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Plan for Today

This lecture will be an introduction to voting theory. Voting is the

most obvious mechanism by which to come to a collective decision,

so it is a central topic in social choice theory. Topics today:

• many voting procedures: e.g. plurality rule, Borda count,

approval voting, single transferable vote, . . .

• several (desirable) properties of voting procedures: e.g.

anonymity, neutrality, monotonicity, strategy-proofness, . . .

• some voting paradoxes, highlighting that there seems to be no

perfect voting procedure

Most of the material on these slides is taken from a review article

by Brams and Fishburn (2002).

S.J. Brams and P.C. Fishburn. Voting Procedures. In K.J. Arrow et al. (eds.),

Handbook of Social Choice and Welfare, Elsevier, 2002.
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Voting Procedures

We’ll discuss voting procedures for selecting a single winner from a

finite set of candidates (the number of candidates is m).

• A voter votes by submitting a ballot , e.g., the name of a single

candidate, a ranking of all the candidates, or something else.

• The procedure defines what are valid ballots, and how to

aggregate the ballot information to obtain a winner.

Remark I: For all of the procedures to be discussed two or more

candidates can come out on top (even if this is unlikely for large

numbers of voters). A complete system also has to specify how to

deal with such ties, but here we ignore the issue of tie-breaking .

Remark II: Formally, voting rules map ballots to single winners;

voting correspondences map ballots to sets of winners.
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Plurality Rule

Under the plurality rule (a.k.a. simple majority), each voter

submits a ballot showing the name of one of the candidates

standing. The candidate receiving the most votes wins.

This is the most widely used voting procedure in practice.

If there are only two candidates, then it is a very good procedure.
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Criticism of the Plurality Rule

Problems with the plurality rule (for more than two candidates):

• The information on voter preferences other than who their

favourite candidate is gets ignored.

• Dispersion of votes across ideologically similar candidates.

• Encourages voters not to vote for their true favourite, if that

candidate is perceived to have little chance of winning.
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Plurality with Run-Off

In the plurality rule with run-off , first each voter votes for one

candidate. The winner is elected in a second round by using the

plurality rule with the two top candidates from the first round.

Used to elect the president in France (and heavily criticised after

Le Pen came in second in the first round in 2002).
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The No-Show Paradox

Under plurality with run-off, it may be better to abstain than to

vote for your favourite candidate! Example:

25 voters: A ≻ B ≻ C

46 voters: C ≻ A ≻ B

24 voters: B ≻ C ≻ A

Given these voter preferences, B gets eliminated in the first round,

and C beats A 70:25 in the run-off.

Now suppose two voters from the first group abstain:

23 voters: A ≻ B ≻ C

46 voters: C ≻ A ≻ B

24 voters: B ≻ C ≻ A

A gets eliminated, and B beats C 47:46 in the run-off.
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Monotonicity

We would like a voting procedure to satisfy monotonicity: if a

particular candidate wins and a voter raises that candidate in their

ballot (whatever that means exactly for different sorts of ballots),

then that candidate should still win.

The winner-turns-loser paradox shows that plurality with run-off

does not satisfy monotonicity:

27 voters: A ≻ B ≻ C

42 voters: C ≻ A ≻ B

24 voters: B ≻ C ≻ A

B is eliminated in the first round and C beats A 66:27 in the

run-off. But if 4 of the voters in the first group raise C to the top

(i.e., join the second group), then B will win (it’s the same example

as on the previous slide).
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Anonymity and Neutrality

On the positive side, both variants of the plurality rule satisfy two

important properties:

• Anonymity: A voting procedure is anonymous if all voters are

treated the same: if two voters switch ballots, then the election

outcome does not change.

• Neutrality: A voting procedure is neutral if all candidates are

treated the same: if the election winner switches names with

some other candidate, then that other candidate will win.

Indeed, (almost) all of the procedures we’ll discuss satisfy these

properties (we’ll see one exception where neutrality is violated).

Often the tie-breaking rule can be a source of violating either

anonymity (e.g., if one voter has the power to break ties) or

neutrality (e.g., if the incumbent wins in case of a tie).
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May’s Theorem

As mentioned before, if there are only two candidates, then the

plurality rule is a pretty good rule to use. Specifically:

Theorem 1 (May, 1952) For two candidates, a voting rule is

anonymous, neutral, and monotonic iff it is the plurality rule.

Remark: In these slides we assume that there are no ties, but

May’s Theorem also works for an appropriate definition of

monotonicity when ties are possible.

K.O. May. A Set of Independent Necessary and Sufficient Conditions for Simple

Majority Decisions. Econometrica, 20(4):680–684, 1952.
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Proof Sketch

Clearly, plurality does satisfy all three properties. X

Now for the other direction:

For simplicity, assume the number of voters is odd (no ties).

Plurality-style ballots are fully expressive for two candidates.

Anonymity and neutrality ; only number of votes matters.

Denote as A the set of voters voting for candidate a and as B those

voting for b. Distinguish two cases:

• Whenever |A| = |B| + 1 then a wins. Then, by monotonicity, a

wins whenever |A| > |B| (that is, we have plurality). X

• There exist A, B with |A| = |B| + 1 but b wins. Now suppose

one a-voter switches to b. By monotonicity, b still wins. But

now |B′| = |A′| + 1, which is symmetric to the earlier situation,

so by neutrality a should win ; contradiction. X
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Borda Rule

Under the voting procedure proposed by Jean-Charles de Borda,

each voter submits a complete ranking of all m candidates.

For each voter that places a candidate first, that candidate receives

m−1 points, for each voter that places her 2nd she receives m−2

points, and so forth. The Borda count is the sum of all the points.

The candidate with the highest Borda count wins.

This takes care of some of the problems identified for plurality

voting. For instance, this form of balloting is more informative.

A disadvantage (of any system requiring voters to submit full

rankings) are the high elicitation and communication costs.

J.-C. de Borda. Mémoire sur les élections au scrutin. Histoire de l’Académie

Royale des Sciences, Paris, 1781.
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Pareto Principle

A voting procedure satisfies the (weak) Pareto principle if,

whenever candidate A is (strictly) preferred over candidate B by all

voters, then B cannot win the election.

Clearly, both the plurality rule and the Borda rule satisfy the

Pareto principle.
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Positional Scoring Rules

We can generalise the idea underlying the Borda count as follows:

Let m be the number of candidates. A positional scoring rule is

given by a scoring vector s = 〈s1, . . . , sm〉 with s1 ≥ s2 ≥ · · · ≥ sm.

Each voter submits a ranking of all candidates. Each candidate

receives si points for every voter putting her at the ith position.

The candidate with the highest score (sum of points) wins.

• The Borda rule is is the positional scoring rule with the scoring

vector 〈m−1, m−2, . . . , 0〉.

• The plurality rule is the positional scoring rule with the scoring

vector 〈1, 0, . . . , 0〉.
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Condorcet Principle

Recall the Condorcet Paradox (first lecture):

Voter 1: A ≻ B ≻ C

Voter 2: B ≻ C ≻ A

Voter 3: C ≻ A ≻ B

A majority prefers A over B and a majority also prefers B over C,

but then again a majority prefers C over A. Hence, no single

candidate would beat any other candidate in pairwise comparisons.

In cases where the is such a candidate beating everyone else in a

pairwise majority contest, we call her the Condorcet winner .

Observe that if there is a Condorcet winner, then it must be unique.

A voting procedure is said to satisfy the Condorcet principle if it

elects the Condorcet winner whenever there is one.
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Positional Soring violates Condorcet

Consider the following example:

3 voters: A ≻ B ≻ C

2 voters: B ≻ C ≻ A

1 voter: B ≻ A ≻ C

1 voter: C ≻ A ≻ B

A is the Condorcet winner ; she beats both B and C 4:3. But any

positional scoring rule assigning strictly more points to a candidate

placed 2nd than to a candidate placed 3rd (s2 > s3) makes B win:

A: 3 · s1 + 2 · s2 + 2 · s3

B: 3 · s1 + 3 · s2 + 1 · s3

C: 1 · s1 + 2 · s2 + 4 · s3

This shows that no positional scoring rule (with a strictly

descending scoring vector) will satisfy the Condorcet principle.
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Copeland Rule

Some voting procedures have been designed specifically to meet the

Condorcet principle.

The Copeland rule elects a candidate that maximises the difference

between won and lost pairwise majority contests.

The Copeland rule satisfies the Condorcet principle.
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Dodgson Rule

Charles L. Dodgson (a.k.a. Lewis Carroll of “Alice in Wonderland”

fame) proposed a voting method that selects the candidate

minimising the number of “switches” in the voters’ linear preference

orderings required to make that candidate a Condorcet winner.

Clearly, this metric is 0 if the candidate in question already is a

Condorcet winner, so the Dodgson rule certainly satisfies the

Condorcet principle.

C.L. Dodgson. A Method of Taking Votes on more than two Issues. Clarendon

Press, Oxford, 1876.
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Approval Voting

In approval voting , a ballot may consist of any subset of the set of

candidates. These are the candidates the voter approves of. The

candidate receiving the most approvals wins.

Approval voting has been used by several professional societies,

such as the American Mathematical Society (AMS).

Intuitive advantages of approval voting include:

• No need not to vote for the most preferred candidate for

strategic reasons when she has a slim chance of winning.

• Good compromise between plurality (too simple) and Borda

(too complex) in terms of communication requirements.
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Single Transferable Vote (STV)

Also known as the Hare system. To select a single winner, it works

as follows (voters submit ranked preferences for all candidates):

• If one of the candidates is the 1st choice for over 50% of the

voters (quota), she wins.

• Otherwise, the candidate who is ranked 1st by the fewest

voters gets eliminated from the race.

• Votes for eliminated candidates get transferred: delete removed

candidates from ballots and “shift” rankings (i.e., if your 1st

choice got eliminated, then your 2nd choice becomes 1st).

In practice, voters need not be required to rank all candidates

(non-ranked candidates are assumed to be ranked lowest).

STV (suitably generalised) is often used to elect committees.

STV is used in several countries (e.g., Australia, New Zealand, . . . ).
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Example

Elect one winner amongst four candidates, using STV (100 voters):

39 voters: A ≻ B ≻ C ≻ D

20 voters: B ≻ A ≻ C ≻ D

20 voters: B ≻ C ≻ A ≻ D

11 voters: C ≻ B ≻ A ≻ D

10 voters: D ≻ A ≻ B ≻ C

(Answer: B wins)

Note that for 3 candidates, STV reduces to plurality voting with

run-off, so it suffers from the same paradoxes.
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Manipulation: Plurality Rule

Suppose the plurality rule (as in most real-world situations) is used

to decide the outcome of an election.

Assume the preferences of the people in, say, Florida are as follows:

49%: Bush ≻ Gore ≻ Nader

20%: Gore ≻ Nader ≻ Bush

20%: Gore ≻ Bush ≻ Nader

11%: Nader ≻ Gore ≻ Bush

So even if nobody is cheating, Bush will win in a plurality contest.

It would have been in the interest of the Nader supporters to

manipulate, i.e., to misrepresent their preferences.
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The Gibbard-Satterthwaite Theorem

The Gibbard-Satterthwaite Theorem is widely regarded as the

central result in voting theory. Broadly, it states that there can be

no “reasonable” voting rule that would not be manipulable.

Our formal statement of the theorem follows Barberà (1983). We

won’t prove it here. A proof that is similar to the one we have

discussed for Arrow’s Theorem is given by Benôıt (2000).

A. Gibbard. Manipulation of Voting Schemes: A General Result. Economet-

rica, 41(4):587–601, 1973.

M.A. Satterthwaite. Strategy-proofness and Arrow’s Conditions. Journal of

Economic Theory, 10:187–217, 1975.

S. Barberà. Strategy-proofness and Pivotal Voters: A Direct Proof of the

Gibbard-Satterthwaite Theorem. Intl. Economic Review, 24(2):413–417, 1983.

J.-P. Benôıt. The Gibbard-Satterthwaite Theorem: A Simple Proof. Economic

Letters, 69:319–322, 2000.
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Setting and Notation

• Finite set A of candidates (alternatives);

finite set I = {1, . . . , n} of voters (individuals).

• A preference ordering is a strict linear order on A. The set of

all such orderings is denoted P. Each voter i has an individual

preference ordering Pi. A preference profile 〈P1, . . . , Pn〉 ∈ Pn

consists of a preference ordering for each voter.

• The top candidate top(P ) of a preference ordering P is defined

as the unique x ∈ A such that xPy for all y ∈ A \ {x}.

• We write (P−i, P
′) for the preference profile we obtain when

we replace Pi by P ′ in the preference profile P .

• A voting rule is a function f : Pn → A mapping preference

profiles to winning candidates (so the Pi are used as ballots).
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Statement of the Theorem

A voting rule f is dictatorial if the winner is always the top

candidate of a particular voter (the dictator):

(∃i ∈ I)(∀P ∈ Pn)[f(P) = top(Pi)]

A voting rule f is manipulable if it may give a voter an incentive to

misrepresent their preferences:

(∃P ∈ Pn)(∃P ′ ∈ P)(∃i ∈ I)[f(P−i, P
′) Pi f(P)]

A voting rule that is not manipulable is called strategy-proof .

Theorem 2 (Gibbard-Satterthwaite) Every strategy-proof

voting rule for three or more candidates must be dictatorial.

Remarks: (1) Can be extended to voting correspondences, allowing

for sets of winners (Duggan-Schwartz Theorem). (2) Does not

apply to approval voting (input to f are not linear orders).
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Control: Borda Rule

The technical term “manipulation” refers to voters misrepresenting

their preferences, but there are also other forms of manipulation . . .

Suppose we are using the Borda rule to elect one winner from

amongst 4 candidates, and there are 13 voters:

4 voters: A ≻ X ≻ B ≻ C

3 voters: C ≻ A ≻ X ≻ B

6 voters: B ≻ C ≻ A ≻ X

We get the following Borda scores: A (24), B (22), C (21), X (11).

We may suspect the A-supporters of having nominated X in order

to control the election. For, without X , we would get the following

Borda scores: A (11), B (16), C (12).
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Agenda Manipulation: Voting Trees

The term control is used for any kind of “manipulation” that

involves changing the structure of an election (voting rule, set of

candidates, . . . ). This is typically something that the election chair

may do (but not only; see nomination example on previous slide).

Consider the following example (Condorcet triple):

Voter 1: A ≻ B ≻ C

Voter 2: B ≻ C ≻ A

Voter 3: C ≻ A ≻ B

Suppose the voting rule is given by a binary tree, with the

candidates labelling the leaves, and a candidate progressing to a

parent node if beats its sibling in a majority contest .

Then the election chair can influence the election outcome by

changing the agenda (here, the exact binary tree to be used) . . .

Ulle Endriss 27

Voting Theory COMSOC 2009

Agenda Manipulation: Voting Trees (cont.)

Here are again the voter preferences from the previous slide:

Voter 1: A ≻ B ≻ C

Voter 2: B ≻ C ≻ A

Voter 3: C ≻ A ≻ B

So in a pairwise majority contest, A will beat B; B will beat C;

and C will beat A. Here are two possible voting trees:

(1) (2) o

o / \

/ \ / \

o C o o

/ \ / \ / \

A B A B B C

If (1) is used then C will win; if (2) is used then A will win.

That is, these voting rules violate neutrality .
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Classification of Voting Procedures

Brams and Fishburn (2002) list many more voting procedures.

The structure of their paper implicitly suggests a (rough)

classification of voting rules:

• Nonranked input: plurality rule, approval voting

• Successive elimination: plurality with run-off, STV, voting trees

• Condorcet procedures: Copeland, Dodgson, (many more)

• Positional scoring rules: Borda count

S.J. Brams and P.C. Fishburn. Voting Procedures. In K.J. Arrow et al. (eds.),

Handbook of Social Choice and Welfare, Elsevier, 2002.
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Summary

This has been an introduction to voting theory. The main aim has

been to show that there are many alternative systems, all with

their own flaws and advantages.

• Voting procedures: plurality (with run-off), positional scoring

rules, Condorcet procedures, approval, STV, voting trees, . . .

• Properties discussed: anonymity, neutrality, monotonicity,

Condorcet principle, strategy-proofness, . . .

• Cheating can take many forms: manipulation, bribery, control

• May’s Theorem and Gibbard-Satterthwaite Theorem

Most of the material on these slides comes from (and much more

can be found in) the review article by Brams and Fishburn (2002).

S.J. Brams and P.C. Fishburn. Voting Procedures. In K.J. Arrow et al. (eds.),

Handbook of Social Choice and Welfare, Elsevier, 2002.
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What next?

This lecture has concentrated on classical topics in voting theory.

Next week we are going to discuss complexity issues in voting.

Two questions that suggest why this is of interest:

• What if we have found a voting procedure with many wonderful

theoretical properties, but actually computing the winner using

that rule is a computationally intractable problem?

• What if manipulation is possible (by the Gibbard-Satterthwaite

Theorem), but turns out to be computationally intractable, so

no voter would ever be able to exploit this weakness?

Ulle Endriss 31


