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Social Choice Theory

SCT studies collective decision making: how should we aggregate the

preferences of the members of a group to obtain a “social preference”?

△ ≻1 # ≻1 �
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?

SCT is traditionally studied in Economics and Political Science, but

now also by “us”: Computational Social Choice.
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Organisational Matters

Prerequisites: This is an advanced course: I assume mathematical maturity,

we’ll move fast, and we’ll often touch upon recent research. On the other

hand, little specific background is required (just a bit of complexity theory).

Examiniation: By weekly homework.

Projects: I will offer the option to do a 3EC research project in Nov-Dec

(writing a paper partly based on a result from the recent literature).

Website: Lecture slides, homework assignments, and other important

information will be posted on the course website:

http://www.illc.uva.nl/∼ulle/teaching/comsoc/2012/

Seminars: There are occasional talks at the ILLC that are relevant to the

course and that you are welcome to attend (e.g., at the COMSOC Seminar).
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Plan for Today

Today’s lecture has two parts:

• Part I. Informal introduction to some of the topics of the course

• Part II. A classical result: Arrow’s Theorem
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Part I: Examples, Problems, Ideas
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Three Voting Rules

Voting is the prototypical form of collective decision making.

Here are three voting rules (there are many more):

• Plurality : elect the candidate ranked first most often

(i.e., each voter assigns one point to a candidate of her choice,

and the candidate receiving the most points wins)

• Borda: each voter gives m−1 points to the candidate she ranks

first, m−2 to the candidate she ranks second, etc., and the

candidate with the most points wins

• Approval: voters can approve of as many candidates as they wish,

and the candidate with the most approvals wins
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Example

Suppose there are three candidates (A, B, C) and 11 voters with the

following preferences (where boldface indicates acceptability , for AV):

5 voters think: A ≻ B ≻ C

4 voters think: C ≻ B ≻ A

2 voters think: B ≻ C ≻ A

Assuming the voters vote sincerely , who wins the election for

• the plurality rule?

• the Borda rule?

• approval voting?
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Strategic Manipulation

Suppose the plurality rule is used to decide an election: the candidate

ranked first most often wins.

Assume the preferences of the people in, say, Florida are as follows:

49%: Bush ≻ Gore ≻ Nader

20%: Gore ≻ Nader ≻ Bush

20%: Gore ≻ Bush ≻ Nader

11%: Nader ≻ Gore ≻ Bush

So even if nobody is cheating, Bush will win this election.

◮ It would have been in the interest of the Nader supporters to

manipulate, i.e., to misrepresent their preferences.

Is there a better voting rule that avoids this problem?
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Social Choice in Combinatorial Domains

Suppose 13 voters are asked to each vote yes or no on three issues;

and we use the plurality rule for each issue independently to select a

winning combination:

• 3 voters each vote for YNN, NYN, NNY.

• 1 voter each votes for YYY, YYN, YNY, NYY.

• No voter votes for NNN.

But then NNN wins: on each issue, 7 out of 13 vote no.

This is an instance of the paradox of multiple elections: the winning

combination received the fewest number of (actually: no) votes.

What to do instead? The number of combinatorial alternatives is

exponential in the number of issues (e.g., 23 = 8), so even just

representing voter preferences is a challenge . . .

S.J. Brams, D.M. Kilgour, and W.S. Zwicker. The Paradox of Multiple Elections.

Social Choice and Welfare, 15(2):211–236, 1998.
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Judgment Aggregation

Preferences are not the only structures we may wish to aggregate.

In JA we aggregate people’s judgments regarding complex propositions:

p p → q q

Judge 1: yes yes yes

Judge 2: no yes no

Judge 3: yes no no

Majority: yes yes no

Problem: While each individual set of judgments is logically consistent,

the collective judgement produced by the majority rule is not.
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Fair Division

Fair division is the problem of dividing one or several goods amongst

two or more agents in a way that satisfies a suitable fairness criterion.

One instance of this problem is cake cutting .

For two agents, we can use the cut-and-choose procedure:

◮ One agent cuts the cake in two pieces (she considers to be of equal

value), and the other chooses one of them (the piece she prefers).

The cut-and-choose procedure is proportional:

◮ Each agent is guaranteed at least one half (general: 1/n)

according to her own valuation.

What if there are more than two agents? Is proportionality the best

way of measuring fairness? What about other types of goods?
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Computational Social Choice

Research can be broadly classified along two dimensions —

The kind of social choice problem studied, e.g.:

• electing a winner given individual preferences over candidates

• aggregating individual judgements into a collective verdict

• fairly dividing a cake given individual tastes

• finding a stable matching of students to schools

The kind of computational technique employed, e.g.:

• algorithm design to implement complex mechanisms

• complexity theory to understand limitations

• logical modelling to fully formalise intuitions

• knowledge representation techniques to compactly model problems

• deployment in a multiagent system

Y. Chevaleyre, U. Endriss, J. Lang, and N. Maudet. A Short Introduction to

Computational Social Choice. Proc. SOFSEM-2007.
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Part II: Arrow’s Theorem
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Arrow’s Theorem

This is probably the most famous theorem in social choice theory.

It was first proved by Kenneth J. Arrow in his 1951 PhD thesis.

He later received the Nobel Prize in Economic Sciences in 1972.

What we will see next:

• formal framework: social welfare functions

• the axiomatic method in SCT, and some axioms

• the theorem, its interpretation, and a proof

K.J. Arrow. Social Choice and Individual Values. John Wiley and Sons, 2nd

edition, 1963. First edition published in 1951.

Ulle Endriss 14

Introduction COMSOC 2012

Formal Framework

Basic terminology and notation:

• finite set of individuals N = {1, . . . , n}, with n > 2

• (usually finite) set of alternatives X = {x1, x2, x3, . . .}

• Denote the set of linear orders on X by L(X ).

Preferences (or ballots) are taken to be elements of L(X ).

• A profile R = (R1, . . . , Rn) ∈ L(X )N is a vector of preferences.

• We shall write NR
x≻y for the set of individuals that rank

alternative x above alternative y under profile R.

For today we are interested in preference aggregation mechanisms that

map any profile of preferences to a single collective preference.

The proper technical term is social welfare function (SWF):

F : L(X )N → L(X )
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The Axiomatic Method

Many important classical results in social choice theory are axiomatic .

They formalise desirable properties as “axioms” and then establish:

• Characterisation Theorems, showing that a particular (class of)

mechanism(s) is the only one satisfying a given set of axioms

• Impossibility Theorems, showing that there exists no aggregation

mechanism satisfying a given set of axioms
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Anonymity and Neutrality

Two very basic axioms (that we won’t actually need for the theorem):

• A SWF F is anonymous if individuals are treated symmetrically:

F (R1, . . . , Rn) = F (Rπ(1), . . . , Rπ(n))

for any profile R and any permutation π : N → N

• A SWF F is neutral if alternatives are treated symmetrically:

F (π(R)) = π(F (R))

for any profile R and any permutation π : X → X

(with π extended to preferences and profiles in the natural manner)

Keep in mind:

• not every SWF will satisfy every axiom we state here

• axioms are meant to be desirable properties (always arguable)
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The Pareto Condition

A SWF F satisfies the Pareto condition if, whenever all individuals

rank x above y, then so does society:

NR
x≻y = N implies (x, y) ∈ F (R)

This is a standard condition going back to the work of the Italian

economist Vilfredo Pareto (1848–1923).
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Independence of Irrelevant Alternatives (IIA)

A SWF F satisfies IIA if the relative social ranking of two alternatives

only depends on their relative individual rankings:

NR
x≻y = NR

′

x≻y implies (x, y) ∈ F (R) ⇔ (x, y) ∈ F (R′)

In other words: if x is socially preferred to y, then this should not

change when an individual changes her ranking of z.

IIA was proposed by Arrow.
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Universal Domain

This “axiom” is not really an axiom . . .

Sometimes the fact that any SWF must be defined over all profiles is

stated explicitly as a universal domain axiom.

Instead, I prefer to think of this as an integral part of the definition of

the framework (for now) or as a domain condition (later on).
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Arrow’s Theorem

A SWF F is a dictatorship if there exists a “dictator” i ∈ N such that

F (R) = Ri for any profile R, i.e., if the outcome is always identical to

the preference supplied by the dictator.

Theorem 1 (Arrow, 1951) Any SWF for > 3 alternatives that

satisfies the Pareto condition and IIA must be a dictatorship.

Next: some remarks, then a proof

K.J. Arrow. Social Choice and Individual Values. John Wiley and Sons, 2nd

edition, 1963. First edition published in 1951.
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Remarks

• Note that this is a surprising result!

• Note that the theorem does not hold for two alternatives.

• Note that the opposite direction clearly holds: any dictatorship

satisfies both the Pareto condition and IIA.

• Common misunderstanding: the SWF being dictatorial does not

just mean that the outcome coincides with the preferences of

some individual (rather: it’s the same dictator for any profile).

• Arrow’s Theorem is often read as an impossibility theorem:

There exists no SWF for > 3 alternatives that is Paretian,

independent, and nondictatorial.

• Significance of the result: (a) the result itself; (b) general theorem

rather than just another observation of a flaw of a specific

procedure; (c) methodology (precise statement of “axioms”).
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Proof

We’ll sketch a proof adapted from Sen (1986), using the “decisive coalition”

technique. Full details are in my review paper.

Claim: Any SWF for > 3 alternatives that satisfies the Pareto condition and

IIA must be a dictatorship.

So let F be a SWF for > 3 alternatives that satisfies Pareto and IIA.

Call a coalition G ⊆ N decisive on (x, y) iff G ⊆ NR

x≻y ⇒ (x, y) ∈ F (R).

Proof Plan:

• Pareto condition = N is decisive for all pairs of alternatives

• Lemma: G with |G| > 2 decisive for all pairs ⇒ some G′ ⊂G as well

• Thus (by induction), there’s a decisive coalition of size 1 (a dictator).

A.K. Sen. Social Choice Theory. In K.J. Arrow and M.D. Intriligator (eds.),

Handbook of Mathematical Economics, Volume 3, North-Holland, 1986.

U. Endriss. Logic and Social Choice Theory. In A. Gupta and J. van Benthem

(eds.), Logic and Philosophy Today, College Publications, 2011.
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About Decisiveness

Recall: G ⊆ N decisive on (x, y) iff G⊆NR

x≻y ⇒ (x, y) ∈ F (R)

Call G ⊆ N weakly decisive on (x, y) iff G=NR

x≻y ⇒ (x, y) ∈ F (R).

Claim: G weakly decisive on (x, y) ⇒ G decisive on any pair (x′, y′)

Proof: Suppose x, y, x′, y′ are all distinct (other cases: similar).

Consider a profile where individuals express these preferences:

• Members of G: x′ ≻ x ≻ y ≻ y′

• Others: x′ ≻ x and y ≻ y′ and y ≻ x (rest still undetermined)

From G being weakly decisive for (x, y): society ranks x ≻ y

From Pareto: society ranks x′ ≻ x and y ≻ y′

Thus, from transitivity: society ranks x′ ≻ y′

Note that this works for any ranking of x′ vs. y′ by non-G individuals.

By IIA, it still works if individuals change their non-x′-vs.-y′ rankings.

Thus, for any profile R with G ⊆ NR

x′≻y′ we get (x′, y′) ∈ F (R). X
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Contraction Lemma
Claim: If G ⊆ N with |G| > 2 is a coalition that is decisive on all pairs of

alternatives, then so is some nonempty coalition G′ ⊂ G.

Proof: Take any nonempty G1, G2 with G = G1 ∪G2 and G1 ∩G2 = ∅.

Recall that there are > 3 alternatives. Consider this profile:

• Members of G1: x ≻ y ≻ z ≻ rest

• Members of G2: y ≻ z ≻ x ≻ rest

• Others: z ≻ x ≻ y ≻ rest

As G = G1 ∪G2 is decisive, society ranks y ≻ z. Two cases:

(1) Society ranks x ≻ z: Exactly G1 ranks x ≻ z ⇒ By IIA, in any profile

where exactly G1 ranks x ≻ z, society will rank x ≻ z ⇒ G1 is weakly

decisive on (x, z). Hence (previous slide): G1 is decisive on all pairs.

(2) Society ranks z ≻ x, i.e., y ≻ x: Exactly G2 ranks y ≻ x ⇒ · · · ⇒

G2 is decisive on all pairs.

Hence, one of G1 and G2 will always be decisive. X

This concludes the proof of Arrow’s Theorem.
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Summary

In the first part, we have seen examples for different types of problems

in collective decision making:

• voting and preference aggregation

• judgment aggregation

• fair division

We have also hinted at some of the problems we will discuss:

• paradoxes and the need to be precise (axiomatic method)

• dealing with strategic behaviour

• the challenge of having many alternatives (combinatorial domains)

In the second part, we have seen Arrow’s Theorem, the seminal result

in (classical) SCT, and we have gone through a proof.
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What next?

Next, we will see two further classical impossibility theorems:

• Sen’s Theorem on the Impossibility of a Paretian Liberal

• The Muller-Satterthwaite Theorem

Go over the proof of Arrow’s Theorm once more by yourself: we will

use the same approach for the Muller-Satterthwaite Theorem.

Later in the course we will revisit many of the ideas we have touched

upon earlier today in much more depth.
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