Homework #1

Deadline: Wednesday, 11 February 2015, 11:00

Question 1 (10 marks)

All of the cake-cutting procedures we have discussed in class can be described more systematically in terms of asking the agents to respond to a series of marking queries ("given value α and point x, please indicate point y such that the slice [x, y] has value α to you!") and evaluation queries ("given points x and y, please report value α such that the slice [x, y] has value α to you!").

Describe a procedure for dividing a cake between four agents that guarantees that each agent obtains at least 1/6 of the cake according to her own valuation and that uses at most three marking queries. (For comparison, recall that both the *last-diminisher* and the *divide-and-conquer* procedures offer better fairness guarantees, namely at least 1/4 to each agent, but require up to four marking queries, one per agent, already in the first round.)

(Adapted from J. Robertson and W. Webb, *Cake-Cutting Algorithms*, A.K. Peters, 1998.)

Question 2 (10 marks)

In voting theory, a *profile* is a vector of strict linear orders on the set of alternatives, one for each voter. Given such a profile, we can compute the corresponding *weighted majority graph* (WMG): a directed graph, with the vertices being the alternatives, for which—for any two alternatives x and y—the edge from x to y is labelled with the margin of victory of x over y:

m(x,y) = (#voters ranking x above y) - (#voters ranking y above x)

Thus, m(x, y) might be negative, namely when a strict majority of voters prefer y over x. Clearly, the WMG contains *less information* than the the original profile: we cannot unambiguously compute the profile from the WMG. Still, for some voting rules, having the WMG is enough to compute the election winner(s), while for others it is not.

- (a) Prove that the *Borda* winners can always be computed from the WMG by giving a definition of the Borda rule in terms of the WMG.
- (b) Prove that the *plurality* winners cannot always be computed from the WMG.

(Please turn over)

Question 3 (10 marks)

This question is about *uniform quota rules* in judgment aggregation and relates to the basic impossibility theorem due to List and Pettit.

- Consider the uniform quota rule F_{λ} with quota $\lambda := \frac{2}{3}n$. Which of the following properties are satisfied by F_{λ} : anonymity, neutrality, independence, completeness, complement-freeness? Justify your answers, writing one sentence per property.
- Consider the agenda $\Phi = \{p, \neg p, q, \neg q, r, \neg r, p \lor q \lor r, \neg (p \lor q \lor r)\}$. Characterise the class of all uniform quota rules (in terms of their quota λ) that are guaranteed to return a consistent judgment set for any admissible (i.e., complete and consistent) profile over Φ . Briefly justify your answer.