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Plan for Today

We will introduce a few (more) voting rules:

• Staged procedures

• Positional scoring rules

• Condorcet extensions

And we will discuss some of their properties, including these:

• the Condorcet principle

• the computational complexity of the problem of determining the

winner of an election

This discussion will give some initial guidelines for choosing a suitable

voting rule for a specific situation at hand (an intricate problem that

we won’t fully resolve).
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Many Voting Rules

There are many different voting rules. Many, not all, of them are

defined in the survey paper by Brams and Fishburn (2002).

Most voting rules are social choice functions:

Borda, Plurality, Antiplurality/Veto, and k-approval, Plurality

with Runoff, Single Transferable Vote (STV), Nanson, Cup

Rule/Voting Trees, Copeland, Banks, Slater, Schwartz,

Minimax/Simpson, Kemeny, Ranked Pairs/Tideman, Schulze,

Dodgson, Young, Bucklin.

But some are not:

Approval Voting, Majority Judgment, Cumulative Voting,

Range Voting.

S.J. Brams and P.C. Fishburn. Voting Procedures. In K.J. Arrow et al. (eds.),

Handbook of Social Choice and Welfare, Elsevier, 2002.
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Single Transferable Vote (STV)

STV (also known as the Hare system) is a staged procedure:

• If one of the candidates is the 1st choice for over 50% of the

voters (quota), she wins.

• Otherwise, the candidate who is ranked 1st by the fewest voters

gets eliminated from the race.

• Votes for eliminated candidates get transferred: delete removed

candidates from ballots and “shift” rankings (i.e., if your 1st

choice got eliminated, then your 2nd choice becomes 1st).

In practice, voters need not be required to rank all candidates

(non-ranked candidates are assumed to be ranked lowest).

STV is used in several countries (e.g., Australia, New Zealand, . . . ).

For three candidates, STV and Plurality with Runoff coincide.

Variants: Coombs, Nanson, Baldwin
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The No-Show Paradox
Under plurality with runoff (and thus under STV), it may be better to

abstain than to vote for your favourite candidate! Example:

25 voters: A � B � C

46 voters: C � A � B

24 voters: B � C � A

Given these voter preferences, B gets eliminated in the first round,

and C beats A 70:25 in the runoff.

Now suppose two voters from the first group abstain:

23 voters: A � B � C

46 voters: C � A � B

24 voters: B � C � A

A gets eliminated, and B beats C 47:46 in the runoff.

P.C. Fishburn and S.J Brams. Paradoxes of Preferential Voting. Mathematics

Magazine, 56(4):207-214, 1983.
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Positional Scoring Rules

We can generalise the idea underlying the Borda rule as follows:

A positional scoring rule is given by a scoring vector s = 〈s1, . . . , sm〉
with s1 > s2 > · · · > sm and s1 > sm.

Each voter submits a ranking of the m alternatives. Each alternative

receives si points for every voter putting it at the ith position.

The alternatives with the highest score (sum of points) win.

Examples:

• Borda rule = PSR with scoring vector 〈m−1,m−2, . . . , 0〉

• Plurality rule = PSR with scoring vector 〈1, 0, . . . , 0〉

• Antiplurality rule = PSR with scoring vector 〈1, . . . , 1, 0〉

• For any k 6 m, k-approval = PSR with 〈1, . . . , 1︸ ︷︷ ︸
k

, 0, . . . , 0〉
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The Condorcet Principle

An alternative that beats every other alternative in pairwise majority

contests is called a Condorcet winner .

There may be no Condorcet winner; witness the Condorcet paradox:

Ann: A � B � C

Bob: B � C � A

Cesar: C � A � B

Whenever a Condorcet winner exists, then it must be unique.

A voting procedure satisfies the Condorcet principle if it elects (only)

the Condorcet winner whenever one exists.

M. le Marquis de Condorcet. Essai sur l’application de l’analyse à la probabilté des

décisions rendues a la pluralité des voix. Paris, 1785.
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Positional Scoring Rules violate Condorcet

Consider the following example:

3 voters: A � B � C

2 voters: B � C � A

1 voter: B � A � C

1 voter: C � A � B

A is the Condorcet winner ; she beats both B and C 4 : 3. But any

positional scoring rule makes B win (because s1 > s2 > s3):

A: 3 · s1 + 2 · s2 + 2 · s3
B: 3 · s1 + 3 · s2 + 1 · s3
C: 1 · s1 + 2 · s2 + 4 · s3

Thus, no positional scoring rule for three (or more) alternatives will

satisfy the Condorcet principle.
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Condorcet Extensions
A Condorcet extension is a voting rule that respects the Condorcet

principle. Fishburn suggested the following classification:

• C1: Rules for which the winners can be computed from the

majority graph alone. Example:

– Copeland: elect the candidate that maximises the difference

between won and lost pairwise majority contests

• C2: Non-C1 rules for which the winners can be computed from

the weighted majority graph alone. Example:

– Kemeny: elect top candidates in rankings that minimise sum

of Hamming distances to individual rankings

• C3: All other Condorcet extensions. Example:

– Young: elect candidates that minimise number of voters to be

removed before they become Condorcet winners

P.C. Fishburn. Condorcet Social Choice Functions. SIAM Journal on Applied

Mathematics, 33(3):469–489, 1977.

Ulle Endriss 9



Voting Rules COMSOC 2012

Complexity of Winner Determination

Bartholdi et al. (1989) were the first to study the complexity of computing

election winners. They showed that checking whether a candidate’s

Dodgson score exceeds K is NP-complete. Other results include:

• Checking whether a candidate is a Dodgson winner it is complete for

parallel access to NP (Hemaspaandra et al., 1997). There are similar

results for the Kemeny rule. Young and Slater are also hard.

• More recent work has also analysed the parametrised complexity of

winner determination. See Betzler et al. (2012) for a good introduction.

J.J. Bartholdi III, C.A. Tovey, and M.A. Trick. Voting schemes for which it can

be difficult to tell who won the election. Soc. Choice Welf., 6(2):157–165, 1989.

E. Hemaspaandra, L.A. Hemaspaandra, and J. Rothe. Exact Analysis of Dodgson

Elections. Journal of the ACM, 44(6):806–825, 1997.

N. Betzler, R. Bredereck, J. Chen, and R. Niedermeier. Studies in Computational

Aspects of Voting: A Parameterized Complexity Perspective. In The Multivariate

Algorithmic Revolution and Beyond, pp. 318–363, Springer, 2012.
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The Banks Rule

Let X be the set of alternatives. Define the majority graph (X ,�M ):

x �M y iff a strict majority of voters rank x above y

Aside: If (X ,�M ) is complete, then it is called a tournament. That is,

if the number n of voters is odd, then (X ,�M ) is a tournament.

Under the Banks rule, a candidate x is a winner if it is a top element

in a maximal acyclic subgraph of the majority graph.

Fact: The Banks rule respects the Condorcet principle.

J.S. Banks. Sophisticated Voting Outcomes and Agenda Control. Social Choice

and Welfare, 1(4)295–306, 1985.
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Complexity of Winner Determination: Banks Rule

A desirable property of any voting rule is that it should be easy

(computationally tractable) to compute the winner(s).

For the Banks rule, we formulate the problem wrt. the majority graph

(which we can compute in polynomial time given the ballot profile):

Banks-Winner

Instance: majority graph G = (X ,�M ) and alternative x? ∈ X
Question: Is x? a Banks winner for G?

Unfortunately, recognising Banks winners is intractable:

Theorem 1 (Woeginger, 2003) Banks-Winner is NP-complete.

Proof: NP-membership: certificate = maximal acyclic subgraph

NP-hardness: reduction from Graph 3-Colouring (see paper). X

G.J. Woeginger. Banks Winners in Tournaments are Difficult to Recognize. Social

Choice and Welfare, 20(3)523–528, 2003.
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Easiness of Computing Some Winner

We have seen that checking whether x is a Banks winner is NP-hard.

So computing all Banks winners is also NP-hard.

But computing just some Banks winner is easy! Algorithm:

(1) Let S := {x1} and i := 1. [candidates X = {x1, . . . , xm}]

(2) While i < m, repeat:

• Let i := i+ 1.

• If the majority graph restricted to S ∪ {xi} is acyclic,

then let S := S ∪ {xi}.

(3) Return the top element in S (it is a Banks winner).

This algorithm has complexity O(m2) if given the majority graph,

which in turn can be constructed in time O(n ·m2).

O. Hudry. A Note on “Banks Winners in Tournaments are Difficult to Recognize”

by G.J. Woeginger. Social Choice and Welfare, 23(1):113–114, 2004.
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Summary

We have by now seen several types of for voting rules:

• staged procedures: STV, Plurality with Runoff, . . .

• positional scoring rules: Borda, Plurality, Antiplurality, . . .

• Condorcet extensions: Copeland, Banks, Kemeny, Young, . . .

Helpful references for these and other voting rules are the works of Brams

and Fishburn (2002) and Nurmi (1987).

We have also discussed three important properties:

• Participation: a voting rule should not give incentives not to vote (i.e.,

it should not suffer from the no-show paradox)

• Condorcet principle: elect the Condorcet winner whenever it exists

• Complexity of winner determination: computing the winner(s) of an

election should be computationally tractable

S.J. Brams and P.C. Fishburn. Voting Procedures. In K.J. Arrow et al. (eds.),

Handbook of Social Choice and Welfare, Elsevier, 2002.

H. Nurmi. Comparing Voting Systems. Kluwer Academic Publishers, 1987.
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What next?

In the next lecture we will see three different approaches to providing

characterisations of voting rules.

• This will provide some explanation for the enormous diversity of

voting rules encountered today.

• It will also connect to the impossibility theorems we have seen

before, which may be considered characterisations of dictatorships.
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