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Plan for Today

Multiagent resource allocation is the problem of dividing a set of

resources amongst a group of agents, given certain criteria.

We will start with a very brief overview of the area (just one slide).

See the “MARA Survey” for full details.

Then we will discuss the allocation of indivisible goods:

• Complexity results for achieving optimal allocations

• Distributed MARA: convergence and related issues

Y. Chevaleyre, P.E. Dunne, U. Endriss, J. Lang, M. Lemâıtre, N. Maudet,

J. Padget, S. Phelps, J.A. Rodŕıguez-Aguilar and P. Sousa. Issues in Multia-

gent Resource Allocation. Informatica, 30:3–31, 2006.
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The Problem

Consider a set of agents and a set of goods. Each agent has their

own preferences regarding the allocation of goods to be selected.

◮ What constitutes a good allocation and how do we find it?

What goods? One or several goods? Available in single or multiple

units? Divisible or indivisible? Can goods be shared? Static or

changing properties (e.g., consumable or perishable goods)?

What preferences? Ordinal or cardinal preferences? Are monetary

side payments possible, and how do they affect preferences?
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Setting

Today we consider the case of allocating indivisible (non-sharable,

single-unit, static) goods amongst agents with cardinal preferences.

We shall work in this framework:

• Set of agents N = {1..n} and finite set of indivisible goods G.

• An allocation A is a partitioning of G amongst the agents in N .

Example: A(i) = {g5, g7} — agent i owns goods g5 and g7

• Each agent i ∈ N has got a valuation function vi : 2G → R.

Example: vi(A) = vi(A(i)) = 577.8 — agent i is pretty happy

Later we will define utility functions over these valuations

(to account for payments). For now think of valuation as utility.

An allocation problem is a triple 〈N ,G,V〉, where V is a set of

valuation functions (+ possibly the initial allocation A0).
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Allocation Procedures

We can distinguish two approaches:

• In the centralised approach, we need to devise an optimisation

algorithm to compute an allocation meeting our fairness and

efficiency requirements.

– Today: some complexity results

– Later: combinatorial auctions

• In the distributed approach, allocations emerge as agents

implement a sequence of local deals. What can we say about

the properties of these emerging allocations?

Discussion: advantages and disadvantages of either approach

(simplicity of protocols, trust towards the centre, . . . )
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Social Welfare

Recall that we have seen a number of criteria, most of them based

on various social welfare orderings, that can be used to define what

constitutes an optimal allocation.

Specifically, utilitarian social welfare is defined as follows:

swu(A) =
∑

i∈N

vi(A)

Ulle Endriss 6

Multiagent Resource Allocation COMSOC 2009

Welfare Optimisation

How hard is it to find an allocation with maximal social welfare?

Rephrase this optimisation problem as a decision problem:

Welfare Optimisation (WO)

Instance: 〈N ,G,V〉 and K ∈ Q

Question: Is there an allocation A such that swu(A) > K?

Unfortunately, the problem is intractable:

Theorem 1 Welfare Optimisation is NP-complete.

The proof (following slides) uses a reduction from a standard

reference problem (Set Packing) known to be NP-complete.

In the context of MARA, this kind of result seems to have first

been stated by Rothkopf et al. (1998).

M.H. Rothkopf, A. Pekec̆, and R.M. Harstad. Computationally Manageable

Combinational Auctions. Management Science, 44(8):1131–1147, 1998.
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Proof of NP-hardness

We are going to reduce our problem to Set Packing, one of the

standard problems known to be NP-complete:

Set Packing

Instance: Collection C of finite sets and K ∈ Q

Question: Is there a collection of disjoint sets C′ ⊆ C s.t. |C′| > K?

Given an instance C of Set Packing, consider this MARA setting:

• Goods: each item in one of the sets in C is a good

• Agents: one for each set in C + one other agent (called 0)

• Valuations: vC(S) = 1 if S = C and vC(S) = 0 otherwise;

v0(S) = 0 for all bundles S

That is, every agent values “its” bundle at 1 and every other

bundle at 0. Agent 0 values all bundles at 0.
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Proof of NP-hardness (cont.)

Observe that not every allocation immediately corresponds to a

valid solution of Set Packing: the bundles owned by individual

agents may not all be sets in C.

But: for every given allocation there exists an(other) allocation

with equal social welfare that does directly correspond to a valid

solution for Set Packing — just assign any goods owned by an

agent with valuation 0 to agent 0 (this reallocation does not affect

social welfare). Note that social welfare is equal to |C′|.

Hence, any algorithm for WO can also solve Set Packing

problems; so WO must be at least NP-hard. X

Ulle Endriss 9

Multiagent Resource Allocation COMSOC 2009

Proof of Membership in NP

This part is in fact very easy . . .

Recall that a problem belongs to NP if it is possible to verify the

correctness of a candidate solution in polynomial time.

This is clearly the case here: Given an allocation A, we can

compute swu(A) in polynomial time. And A constitutes a correct

solution iff swu(A) > K. X
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Remarks

• To be precise, we have proved NP-hardness wrt. the number of

pairs of agents and bundles with non-zero value, corresponding

to the number of sets involved in Set Packing.

• Observe that this number itself may already be very high

(exponential in the number of goods).

• In other words, we have proved NP-completeness wrt. the

explicit form of representing valuation (utility) functions.
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Representation Issues

• As for all complexity results, the representation of the input

problem is crucial: if the input is represented inefficiently (e.g.,

using exponential space when this is not required), then

complexity results (expressed with respect to the size of the

input) may seem much more favourable than they really are.

• NP-completeness of Welfare Optimisation has been shown

with respect to several preference representation languages

(such as the k-additive form).

• In the sequel, the focus is on demonstrating what questions

people have been asking rather than on exact results.

Therefore, we do not give details regarding the representation

(but most results apply to a variety of languages).
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Welfare Improvement

The following problem is also NP-complete:

Welfare Improvement (WI)

Instance: 〈N ,G,V〉 and allocation A

Question: Is there an allocation A′ such that swu(A) < swu(A′)?

Given the close connection to Welfare Optimisation, this is not

very surprising.
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Pareto Optimality

A decision problem is said to be in coNP iff its complementary

problem (“is it not the case that . . . ”) is in NP.

Checking whether a given allocation is Pareto optimal is an

example for a coNP-complete decision problem:

Pareto Optimality (PO)

Instance: 〈N ,G,V〉 and allocation A

Question: Is A Pareto optimal?
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Envy-Freeness

Checking whether a given setting admits an envy-free allocation

(assuming all goods need to be allocated) is again NP-complete:

Envy-Freeness (EF)

Instance: 〈N ,G,V〉

Question: Is there a (complete) allocation A that is envy-free?

Checking whether there is an allocation that is both Pareto optimal

and envy-free is even harder: Σp
2-complete (NP with NP oracle).

S. Bouveret and J. Lang. Efficiency and Envy-freeness in Fair Division of In-

divisible Goods: Logical Representation and Complexity. Journal of Artificial

Intelligence Research, 32:525–564, 2008.
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Distributed Approach

Instead of devising algorithms for computing a socially optimal

allocation in a centralised manner, we now want agents to be able

to do this in a distributed way by contracting deals locally.

• A deal δ = (A, A′) is a pair of allocations (before/after).

• A deal may come with a number of side payments to

compensate some of the agents for a loss in valuation.

A payment function is a function p : N → R with
∑

i∈N

p(i) = 0.

Example: p(i) = 5 and p(j) = −5 means that agent i pays e5,

while agent j receives e5.

• Agents have quasi-linear utility functions:

utility = valuation for the bundle held − sum of payments
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Negotiating Socially Optimal Allocations

We are not going to talk about designing a concrete negotiation

protocol, but rather study the framework from an abstract point of

view. The main question concerns the relationship between

• the local view: what deals will agents make in response to their

individual preferences?; and

• the global view: how will the overall allocation of resources

evolve in terms of social welfare?

U. Endriss, N. Maudet, F. Sadri and F. Toni. Negotiating Socially Optimal

Allocations of Resources. Journal of AI Research, 25:315–348, 2006.
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The Local/Individual Perspective

A rational agent (who does not plan ahead) will only accept deals

that improve its individual welfare:

◮ A deal δ = (A, A′) is called individually rational (IR) iff there

exists a payment function p such that vi(A
′) − vi(A) > p(i) for

all agents i ∈ N , except possibly p(i) = 0 for agents i that are

not involved in the deal (those with A(i) = A′(i)).

So: an agent will only accept a deal iff it results in a gain in value

(or money) that strictly outweighs any loss in money (or value).
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The Global/Social Perspective

Suppose that as system designers we are interested in maximising

utilitarian social welfare:

swu(A) =
∑

i∈N

vi(A)

Observe that there is no need to include the agents’ monetary

balances into this definition, because they’d always add up to 0.

While the local perspective is driving the negotiation process, we

use the global perspective to assess how well we are doing.

◮ How well will this work?
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Example

Let N = {ann, bob} and G = {chair , table} and suppose our agents

use the following valuation functions:

vann({ }) = 0 vbob({ }) = 0

vann({chair}) = 2 vbob({chair}) = 3

vann({table}) = 3 vbob({table}) = 3

vann({chair , table}) = 7 vbob({chair , table}) = 8

Furthermore, suppose the initial allocation of goods is A0 with

A0(ann) = {chair , table} and A0(bob) = { }.

Social welfare for allocation A0 is 7, but it could be 8. By moving

only a single good from agent ann to agent bob, the former would

lose more than the latter would gain (not individually rational).

The only possible deal is to move the entire set {chair , table}.
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Linking the Local and the Global Perspectives

It turns out that individually rational deals are exactly those deals

that increase social welfare:

Lemma 1 (Rationality and social welfare) A deal δ = (A, A′)

with side payments is individually rational iff swu(A) < swu(A′).

Proof: “⇒”: Rationality means that overall utility gains outweigh

overall payments (which are = 0).

“⇐”: The social surplus can be divided amongst all agents by

using, say, the following payment function:

p(i) = vi(A
′) − vi(A) −

swu(A′) − swu(A)

|N |
︸ ︷︷ ︸

> 0 X

Discussion: The lemma confirms that individually rational

behaviour is “appropriate” in utilitarian societies.
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Termination

We can now prove a first result on negotiation processes:

Lemma 2 (Termination) There can be no infinite sequence of

IR deals; that is, negotiation must always terminate.

Proof: Follows from the first lemma and the observation that the

space of distinct allocations is finite. X
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Convergence

It is now easy to prove the following convergence result (originally

stated by Sandholm in the context of distributed task allocation):

Theorem 2 (Sandholm, 1998) Any sequence of IR deals will

eventually result in an allocation with maximal social welfare.

Proof: Termination has been shown in the previous lemma. So let

A be the terminal allocation. Assume A is not optimal, i.e., there

exists an allocation A′ with swu(A) < swu(A′). Then, by our first

lemma, δ = (A, A′) is individually rational ⇒ contradiction. X

Discussion: Agents can act locally and need not be aware of the

global picture (convergence is guaranteed by the theorem).

T. Sandholm. Contract Types for Satisficing Task Allocation: I Theoretical

Results. Proc. AAAI Spring Symposium 1998.
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Multilateral Negotiation

On the downside, outcomes that maximise utilitarian social welfare

can only be guaranteed if the negotiation protocol allows for deals

involving any number of agents and goods:

Theorem 3 (Necessity of complex deals) Any deal δ = (A, A′)

may be necessary: there are valuation functions and an initial

allocation such that any sequence of individually rational deals

leading to an allocation with maximal utilitarian social welfare

would have to include δ (unless δ is “independently decomposable”).

(Independently decomposable deals are deals that can be split into

two subdeals involving distinct agents.)

The proof involves the systematic definition of valuation functions

such that A′ is optimal and A is the second best allocation.

The theorem holds even when valuation functions are restricted to

be monotonic or dichotomous.
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Modular Domains
A valuation function vi is called modular iff it satisfies the following

condition for all bundles B1, B2 ⊆ G:

vi(B1 ∪ B2) = vi(B1) + vi(B2) − vi(B1 ∩ B2)

That is, in a modular domain there are no synergies between items; you

can get the value of a bundle by adding up the values of its elements.

◮ Negotiation in modular domains is feasible:

Theorem 4 (Modular domains) If all valuation functions are

modular, then individually rational 1-deals (each involving just one item)

suffice to guarantee outcomes with maximal utilitarian social welfare.

We also know that the class of modular valuation functions is maximal:

no larger class could still guarantee the same convergence property.

Y. Chevaleyre, U. Endriss, and N. Maudet. Simple Negotiation Schemes for

Agents with Simple Preferences: Sufficiency, Necessity and Maximality. Jour-

nal of Autonomous Agents and Multiagent Systems, 2009. In press.
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Comparing Negotiation Policies
While we know from Theorem 4 that 1-deals (blue) guarantee an optimal

result, an experiment (20 agents, 200 goods, modular utilities) suggests

that general bilateral deals (red) achieve the same goal in fewer steps:

The graph shows how utilitarian social welfare (y-axis) develops as agents

attempt to contract more an more deals (x-axis) amongst themselves.

Graph generated using the MADRAS platform of Buisman et al. (2007).

H. Buisman, G. Kruitbosch, N. Peek, and U. Endriss. Simulation of Negotia-

tion Policies in Distributed Multiagent Resource Allocation. ESAW-2007.
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Other Topics

For most of the following topics there are some results available,

but none of them has been treated exhaustively:

• Besides modularity, can simple preferences guarantee

convergence by means of simple deals?

• What about convergence for other social optimality criteria?

• What about other types of models (such as sharable goods or

agents on a graph)?

• Can we give bounds on the number of deals required to reach

the optimum? (; communication complexity)

• How well can we approximate the optimum if full convergence

cannot be guaranteed?

• What are suitable logics for modelling MARA mechanisms and

verifying, say, convergence results? (; social software)
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Summary

We have discussed two aspects of multiagent resource allocation:

• Computational complexity of computing an optimal allocation,

for different interpretations of optimality

• Convergence to an optimal allocation in a distributed

negotiation setting

Some remarks in relation to earlier lectures:

• MARA with indivisible goods is an example for social choice in

combinatorial domains (like e.g. multiple referenda)

• MARA is more specific a problem than voting: agents are

indifferent between any alternatives awarding them the same

bundle (“no externalities” assumption)
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What next?

Finding an allocation that maximises utilitarian social welfare is

equivalent to determining the winners in a combinatorial auction.

Next we will discuss MARA from this perspective:

• Bidding languages for combinatorial auctions: another family

of preference representation languages

• Algorithms for determining the winners of an auction

• Game-theoretical considerations: mechanism design
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