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Plan for Today

Today we will discuss the problem of fairly allocating a number of

indivisible goods to a group of agents. Specific topics:

• Complexity of finding socially optimal allocations

• Compact representation languages for utility functions

For general background on these topics, see my lecture notes and the

“MARA Survey”.

U. Endriss. Lecture Notes on Fair Division. ILLC, University of Amsterdam, 2010.

Y. Chevaleyre, P.E. Dunne, U. Endriss, J. Lang, M. Lemâıtre, N. Maudet, J. Pad-

get, S. Phelps, J.A. Rodŕıguez-Aguilar and P. Sousa. Issues in Multiagent Resource

Allocation. Informatica, 30:3–31, 2006.
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Notation and Terminology

We consider the case of allocating indivisible (as well as non-sharable,

single-unit, static) goods to agents with cardinal preferences.

We shall work in this framework:

• Set of agents N = {1, . . . , n} and finite set of indivisible goods G.

• An allocation A is a partitioning of G amongst the agents in N .

Example: A(i) = {g5, g7} — agent i owns goods g5 and g7

• Each agent i ∈ N has got a utility function ui : 2
G → R.

Example: ui(A) = ui(A(i)) = 577.8 — agent i is pretty happy

An allocation problem is a triple 〈N ,G,U〉, where U is a set of utility

functions (+ possibly the initial allocation A0).
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Allocation Procedures

We can distinguish two approaches:

• This lecture: in the centralised approach, we need to devise an

optimisation algorithm to compute an allocation meeting our

fairness and efficiency requirements.

• Next lecture: in the distributed approach, allocations emerge as

agents implement a sequence of local deals. What can we say

about the properties of these emerging allocations?

Discussion: advantages and disadvantages of either approach

(simplicity, trust towards the centre, . . . )
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Social Welfare

Recall that we have seen a number of criteria, most of them based on

various social welfare orderings, that can be used to define what

constitutes an optimal allocation.

Specifically, utilitarian social welfare is defined as follows:

SWutil(A) =
∑

i∈N

ui(A)

How hard is it to find an allocation that is optimal in this sense?
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Welfare Optimisation

How hard is it to find an allocation with maximal social welfare?

Rephrase this optimisation problem as a decision problem:

Welfare Optimisation (WO)

Instance: 〈N ,G,U〉 and K ∈ Q

Question: Is there an allocation A such that SWutil(A) > K?

Unfortunately, the problem is intractable:

Theorem 1 Welfare Optimisation is NP-complete.

Proof: NP-membership: we can check in polytime whether a given

allocation A really has social welfare > K. NP-hardness: next slide. X

This seems to have first been stated by Rothkopf et al. (1998).

M.H. Rothkopf, A. Pekec̆, and R.M. Harstad. Computationally Manageable Com-

binational Auctions. Management Science, 44(8):1131–1147, 1998.
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Proof of NP-hardness

By reduction to Set Packing (known to be NP-complete):

Set Packing

Instance: Collection C of finite sets and K ∈ N

Question: Is there a collection of disjoint sets C′ ⊆ C s.t. |C′| > K?

Given an instance C of Set Packing, consider this allocation problem:

• Goods: each item in one of the sets in C is a good

• Agents: one for each set in C + one other agent (called agent 0)

• Utilities: uC(S) = 1 if S = C and uC(S) = 0 otherwise;

u0(S) = 0 for all bundles S

That is, every agent values “its” bundle at 1 and every other bundle at 0.

Agent 0 values all bundles at 0.

Then every set packing corresponds to an allocation (with SW = |C′|).

Vice versa, for every allocation there is one with the same SW corresponding

to a set packing (give anything owned by agents with utility 0 to agent 0). X
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Representation of Preferences

In our proof, we have glossed over the representation of preferences:

• To be precise, we have proved NP-hardness wrt. the number of

pairs of agents and bundles with non-zero value, corresponding to

the number of sets involved in Set Packing.

• Observe that this number itself may already be very high

(exponential in the number of goods).

• In other words, we have proved NP-completeness wrt. an explicit

representation of the utility functions involved.

But the result is very robust: we also get NP-completeness for more

sophisticated preference representation languages. Some of those

results are reviewed by Chevaleyre et al. (2006).

Y. Chevaleyre, P.E. Dunne, U. Endriss, J. Lang, M. Lemâıtre, N. Maudet, J. Pad-

get, S. Phelps, J.A. Rodŕıguez-Aguilar and P. Sousa. Issues in Multiagent Resource

Allocation. Informatica, 30:3–31, 2006.
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Welfare Optimisation under Additive Preferences

Sometimes we can reduce complexity by restricting attention to

problems with certain types of preferences.

A utility function u : 2G → R is called additive if for all G ⊆ G:

u(S) =
∑

g∈S

u({g})

The following result is almost immediate:

Proposition 1 Welfare Optimisation is in P in case all individual

preferences are additive.

Proof: To compute an allocation with maximal social welfare, simply

give each item to (one of) the agent(s) who value it the most. X

This works, because we have
∑

i

∑
g
ui({g}) =

∑
g

∑
i
ui({g}).

So the same restriction does not help for, say, the egalitarian or Nash CUF.
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More Complexity Results

To give you a rough idea of what kind of complexity results there are

out there, here are some representative examples (omitting precise

statements regarding the representation of preferences employed):

• Finding an allocation with maximal egalitarian social welfare is

NP-hard, even when all valuations are additive.

• Checking whether a given allocation is Pareto efficient is

coNP-complete.

• Checking whether an envy-free allocation exists is NP-complete;

checking whether an allocation that is both Pareto efficient and

envy-free exists is even Σp
2-complete (NP with NP-oracle).

References to these results may be found in the “MARA Survey”.

Y. Chevaleyre, P.E. Dunne, U. Endriss, J. Lang, M. Lemâıtre, N. Maudet, J. Pad-

get, S. Phelps, J.A. Rodŕıguez-Aguilar and P. Sousa. Issues in Multiagent Resource

Allocation. Informatica, 30:3–31, 2006.
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Preference Representation Languages

Example: Allocating 10 goods to 5 agents means 510 = 9765625

allocations and 210 = 1024 bundles for each agent to think about.

So we need to choose a good language to compactly represent

preferences over such large numbers of alternative bundles, e.g.:

• Logic-based languages (weighted goals)

• Bidding languages for combinatorial auctions (OR/XOR)

• Program-based preference representation (straight-line programs)

• CP-nets and CI-nets (for ordinal preferences)

The choice of language affects both algorithm design and complexity .

See our AI Magazine article for references and an introduction to the

problem of preference modelling in combinatorial domains.

Y. Chevaleyre, U. Endriss, J. Lang, and N. Maudet. Preference Handling in Com-

binatorial Domains: From AI to Social Choice. AI Magazine, 29(4):37–46, 2008.
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Criteria for Choosing a Language

At least the following questions should be addressed when choosing a

representation language:

• Cognitive relevance: How close is a given language to the way in

which humans would express their preferences?

• Elicitation: How difficult is it to elicit the preferences of an agent

so as to represent them in the chosen language?

• Expressive power : Can the chosen language encode all the

preference structures we are interested in?

• Succinctness: Is the representation of (typical) structures

succinct? Is one language more succinct than the other?

• Complexity : What is the computational complexity of related

decision problems, such as comparing two alternatives?
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Weighted Goals

To exemplify the research agenda in preference representation, let us

look at one framework in some detail.

Identify G with a set of propositional variables PS = {X1, . . . , Xp}:

Xi = “I get item gi”. So need to model utility functions u : 2PS → R.

Let LPS be the propositional language defined over PS .

Use formulas in LPS to express goals. Give each goal a numerical

weight. A goalbase G = {(ϕi, wi)}i is a set of weighted goals.

Each goalbase G generates a utility function uG:

uG(M) =
∑

(ϕ,w)∈G[M ]

w where G[M ] = {(ϕ,w) ∈ G | M |= ϕ}

That is, the utility of a model M is the sum of the weights of the

formulas it satisfies.
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A Family of Languages

Recall: {(ϕi, wi)}i induces u : M 7→
∑

{wi | M |= ϕi} (multiset)

By imposing different restrictions on formulas and/or weights we can

design different representation languages.

Regarding formulas, we may consider restrictions such as:

• positive formulas (no occurrence of ¬)

• clauses and cubes (disjunctions and conjunctions of literals)

• k-formulas (formulas of length 6 k), e.g., 1-formulas = literals

• combinations of the above, e.g., k-pcubes

Regarding weights, interesting restrictions would be R+ or {0, 1}.

If H ⊆ LPS is a restriction on formulas and H ′ ⊆ R a restriction on

weights, then L(H,H ′) is the language conforming to H and H ′.
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Properties

We are interested in the following types of questions:

• Are there restrictions on goalbases such that the utility functions

they generate enjoy natural structural properties?

• Are some goalbase languages more succinct than others?

• What is the computational complexity of reasoning about

preferences expressed in a given language?

The results on the following slides are from Uckelman et al. (2009).

More details in Joel Uckelman’s PhD thesis.

J. Uckelman, Y. Chevaleyre, U. Endriss, and J. Lang. Representing Utility Func-

tions via Weighted Goals. Mathematical Logic Quarterly, 55(4):341–361, 2009.

J. Uckelman. More Than the Sum of its Parts: Compact Preference Representation

over Combinatorial Domains. PhD thesis, ILLC, University of Amsterdam, 2009.
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Expressive Power

We first give an example for a language that is fully expressive:

Proposition 2 (Expressivity of pcubes) L(pcubes ,R), the language

of positive cubes, can express all utility functions.

Proof: Let u : 2PS → R be any utility function. Define goalbase G:

(⊤, w⊤) with w⊤ = u(∅)

(p, wp) with wp = u({p})− w⊤

(p ∧ q, wp,q) with wp,q = u({p, q})− wp − wq − w⊤ . . .

(
∧
P,wP ) with wP = u(P )−

∑
Q⊂P wQ

Clearly, G thus defined will generate the function u. X

Observe that the proof also demonstrates that L(pcubes ,R) has a

unique way of representing any given function.

L(cubes ,R), for example, is also fully expressive but not unique:

{(p ∧ q, 5), (p ∧ ¬q, 5), (¬p ∧ q, 3), (¬p ∧ ¬q, 3)} ≡ {(⊤, 3), (p, 2)}
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Expressive Power: Modular Functions

A function u : 2PS → R is modular if for all M1,M2 ⊆ 2PS we have:

u(M1 ∪M2) = u(M1) + u(M2)− u(M1 ∩M2)

Here’s a nice characterisation of the modular functions:

Proposition 3 (Expressivity of literals) L(literals,R) can express

all modular utility functions, and only those.

Proof sketch: Modular functions are like additive functions, i.e.,

functions u with u(M) =
∑

x∈M u({x}), except that modularity also

permits non-zero values for ∅.

Easy to see that L(atoms,R) expresses exactly the additive functions.

So L(atoms ∪ {⊤},R) expresses exactly the modular functions.

To see that adding negation does not increase expressive power,

observe that G ∪ {(¬ϕ,w)} ≡ G ∪ {(⊤, w), (ϕ,−w)}. X

Ulle Endriss 17

Fair Allocation of Indivisible Goods COMSOC 2013

Relative Succinctness

If two languages can express the same class of utility functions, which

should we use? An important criterion is succinctness.

Let L and L′ be two languages that can define all utility functions

belonging to some class U .

We say that L′ is at least as succinct as L (L � L′) over U if there

exist a mapping f : L → L′ and a polynomial function p such that for

all expressions G ∈ L with the corresponding function uG ∈ U :

• G ≡ f(G) (i.e., they represent the same function: uG = uf(G));

• and size(f(G)) 6 p(size(G)) (polysize reduction).

L is less succinct than L′ (L ≺ L′) iff L � L′ and not L′ � L.

Equivalence (∼) and incomparability (⊲⊳) are defined accordingly.

If left implicit, then U is the intersection of the ranges of L and L′.
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The Effect of Negation

We have seen that positive cubes are fully expressive. Hence,

L(pcubes ,R) and L(cubes ,R) have the same expressivity.

Proposition 4 (Succinctness) L(pcubes ,R) ≺ L(cubes ,R).

Proof: Clearly, L(pcubes ,R) � L(cubes ,R), because any positive cube

is also a cube.

Now consider u with u(∅) = 1 and u(M) = 0 for all M 6= ∅:

• G = {(¬p1 ∧ · · · ∧ ¬pn, 1)} ∈ L(cubes ,R) has linear size and

generates u.

• G′ = {(
∧
X, (−1)|X|) | X ⊆ PS} ∈ L(pcubes ,R) has exponential

size and also generates u.

But there can be not better way of expressing u in pcubes, because we

have seen that pcube representations are unique. X
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Computational Complexity

Other interesting questions concern the complexity of reasoning about

preferences. Consider the following decision problem:

Max-Utility(H,H ′)

Instance: Goalbase G ∈ L(H,H ′) and K ∈ Z

Question: Is there an M ∈ 2PS such that uG(M) > K?

Some basic results are straightforward:

• Max-Utility(H,H ′) is in NP for any H ⊆ LPS and H ′ ⊆ Q,

because we can always check uG(M) > K in polynomial time.

• Max-Utility(forms,Q) is NP-complete, certainly if we do not

assume that formulas are satisfiable (reduction from Sat).

More interesting questions would be the following: are there either

(1) “large” sublanguages for which Max-Utility is still polynomial,

or (2) “small” sublanguages for which it is already NP-hard?
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Two Complexity Results

Proposition 5 Max-Utility(k-cubes,Q) is NP-complete, even for

k = 2 and assuming all formulas are satisfiable.

Proof: By reduction from Max2Sat (NP-hard): “Given a set of

2-clauses, is there a satisfiable subset with cardinality > K?”. Given a

Max2Sat instance, for each clause p ∨ q create a goal (¬p ∧ ¬q,−1).

Add (⊤, N), where N is the number of clauses. Answer YES for the

Max2Sat instance iff maximal utility is > K. X

Proposition 6 Max-Utility(literals ,Q) is in P.

Proof: Assuming that G contains every literal exactly once (possibly

with weight 0), making p true iff the weight of p is greater than the

weight of ¬p results in a model with maximal utility. X
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Summary

We have discussed the problem of finding an allocation of goods to

agents that satisfies a suitable fairness criterion.

• Complexity : Computing a socially optimal allocation is typically a

hard problem, unless we are willing to make strong restrictive

assumptions about the nature of preferences. Still, practically

useful algorithm design is possible (e.g., integer programming).

• Representation: The choice of language used to model preferences

(i.e., usually utility functions) is central. We discussed issues in

preference representation that are not only relevant to fair division:

– Expressive power

– Succinctness

– Complexity
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What next?

Next we will review the distributed approach to the fair allocation of

indivisible goods in detail.
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