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Plan for Today

Today’s lecture will be devoted to classical impossibility theorems in

social choice theory. We already proved Arrow’s Theorem using the

“decisive coalition” technique. Today we’ll first review this result and:

• give references to alternative proofs

• discuss the challenge of automatically proving Arrow’s Theorem

Then we’ll see two further classical impossibility theorems:

• Sen’s Theorem on the Impossibility of a Paretian Liberal (1970)

• the Muller-Satterthwaite Theorem (1977)

The former is easy to prove; for the latter we will again use the

“decisive coalition” technique.
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Arrow’s Theorem

Recall terminology and axioms:

• SWF: F : L(X )n → L(X )
• Pareto: NR

x�y = N implies (x, y) ∈ F (R)

• IIA: NR
x�y = NR′

x�y implies (x, y) ∈ F (R) ⇔ (x, y) ∈ F (R′)

• Dictatorship: ∃i ∈ N s.t. ∀(R1, . . . , Rn): F (R1, . . . , Rn) = Ri

Here is again the theorem:

Theorem 1 (Arrow, 1951) Any SWF for > 3 alternatives that

satisfies the Pareto condition and IIA must be a dictatorship.

K.J. Arrow. Social Choice and Individual Values. John Wiley and Sons, 2nd

edition, 1963. First edition published in 1951.
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Alternative Proofs

Arrow’s book is an inspiring and interesting read, but his proof is very

verbose and hard to follow (and the original version of 1951 famously

has a small mistake in the theorem). Some alternative proofs:

• Geanakoplos (2005) gives three short proofs. The first one is

particularly helpful. It uses the “pivotal voter” technique and is

based on earlier work by Barberà (1980).

• Another proof involves showing that the family of (weakly) decisive

coalitions is an ultrafilter for N (Kirman and Sondermann, 1972).

J. Geanakoplos. Three Brief Proofs of Arrow’s Impossibility Theorem. Economic

Theory, 26(1):211–215, 2005.

S. Barberà (1980). Pivotal Voters: A New Proof of Arrow’s Theorem. Economics

Letters, 6(1):13–16, 1980.

A.P. Kirman and D. Sondermann. Arrow’s Theorem, Many Agents, and Invisible

Dictators. Journal of Economic Theory, 5(3):267–277, 1972.
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Automated Reasoning for Social Choice Theory

There’ve also been attempts to automatise proving Arrow’s Theorem:

• Nipkow (2009) has encoded one of Geanakoplos’ proofs in the

language of the higher-order logic proof assistant Isabelle,

resulting in an automatic verification of that proof.

• Tang and Lin (2009) have translated Arrow’s Theorem for 2

individuals and 3 alternatives into a set of clauses in propositional

logic, which allows for verification by means of a SAT-solver .

T. Nipkow. Social Choice Theory in HOL: Arrow and Gibbard-Satterthwaite. Jour-

nal of Automated Reasoning, 43(3):289–304, 2009.

P. Tang and F. Lin. Computer-aided Proofs of Arrow’s and other Impossibility

Theorems. Artificial Intelligence, 173(11):1041–1053, 2009.
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Logics for Social Choice Theory

More generally, it is interesting to explore the use of logics to model

problems studied in SCT. This is still an under-developed strand of

research. Below are some references (the last one is a survey).

R. Parikh. The Logic of Games and its Applications. Annals of Discrete Mathe-

matics, 24:111–140, 1985.

M. Pauly. On the Role of Language in Social Choice Theory. Synthese,

163(2):227–243, 2008.

T. Ågotnes, W. van der Hoek, and M. Wooldridge. On the Logic of Preference and

Judgment Aggregation. Auton. Agents and Multiagent Sys., 22(1):4–30, 2011.

U. Grandi and U. Endriss. First-Order Logic Formalisation of Impossibility Theo-

rems in Preference Aggregation. Journal of Phil. Logic, 42(4):595–618, 2013.

U. Endriss. Logic and Social Choice Theory. In A. Gupta and J. van Benthem

(eds.), Logic and Philosophy Today, College Publications, 2011.
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Social Choice Functions

From now on we consider aggregators that take a profile of preferences

and return one or several “winners” (rather than a full social ranking).

This is called a social choice function (SCF):

F : L(X )n → 2X \{∅}

A SCF is called resolute if |F (R)| = 1 for any given profile R, i.e., if it

always selects a unique winner.

Remark: We can think of a SCF as a voting rule, particularly if it

tends to select “small” sets of winners (we won’t make this precise).

Voting rules are often required to be resolute (; tie-breaking rule).

Examples: The plurality and the Borda rule are both (irresolute) SCFs.
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Alternative Definition

In the literature you will sometimes find the term SCF being used for

functions F : L(X)n × 2X \{∅} → 2X \{∅}. Two readings:

• The input of F is a profile of preferences (as before) + a set of

feasible alternatives. The output should be a subset of the feasible

alternatives, selected in view of the preference profile.

• The input of F is just a profile of preferences (as before). The

output is a choice function C : 2X \{∅} → 2X \{∅} that will

select a set of winners from any given set of alternatives.

This refinement is not relevant for the results we want to discuss here,

so we shall take a SCF to be a function F : L(X )n → 2X \{∅}.
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The Pareto Condition for Social Choice Functions

A SCF F satisfies the Pareto condition if, whenever all individuals rank

x above y, then y cannot win:

NR
x�y = N implies y 6∈ F (R)
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Liberalism

Think of X as the set of all possible “social states”. Certain aspects of

such a state will be some individual’s private business. Example:

If x and y are identical states, except that in x I paint my

bedroom white, while in y I paint it pink, then I should be

able to dictate the relative social ranking of x and y.

Sen (1970) proposed the following axiom:

A SCF F satisfies the axiom of liberalism if, for every individual

i ∈ N , there exist two distinct alternatives x, y ∈ X such that i is

two-way decisive on x and y:

i ∈ NR
x�y implies y 6∈ F (R) and i ∈ NR

y�x implies x 6∈ F (R)

A.K. Sen. The Impossibility of a Paretian Liberal. Journal of Political Economics,

78(1):152–157, 1970.
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The Impossibility of a Paretian Liberal

Sen (1970) showed that liberalism and the Pareto condition are

incompatible (recall that we required |N | > 2, which matters here):

Theorem 2 (Sen, 1970) No SCF satisfies both liberalism and the

Pareto condition.

As we shall see, the theorem holds even when liberalism is enforced for

only two individuals. The number of alternatives does not matter.

Again, a surprising result (but easier to prove than Arrow’s Theorem).

A.K. Sen. The Impossibility of a Paretian Liberal. Journal of Political Economics,

78(1):152–157, 1970.
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Proof

Let F be a SCF satisfying Pareto and liberalism. Get a contradiction:

Take two distinguished individuals i1 and i2, with:

• i1 is two-way decisive on x1 and y1
• i2 is two-way decisive on x2 and y2

Assume x1, y1, x2, y2 are pairwise distinct (other cases: easy).

Consider a profile with these properties:

(1) Individual i1 ranks x1 � y1.

(2) Individual i2 ranks x2 � y2.

(3) All individuals rank y1 � x2 and y2 � x1.

(4) All individuals rank x1, x2, y1, y2 above all other alternatives.

From liberalism: (1) rules out y1 and (2) rules out y2 as winner.

From Pareto: (3) rules out x1 and x2 and (4) rules out all others.

Thus, there are no winners. Contradiction. X
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Monotonicity

Next we want to formalise the idea that when a winner receives

increased support, she should not become a loser.

We focus on resolute SCFs. Write x? = F (R) for {x?} = F (R).

• Weak monotonicity : F is weakly monotonic if x? = F (R) implies

x? = F (R′) for any alternative x? and any two profiles R and R′

with NR
x?�y ⊆ NR′

x?�y and NR
y�z = NR′

y�z for all y, z ∈ X \{x?}.

• Strong monotonicity : F is strongly monotonic if x? = F (R)

implies x? = F (R′) for any alternative x? and any two profiles R

and R′ with NR
x?�y ⊆ NR′

x?�y for all y ∈ X \{x?}.

The latter property is also known as Maskin monotonicity.
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Example

Even weak monotonicity is not satisfied by some common voting rules.

Under plurality with runoff the two alternatives with the highest

plurality score enter a second round and the majority winner of that

round is the winner (used to elect the French president). Example:

27 voters: A � B � C

42 voters: C � A � B

24 voters: B � C � A

B is eliminated in the first round and C beats A 66:27 in the runoff.

But if 4 of the voters in the first group raise C to the top (i.e., join

the second group), then B will win.

But many other rules (e.g., plurality) do satisfy weak monotonicity.

How about strong monotonicity?

Ulle Endriss 14



Impossibility Theorems COMSOC 2013

The Muller-Satterthwaite Theorem

Strong monotonicity turns out to be (desirable but) too demanding:

Theorem 3 (Muller and Satterthwaite, 1977) Any resolute SCF

for > 3 alternatives that is surjective and strongly monotonic must be

a dictatorship.

Here, a resolute SCF F is called surjective (or nonimposed) if for

every alternative x ∈ X there exists a profile R such that F (R) = x.

And: a SCF F is a dictatorship if there exists an i ∈ N such that

F (R1, . . . , Rn) = top(Ri) for every profile (R1, . . . , Rn).

Remark: Above theorem, which is what is nowadays usually referred to

as the Muller-Satterthwaite Theorem, is in fact a corollary of their

main theorem and the better known Gibbard-Satterthwaite Theorem.

E. Muller and M.A. Satterthwaite. The Equivalence of Strong Positive Association

and Strategy-Proofness. Journal of Economic Theory, 14(2):412–418, 1977.
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Proof

We use again the “decisive coalition” technique. Full details are

available in the review paper cited below.

Claim: Any resolute SCF for > 3 alternatives that is surjective and

strongly monotonic must be a dictatorship.

Let F be a SCF for |X | > 3 that is surjective and strongly monotonic.

Proof Plan:

• Show that F must be independent (to be defined).

• Show that F must be Pareto efficient.

• Prove a version of Arrow’s Theorem for SCFs.

U. Endriss. Logic and Social Choice Theory. In A. Gupta and J. van Benthem

(eds.), Logic and Philosophy Today, College Publications, 2011.
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Independence

Call a SCF F independent if it is the case that x 6= y, F (R) = x, and

NR
x�y = NR′

x�y together imply F (R′) 6= y.

That is, if y lost to x under profile R, and the relative rankings of x vs.

y do not change, then y will still lose (possibly to a different winner).

Claim: F is independent.

Proof: Suppose x 6= y, F (R) = x, and NR
x�y = NR′

x�y.

Construct a third profile R′′:

• All individuals rank x and y in the top-two positions.

• The relative rankings of x vs. y are as in R, i.e., NR′′

x�y = NR
x�y.

• Rest: whatever

By strong monotonicity, F (R) = x implies F (R′′) = x.

By strong monotonicity, F (R′) = y would imply F (R′′) = y.

Thus, we must have F (R′) 6= y. X
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Pareto Condition

Recall the Pareto condition: if everyone ranks x � y, then y won’t win.

Claim: F satisfies the Pareto condition.

Proof: Take any two alternatives x and y.

From surjectivity: x will win for some profile R.

Starting in R, have everyone move x above y (if not above already).

From strong monotonicity: x still wins.

From independence: y does not win for any profile where all

individuals continue to rank x � y. X
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Plan for the Rest of the Proof

We now know that F must be a SCF for > 3 alternatives that is independent

and Pareto efficient. We want to infer that F must be a dictatorship.

Call a coalition G ⊆ N decisive on (x, y) iff G ⊆ NR
x�y ⇒ y 6= F (R).

Proof plan:

• Pareto condition = N is decisive for all pairs of alternatives

• Lemma: G with |G| > 2 decisive for all pairs ⇒ some G′⊂G as well

• Thus (by induction), there’s a decisive coalition of size 1 (a dictator).
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About Decisiveness

Recall: G ⊆ N decisive on (x, y) iff G⊆NR
x�y ⇒ y 6= F (R)

Call G ⊆ N weakly decisive on (x, y) iff G=NR
x�y ⇒ y 6= F (R).

Claim: G weakly decisive on (x, y) ⇒ G decisive on any pair (x′, y′)

Proof: Suppose x, y, x′, y′ are all distinct (other cases: similar).

Consider a profile where individuals express these preferences:

• Members of G: x′ � x � y � y′

• Others: x′ � x, y � y′, and y � x (note that x′-vs.-y′ is not specified)

• All rank x, y, x′, y′ above all other alternatives.

From G being weakly decisive for (x, y) ⇒ y must lose

From Pareto ⇒ x must lose (to x′) and y′ must lose (to y)

Thus, x′ must win (and y′ must lose). By independence, y′ will still lose

when everyone changes their non-x′-vs.-y′ rankings.

Thus, for any profile R with G ⊆ NR
x′�y′ we get y′ 6= F (R). X
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Contraction Lemma

Claim: If G ⊆ N with |G| > 2 is a coalition that is decisive on all pairs of

alternatives, then so is some nonempty coalition G′ ⊂ G.

Proof: Take any nonempty G1, G2 with G = G1 ∪G2 and G1 ∩G2 = ∅.

Recall that there are > 3 alternatives. Consider this profile:

• Members of G1: x � y � z � rest

• Members of G2: y � z � x � rest

• Others: z � x � y � rest

As G = G1 ∪G2 is decisive, z cannot win (it loses to y). Two cases:

(1) The winner is x: Exactly G1 ranks x � z ⇒ By independence, in any

profile where exactly G1 ranks x � z, z will lose (to x) ⇒ G1 is weakly

decisive on (x, z). Hence (previous slide): G1 is decisive on all pairs.

(2) The winner is y, i.e., x loses (to y). Exactly G2 ranks y � x ⇒ · · · ⇒
G2 is decisive on all pairs.

Hence, one of G1 and G2 will always be decisive. X
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Summary

We have by now see three important impossibility theorems,

establishing the incompatibility of certain desirable properties:

• Arrow: Pareto, IIA, nondictatoriality

• Sen: Pareto, liberalism

• Muller-Satterthwaite: surjectivity, strong monotonicity, nondictat.

We have discussed these results in two formal frameworks (none of the

results heavily depend on the choice of framework):

• social welfare functions (SWF )

• (resolute) social choice functions (SCF )

This has also been an introduction to the axiomatic method:

• formulate desirable properties of aggregators as axioms

• explore the consequences of imposing several such axioms
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What next?

As discussed, the impossibility theorems we have seen can also be

interpreted as axiomatic characterisations of the class of dictatorships.

Soon we will see characterisations of more attractive (classes of)

voting rules:

• using (again) the axiomatic method; and

• using different methods.

But first we will see more examples for practical voting rules and

discuss their properties, including also their algorithmic properties

(how hard is it to compute the winners?).
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