Homework #2

Deadline: Monday, 17 September 2012, 13:00

Question 1 (10 marks)

This question concerns two alternative definitions of the property of strong monotonicity of a resolute voting rule $F : \mathcal{L}(\mathcal{X})^{\mathcal{N}} \to \mathcal{X}$. Recall the definition given in class:

(a) F is called strongly monotonic if $x^* = F(\mathbf{R})$ implies $x^* = F(\mathbf{R}')$ for any alternative x^* and any two profiles \mathbf{R} and \mathbf{R}' with $N_{x^* \succ y}^{\mathbf{R}} \subseteq N_{x^* \succ y}^{\mathbf{R}'}$ for all alternatives $y \in \mathcal{X} \setminus \{x^*\}$.

An alternative definition to be found in the literature is the following:

(b) F is called strongly monotonic if $F(\mathbf{R'}) = F(\mathbf{R})$ or $F(\mathbf{R'}) = x^*$ for any alternative x^* and any two profiles \mathbf{R} and $\mathbf{R'}$ satisfying $N_{x^* \succ y}^{\mathbf{R}} \subseteq N_{x^* \succ y}^{\mathbf{R'}}$ and $N_{y \succ z}^{\mathbf{R}} = N_{y \succ z}^{\mathbf{R'}}$ for all alternatives $y, z \in \mathcal{X} \setminus \{x^*\}$.

Explain each definition in plain English and briefly argue why it is a reasonable definition. Then check whether the two definitions are equivalent (proof or counterexample).

Notation: Recall that $N_{x\succ y}^{\mathbf{R}}$ is the set of individuals who rank alternative x above alternative y under profile \mathbf{R} .

Question 2 (10 marks)

In analogy to the definition of Condorcet winners, a *Condorcet loser* is a candidate that would lose against any other candidate in a pairwise contest.

- (a) Give an example that shows that the plurality rule *can* elect a Condorcet loser.
- (b) Prove that the Borda rule *never* elects a Condorcet loser.

Remark: It is in fact possible to show that the Borda rule is the *only* positional scoring rule (with a strictly decreasing scoring vector) that satisfies this property.

Question 3 (10 marks)

Give a polynomial-time algorithm that decides whether a given alternative will be the unique election winner for a given profile under every positional scoring rule with a strictly decreasing scoring vector. Briefly justify the correctness of your algorithm and explain why it is polynomial (a precise complexity analysis is not required).