the following issues (see also the MARA Survey):

• Pros and cons of using a centralised/distributed approach

– Most of the lecture has then been on distributed negotiation

– Centralised allocation procedures (combinatorial auctions) will

be the subject of a future lecture.

• Abstract negotiation framework for indivisible resources:

– Unspecified how exactly deals are being agreed upon (could be

something like Contract Net, but it’s definitely non-trivial)

– Only defined minimal conditions for deal acceptability

(“myopic”), rather than to worry about game-theoretical issues

• Technical results on convergence and (communication) complexity

Y. Chevaleyre, P.E. Dunne, U. Endriss, J. Lang, M. Lemâıtre, N. Maudet,

J. Padget, S. Phelps, J.A. Rodŕıguez-Aguilar and P. Sousa. Issues in Multia-

gent Resource Allocation. Informatica, 30:3–31, 2006.
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