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Plan for Today

So far, we have (almost) always modelled preferences as linear orders over

the set of alternatives. But:

• Other preference structures may be relevant as well: weak orders,

partial orders, interval orders, utility functions, . . .

• Particularly for large sets of alternatives, we need to clarify what

language we want to use to actually represent preferences.

Today we will therefore focus on preferences themselves, rather than on their

use within social choice theory. Topics to be covered:

• ordinal and cardinal preference structures

• the challenge of preference modelling in combinatorial domains

• several compact preference representation languages, namely: CP-nets,

prioritised goals, weighted goals,

• research questions regarding preference representation languages, such

as expressivity and succinctness (exemplified for weighted goals)
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Ordinal and Cardinal Preferences

A preference structure represents an agent’s preferences over a (finite) set of

alternatives X . Two types of preference structures:

• An ordinal preference structure is a binary relation � on X .

Read x � y as “x is at least as good as y”. Define:

– x ≻ y (“x is strictly better than y”): x � y but not y � x

– x ∼ y (“x is equally good as y”): both x � y and y � x

People often assume (at least) transitivity and completeness of �.

• A cardinal preference structure is a (utility or valuation) function

u : X → Val , where Val usually is a set of numerical values such as R.

Every utility function u induces a preference relation �; and every complete

and transitive preference relation � is representable by a (in fact, more than

one) utility function u: x � y iff u(x) > u(y).

Most of voting theory and preference aggregation is based on ordinal

preferences. Fair division (which we’ll only see in the final lecture) mostly

uses cardinal preferences. But there are exceptions (both ways).
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Preorders

In economics (including social choice theory), transitivity is often taken to

be a central requirement for preferences. Thus, ordinal preferences are

usually modelled as (special kinds of) preorders on the set of alternatives X .

A preorder on X is a binary relation � that is reflexive and transitive.

For any two alternatives x, y ∈ X exactly one of the following is true:

• x ≻ y, i.e., x � y and not y � x (“I think x is better than y”)

• x ≺ y, i.e., y � x and not x � y (“I think x is worse than y”)

• x ∼ y, i.e., x � y and y � x (“I’m indifferent between x and y”)

• x ⊲⊳ y, i.e., neither x � y nor y � x (“I cannot compare x and y”)

Some important classes of preorders on X :

• A partial order � is a preorder that is antisymmetric (excludes ∼).

• A weak order � is a preorder that is complete (excludes ⊲⊳).

• A total order � is a preorder that is both antisymmetric and complete.

The strict part ≻ of a total order is called a linear order .

In practice, the terms total order and linear order are used interchangeably.
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Appropriateness of Representation

What preference structure is appropriate for a given application?

• Real-world/cognitive considerations: how close should the

representation be to how humans express their preferences?

– Can we assume that an agent can assign a real number reflecting

her preference to each and every alternative?

– Are preferences really complete (a common assumption)?

• Technical considerations:

– Maybe it will be more convenient to work with utility functions?

– Maybe we can prove more attractive results using them?

Two important features of preference that can be modelled using utility

functions, but not ordinal preference structures:

• Interpersonal comparison: “Ann likes x more than Bob likes y.”

• Preference intensity : “Ann’s preference of x over y is stronger than her

preference of y over z.”
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Transitivity of the Indifference Relation

Two observations regarding the indifference relation ∼ induced by �:

• If � is a total order, then ∼ is the identity relation =.

• If � is a weak order, then ∼ is transitive.

But even if we accept that � and ≻ should be transitive, we may not

always want ∼ to be transitive:

For any k ∈ N, I’m indifferent between a cup of coffee with k

grains of sugar and a cup with k+1 grains of sugar. But that

does not mean that I’m indifferent between a cup of coffee

without sugar and one with 1,000,000 grains of sugar.

How can we deal with this?
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Interval Orders and Semiorders

A binary relation ≻ on X is called an interval order if there exists a mapping

from X to intervals on the real line such that x ≻ y iff the interval

corresponding to x lies strictly to the left from that corresponding to y.

An interval order ≻ induces a (non-transitive) indifference relation ∼:

x ∼ y iff neither x ≻ y nor y ≻ x (symmetric complement).

(Note that � := ≻ ∪ ∼ is complete but need not be transitive.)

x z

|-----------| |-------|

|-------------|

y

x ∼ y and y ∼ z

but x ≻ z

A semiorder is an interval order where all intervals have the same length.

For more on interval- and semiorders, including applications in social choice

theory, consult the book by Pirlot and Vincke (1997).

M. Pirlot and Ph. Vincke. Semiorders: Properties, Representations, Applications.

Kluwer Academic Publishers, 1997.
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Explicit Representation

How costly is it to represent a given preference structure? It depends

on the language used. For now, consider explicit representations only’:

• We can represent a utility function u : X → Val as a table, listing

the utility for every element of X .

It often is reasonable to assume that we need only a constant

number of bits to represent any given value (e.g., if possible utility

values are integers between 0 and 100, then we need 7 bits).

⇒ O(|X |): linear in the number of alternatives

• We can represent a preorder � as a list of pairs in X × X , listing

all those pairs that belong to �.

⇒ O(|X |2): quadratic in the number of alternatives

Both are fine as long as X is small, and problematic otherwise.
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Combinatorial Domains

A combinatorial domain is a Cartesian product D = D1 × · · · ×Dp of

p finite domains. Many collective decision-making problems of

practical interest have a combinatorial structure:

• During a referendum (in Switzerland, California, places like that),

voters may be asked to vote on p different propositions.

• Elect a committee of k members from amongst n candidates.

• Find a good allocation of p indivisible goods to agents.

Seemingly small problems generate huge numbers of alternatives:

•
(

10
3

)

= 120 possible 3-member committees from 10 candidates;

i.e., 120! ≈ 6.7× 10198 possible linear (more weak) orders

• Allocating 10 goods to 5 agents: 510 = 9765625 allocations and

210 = 1024 bundles for each agent to think about

Therefore: we need good languages for representing preferences!
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Conditional Preference Networks: Partial Orders

Associate each Di in the combinatorial domain with a variable Xi.

A CP-net over a set of variables {X1, . . . , Xp} consists of

• a directed graph G over {X1, . . . , Xp} and

• a conditional preference table (CPT) for each Xi, fixing a total

order on values of Xi for each instantiation of Xi’s parents in G.

This induces a (partial) preference order:

(1) If ~y is an instantiation of the parents of X , and ~y : x ≻ x′ is part

of the CPT for X , then prefer x to x′ given ~y, ceteris paribus, i.e.,

prefer x~y~z to x′~y~z for any instantiation ~z of all other variables.

(2) Take the transitive closure of the above.

C. Boutilier, R.I. Brafman, C. Domshlak, H.H. Hoos, and D. Poole. CP-nets: A

Tool for Representing and Reasoning with Conditional Ceteris Paribus Preference

Statements. Journal of Artificial Intelligence Research, 21:135–191, 2004.
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Example

Consider the following CP-net, consisting of a graph on {X, Y, Z} and

conditional preference tables for X , Y and Z:

X Y Z- -

R
x ≻ x̄

x : y ≻ ȳ

x̄ : ȳ ≻ y

xy : z ≻ z̄

xȳ : z ≻ z̄

x̄y : z ≻ z̄

x̄ȳ : z̄ ≻ z

This CP-net induces the following (partial) preference order:

xyz
ր

ց

xȳz

xyz̄

ց

ր
xȳz̄ → x̄ȳz̄ → x̄ȳz → x̄yz → x̄yz̄
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Related Languages

• CP-theories are a generalisation of CP-nets by relaxing the

“everything else being equal” condition (Wilson, 2004).

• Conditional importance networks (CI-nets) define preference

orders by allowing the user to specify the relative importance of

variables, given certain conditions (Bouveret et al., 2009).

N. Wilson. Extending CP-nets with Stronger Conditional Preference Statements.

Proc. AAAI-2004.

S. Bouveret, U. Endriss, and J. Lang. Conditional Importance Networks: A Graphi-

cal Language for Representing Ordinal, Monotonic Preferences over Sets of Goods.

Proc. IJCAI-2009.
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Prioritised Goals: Weak Orders

Consider a binary comb. domains D = D1 × · · · ×Dp, with |Di| = 2.

Associate D with a set PS = {X1, . . . , Xp} of propositional variables,

i.e., identify truth assignments to PS (models) with elements of D.

Use propositional formulas to express goals and use numbers to

indicate their importance. This induces a weak order:

Suppose (ϕ, k1) has higher priority than (ψ, k2) if k1 > k2.

Under the lexicographic form of aggregation, we prefer M to

M ′ if there exists a k such that for all j > k both M and M ′

satisfy the same number of goals of rank j, and M satisfies

more goals of rank k.

Other forms of aggregation are possible.

J. Lang. Logical Preference Representation and Combinatorial Vote. Annals of

Mathematics and Artificial Intelligence, 42(1–3):37–71, 2004.
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Weighted Goals: Utility Functions

Consider again a binary combinatorial domains and the propositional

language LPS with propositional variables PS declared on it.

We now want to model utility functions u : 2PS → R.

Use formulas in LPS to express goals. Give each goal a numerical

weight. A goalbase G = {(ϕi, wi)}i is a set of weighted goals.

Each goalbase G generates a utility function uG:

uG(M) =
∑

(ϕ,w)∈G[M ]

w where G[M ] = {(ϕ,w) ∈ G |M |= ϕ}

That is, the utility of a model M is the sum of the weights of the

formulas it satisfies.
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Other Languages for Modelling Utility Functions

• We can also use aggregators other than sum-taking (e.g., max) to

compute a utility value from the weights of the satisfied goals (Lafage

and Lang, 2000; Uckelman and Endriss, 2010).

• OR/XOR bidding languages developed for combinatorial auctions can

express monotonic utility functions (Nisan, 2006).

• Can also represent utility functions as programs, with the alternative

being the input and the utility value the output (Dunne et al., 2005).

C. Lafage and J. Lang. Logical Representation of Preferences fro Group Decision

Making. Proc. KR-2000.

J. Uckelman and U. Endriss. Compactly Representing Utility Functions Using

Weighted Goals and the Max Aggregator. Artif. Intell., 174(15):1222–1246, 2010.

N. Nisan. Bidding Languages. In: Combinatorial Auctions, MIT Press, 2006.

P.E. Dunne, M. Wooldridge, and M. Laurence. The Complexity of Contract Ne-

gotiation. Artificial Intelligence, 164(1–2):23–46, 2005.
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Criteria for Choosing a Language

At least the following questions should be addressed when choosing a

representation language:

• Cognitive relevance: How close is a given language to the way in

which humans would express their preferences?

• Elicitation: How difficult is it to elicit the preferences of an agent

so as to represent them in the chosen language?

• Expressive power : Can the chosen language encode all the

preference structures we are interested in?

• Succinctness: Is the representation of (typical) structures

succinct? Is one language more succinct than the other?

• Complexity : What is the computational complexity of related

decision problems, such as comparing two alternatives?

We are going to concentrate on the final three. And we will exemplify

these questions for the family of weighted goals.
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A Family of Languages

Recall: {(ϕi, wi)}i induces u :M 7→
∑

{wi |M |= ϕi} (multiset)

By imposing different restrictions on formulas and/or weights we can

design different representation languages.

Regarding formulas, we may consider restrictions such as:

• positive formulas (no occurrence of ¬)

• clauses and cubes (disjunctions and conjunctions of literals)

• k-formulas (formulas of length 6 k), e.g. 1-formulas= literals

• combinations of the above, e.g. k-pcubes

Regarding weights, interesting restrictions would be R+ or {0, 1}.

If H ⊆ LPS is a restriction on formulas and H ′ ⊆ R a restriction on

weights, then L(H,H ′) is the language conforming to H and H ′.

Ulle Endriss 17

Preference Representation COMSOC 2011

Properties

We are interested in the following types of questions:

• Are there restrictions on goalbases such that the utility functions

they generate enjoy natural structural properties?

• Are some goalbase languages more succinct than others?

• What is the computational complexity of reasoning about

preferences expressed in a given language?

The results on the following slides are from Uckelman et al. (2009).

More details in Joel Uckelman’s PhD thesis.

J. Uckelman, Y. Chevaleyre, U. Endriss, and J. Lang. Representing Utility Func-

tions via Weighted Goals. Mathematical Logic Quarterly, 55(4):341–361, 2009.

J. Uckelman. More Than the Sum of its Parts: Compact Preference Representation

over Combinatorial Domains. PhD thesis, ILLC, University of Amsterdam, 2009.
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Expressive Power

We first give an example for a language that is fully expressive:

Proposition 1 (Expressivity of pcubes) L(pcubes ,R), the language

of positive cubes, can express all utility functions.

Proof: Let u : 2PS → R be any utility function. Define goalbase G:

(⊤, w⊤) with w⊤ = u(∅)

(p, wp) with wp = u({p})− w⊤

(p ∧ q, wp,q) with wp,q = u({p, q})− wp − wq − w⊤ . . .

(
∧

P,wP ) with wP = u(P )−
∑

Q⊂P wQ

Clearly, G thus defined will generate the function u. X

Observe that the proof also demonstrates that L(pcubes ,R) has a

unique way of representing any given function.

L(cubes ,R), for example, is also fully expressive but not unique:

{(p ∧ q, 5), (p ∧ ¬q, 5), (¬p ∧ q, 3), (¬p ∧ ¬q, 3)} ≡ {(⊤, 3), (p, 2)}
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Expressive Power: Modular Functions

A function u : 2PS → R is modular if for all M1,M2 ⊆ 2PS we have:

u(M1 ∪M2) = u(M1) + u(M2)− u(M1 ∩M2)

Here’s a nice characterisation of the modular functions:

Proposition 2 (Expressivity of literals) L(literals,R) can express

all modular utility functions, and only those.

Proof sketch: Modular functions are like additive functions, i.e.,

functions u with u(M) =
∑

x∈M u(x), except that we also allow

non-zero values for ∅.

Easy to see that L(atoms,R) expresses exactly the additive functions.

So L(atoms ∪ {⊤},R) expresses exactly the modular functions.

To see that adding negation does not increase expressive power,

observe that G ∪ {(¬ϕ,w)} ≡ G ∪ {(⊤, w), (ϕ,−w)}. X
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Expressive Power: Monotonic Functions

A function u : 2PS → R is monotonic if for all M1,M2 ⊆ 2PS :

M1 ⊆M2 implies u(M1) 6 u(M2)

We state this next result without proof:

Proposition 3 (Expressivity of pforms/pos) L(pforms,R+), the

language of positive formulas with positive weights, can express all

nonnegative monotonic utility functions, and only those.

That positively weighted positive formulas can only generate

monotonic functions is clear. The other direction the interesting bit.
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Relative Succinctness

If two languages can express the same class of utility functions, which

should we use? An important criterion is succinctness.

Let L and L′ be two languages that can define all utility functions

belonging to some class U .

We say that L′ is at least as succinct as L (L � L′) over U if there

exist a mapping f : L → L′ and a polynomial function p such that for

all expressions G ∈ L with the corresponding function uG ∈ U :

• G ≡ f(G) (i.e., they represent the same function: uG = uf(G));

• and size(f(G)) 6 p(size(G)) (polysize reduction).

L is less succinct than L′ (L ≺ L′) iff L � L′ and not L′ � L.

Equivalence (∼) and incomparability (⊲⊳) are defined accordingly.

If left implicit, then U is the intersection of the ranges of L and L′.

(Note the overloading of the symbols �, etc.)
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The Effect of Negation

We have seen that positive cubes are fully expressive. Hence,

L(pcubes ,R) and L(cubes ,R) have the same expressivity.

Proposition 4 (Succinctness) L(pcubes ,R) ≺ L(cubes ,R).

Proof: Clearly, L(pcubes ,R) � L(cubes ,R), because any positive cube

is also a cube.

Now consider u with u(∅) = 1 and u(M) = 0 for all M 6= ∅:

• G = {(¬p1 ∧ · · · ∧ ¬pn, 1)} ∈ L(cubes ,R) has linear size and

generates u.

• G′ = {(
∧

X, (−1)|X|) | X ⊆ PS} ∈ L(pcubes ,R) has exponential

size and also generates u.

But there can be not better way of expressing u in pcubes, because we

have seen that pcube representations are unique. X
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More Succinctness Results

Some more examples for succinctness results (without proof):

• Cubes and clauses are equally succinct:

Proposition 5 L(cubes ,R) ∼ L(clauses ,R)

• But positive cubes and clauses are incomparable:

Proposition 6 L(pcubes ,R) ⊲⊳ L(pclauses ,R)

• If we restrict the weights, we get equal succinctness again:

Proposition 7 L(pcubes ,R+) ∼ L(pclauses ,R+)

In fact, this result is more about expressivity: it is a corollary of

other results showing that only modular functions are expressible

in both L(pcubes ,R+) and L(pclauses ,R+).

• We gain further succinctness as we enrich the formula language:

Proposition 8 L(cubes ,R) ≺ L(forms,R)
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Computational Complexity

Other interesting questions concern the complexity of reasoning about

preferences. Consider the following decision problem:

Max-Utility(H,H ′)

Instance: Goalbase G ∈ L(H,H ′) and K ∈ Z

Question: Is there an M ∈ 2PS such that uG(M) > K?

Some basic results are straightforward:

• Max-Utility(H,H ′) is in NP for any H ⊆ LPS and H ′ ⊆ Q,

because we can always check uG(M) > K in polynomial time.

• Max-Utility(forms,Q) is NP-complete, certainly if we do not

assume that formulas are satisfiable (reduction from Sat).

More interesting questions would be: are there either (1) “large”

sublanguages for which Max-Utility is still polynomial, or

(2) “small” sublanguages for which it is already NP-hard?
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Three Complexity Results

Proposition 9 Max-Utility(k-cubes,Q) is NP-complete, even for

k = 2 and assuming all formulas are satisfiable.

Proof: By reduction from Max2Sat (NP-hard): “Given a set of

2-clauses, is there a satisfiable subset with cardinality > K?”. Given a

Max2Sat instance, for each clause p ∨ q create a goal (¬p ∧ ¬q,−1).

Add (⊤, N), where N is the number of clauses. Answer YES for the

Max2Sat instance iff maximal utility is > K. X

Proposition 10 Max-Utility(literals,Q) is in P.

Proof: Assuming that G contains every literal exactly once (possibly

with weight 0), making p true iff the weight of p is greater than the

weight of ¬p results in a model with maximal utility. X

Proposition 11 Max-Utility(pforms,Q+) is in P.

Proof: Making all variables true yields maximal utility. X
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Summary

In the first part of today’s lecture we have seen that there are different

preference structures we might want to work with:

• preorders, including partial orders, weak order, total (linear) orders

• interval orders and semiorders

• utility functions

We may or may not want completeness, transitivity, and the ability to

express preference intensity or interpersonal comparison.

In the context of (social choice in) combinatorial domains, the choice of

representation language is crucial. Options we have seen:

• CP-nets (for a subclass of the partial orders)

• Prioritised goals (for a subclass of the weak orders)

• Weighted goals (for the full class of utility functions)

The study of preference representation languages is a research area in its own

right. We have seen results on expressivity, succinctness, and complexity.
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What next?

Next week we will see several approaches to dealing with the problem

of social choice in combinatorial domains, some of which will make use

the the preference representation languages introduced today.
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