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Plan for Today

Obtaining axiomatic results in SCT is hard: eliminating various minor

errors from the original proof of Arrow’s Theorem took several years;

the Gibbard-Satterthwaite Theorem was conjectured at least a decade

before it was proved correct; getting new results is really challenging.

Can automated reasoning , as studied in AI, help? Yes!

Today we focus on one such approach (case study: G-S Theorem):

• encode a social choice scenario into propositional logic

• reason about this encoding with the help of a SAT solver

Consult Geist and Peters (2017) for an introduction to this approach.

But first: general remarks on logic and automated reasoning for SCT

C. Geist and D. Peters. Computer-Aided Methods for Social Choice Theory. In

U. Endriss (ed.), Trends in Computational Social Choice. AI Access, 2017.
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Logic for Social Choice Theory

It can be insightful to model SCT problems in logic (Pauly, 2008):

• One research direction is to explore how far we can get using a

standard logic , such as classical FOL. Do we need second-order

constructs to capture IIA? (Grandi and Endriss, 2013)

• Another direction is to design tailor-made logics specifically for

SCT (for instance, a modal logic). Can we cast the proof of

Arrow’s Theorem in natural deduction? (Ciná and Endriss, 2016)

M. Pauly. On the Role of Language in Social Choice Theory. Synthese, 2008.

U. Grandi and U. Endriss. First-Order Logic Formalisation of Impossibility Theo-

rems in Preference Aggregation. Journal of Philosophical Logic, 2013.

G. Ciná and U. Endriss. Proving Classical Theorems of Social Choice Theory in

Modal Logic. Journal of Autonomous Agents and Multiagent Systems, 2016.
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Automated Reasoning Approaches

Logic has long been used to help verify the correctness of hardware

and software. Can we use this methodology also here? Yes!

• Automated verification of a (known) proof of Arrow’s Theorem in

the HOL proof assistant Isabelle (Nipkow, 2009).

• Automated proof of Arrow’s Theorem for 3 alternatives and

2 voters using a SAT solver (Tang and Lin, 2009).

• Use of model checking to verify correctness of implementations

(e.g., in Java) of voting rules (Beckert et al., 2017).

We will now focus on the second approach above.

T. Nipkow. Social Choice Theory in HOL. J. Automated Reasoning, 2009.

P. Tang and F. Lin. Computer-aided Proofs of Arrow’s and other Impossibility

Theorems. Artificial Intelligence, 2009.

B. Beckert, T. Bormer, R. Goré, M. Kirsten, and C. Schürmann. An Introduction

to Voting Rule Verification. In Trends in COMSOC. AI Access, 2017.
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Case Study: The Gibbard-Satterthwaite Theorem

Recall this central theorem of social choice theory:

Theorem 1 (Gibbard-Satterthwaite) There exists no resolute SCF

for > 3 alternatives that is surjective, strategyproof, and nondictatorial.

Remark: The theorem is trivially true for n = 1 voter. (Why? )

We will now discuss an alternative proof:

• We use a SAT solver to automatically prove that the theorem

holds for the smallest nontrivial case (with n = 2 and m = 3).

Note: 33!×3! ≈ 1.5× 1017 functions to check!

• Using purely theoretical means, we prove that this entails the

theorem for all larger values of n and m (as long as n is finite).

A. Gibbard. Manipul. of Voting Schemes: A General Result. Econometrica, 1973.

M.A. Satterthwaite. Strategy-proofness and Arrow’s Conditions. Journal of Eco-

nomic Theory, 1975.
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Approach

We will use Lingeling , a SAT solver developed by the formal methods

group at Johannes Kepler University Linz (fmv.jku.at/lingeling/).

Lingeling can check whether a given formula in CNF is satisfiable.

The formula must be represented as a list of lists of integers,

corresponding to a conjunction of disjunctions of literals.

Positive (negative) numbers represent positive (negative) literals.

Example: [[1,-2,3], [-1,4]] represents (p ∨ ¬q ∨ r) ∧ (¬p ∨ s).

We will use a Python script (Python3) to generate a propositional

formula ϕGS that is satisfiable iff there exists a resolute SCF for n = 2

voters and m = 3 alternatives that is surjective, SP, and nondictatorial.

Using Lingeling, we will show that ϕGS is not satisfiable.

To access Lingeling from Python we will use the library pylgl, which

provides a function solve (pypi.org/project/pylgl/).

Example: solve([[1], [-1,2], [-2]]) will result in ’UNSAT’. X
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Basics: Voters, Alternatives, Profiles

We first fix n (number of voters) and m (number of alternatives):

n = 2

m = 3

Voters and alternatives are referred to by number (starting from 0).
Functions to retrieve the lists of all voters and all alternatives:

def allVoters():

return range(n)

def allAlternatives():

return range(m)

There are (m!)n different profiles. We refer to them by number as well.
Function to retrieve the list of all profiles:

from math import factorial

def allProfiles():

return range(factorial(m) ** n)
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Working with Permutations

We will model preferences as permutations of the set of alternatives.

The most complicated piece of code we need is a function to return

the nth permutation of a given list L (with n ∈ {0, . . . , |L|!− 1}):

def nthPerm(num, mylist):

length = len(mylist)

if length > 1:

pos = num // factorial(length-1)

restnum = num - pos * factorial(length-1)

restlist = mylist[:pos] + mylist[pos+1:]

return [mylist[pos]] + nthPerm(restnum, restlist)

else:

return [mylist[0]]

This works as intended:

>>> nthPerm(1, [0,1,2]) >>> nthPerm(5, [0,1,2])

[0, 2, 1] [2, 1, 0]
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Extracting Preferences

Also preferences are referred to by number (between 0 and m!− 1).

Function to return the preference of voter i in profile R:

def preference(i, r):

fact = factorial(m)

return ( r % (fact ** (i+1)) ) // (fact ** i)

Think of profile numbers as m!-ary numbers (digits = preferences).

Example: For n = 5 and m = 3, to extract the preference of voter 1 in

profile number 99, note that 99 = 0 · 64 +0 · 63 +2 · 62 +4 · 61 +3 · 60.

So her preference order is the 4th permutation of [0,1,2].
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Interpreting Preferences

Putting together our functions for extracting (numbers representing)

preferences from a given (number representing a) profile and for

handling permutations, it is now straightforward to provide a function

to check whether voter i prefers alternative x to y in profile R:

def prefers(i, x, y, r):

mylist = nthPerm(preference(i,r), list(allAlternatives()))

return mylist.index(x) < mylist.index(y)

Function to check whether x is voter i’s top alternative in profile R:

def top(i, x, r):

mylist = nthPerm(preference(i,r), list(allAlternatives()))

return mylist.index(x) == 0
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Restricting the Range of Quantification

When formulating axioms, we sometimes need to quantify over all

alternatives that satisfy a certain (boolean) condition:

def alternatives(condition):

return [x for x in allAlternatives() if condition(x)]

Example: You can now generate the list of all alternatives that meet

the condition of being different from 1 (condition = λx.(x 6= 1)).

>>> alternatives(lambda x : x!=1)

[0, 2]

And the corresponding functions for voters and profiles:

def voters(condition):

return [i for i in allVoters() if condition(i)]

def profiles(condition):

return [r for r in allProfiles() if condition(r)]
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Literals

We can specify any (possibly irresolute) SCF F : L(A)n → 2A \ {∅} by

saying whether or not x ∈ F (R) for every profile R and alternative x.

So create a propositional variable pR,x for every profile R ∈ L(A)n

and every alternative x ∈ A, with the intended meaning that:

pR,x is true iff x ∈ F (R)

Exercise: How many variables for n = 2 voters and m = 3 alternatives?

Need to decide which number to use to represent pR,x. Good option:

def posLiteral(r, x):

return r * m + x + 1

Recall: r ∈ {0, . . . , (m!)n−1}
and x ∈ {0, . . . ,m−1}

And negative literals are represented by negative numbers:

def negLiteral(r, x):

return (-1) * posLiteral(r, x)
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Modelling Social Choice Functions

Every assignment of truth values to our 108 variables pR,x corresponds

to a function F : L(A)n → 2A (in case n = 2 and |A| = 3).

But: a (possibly irresolute) SCF is a function F : L(A)n → 2A \ {∅}.

Fix this by restricting attention to models of this formula:

ϕat-least-one =
∧

R∈L(A)n

( ∨
x∈A

pR,x

)

The following function will generate this formula:

def cnfAtLeastOne():

cnf = []

for r in allProfiles():

cnf.append([posLiteral(r,x) for x in allAlternatives()])

return cnf
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At Least One Winning Alternative

Let’s give it a try:

>>> cnfAtLeastOne()

[[1, 2, 3], [4, 5, 6], [7, 8, 9], [10, 11, 12], [13, 14, 15],

[16, 17, 18], [19, 20, 21], [22, 23, 24], [25, 26, 27], [28,

29, 30], [31, 32, 33], [34, 35, 36], [37, 38, 39], [40, 41,

42], [43, 44, 45], [46, 47, 48], [49, 50, 51], [52, 53, 54],

[55, 56, 57], [58, 59, 60], [61, 62, 63], [64, 65, 66], [67,

68, 69], [70, 71, 72], [73, 74, 75], [76, 77, 78], [79, 80,

81], [82, 83, 84], [85, 86, 87], [88, 89, 90], [91, 92, 93],

[94, 95, 96], [97, 98, 99], [100, 101, 102], [103, 104, 105],

[106, 107, 108]]

Nice: we really get (3!)2 = 36 clauses of 3 positive literals each.
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Resoluteness

We now write similar functions for each one of our axioms.

F is resolute if for all profiles R and all alternatives x and y it is the

case that x 6∈ F (R) or y 6∈ F (R). So: at most one winner per profile.

Note: Can restrict quantification to x < y (when taken as numbers).

ϕresolute =
∧

R∈L(A)n

∧
x∈A

 ∧
y∈A

s.t. x<y

¬pR,x ∨ ¬pR,y




def cnfResolute():

cnf = []

for r in allProfiles():

for x in allAlternatives():

for y in alternatives(lambda y : x < y):

cnf.append([negLiteral(r,x), negLiteral(r,y)])

return cnf
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Surjectivity

Surjectivity is most naturally expressed as a conjunction of disjunctions

of conjunctions (how? ). Could translate to CNF, but this is easier:

If F is already known to be resolute, then F is surjective if for all

alternatives x there exists a profile R such that x ∈ F (R).

ϕsurjective =
∧
x∈A

 ∨
R∈L(A)n

pR,x


So: every alternative is amongst the winners in at least one profile.

def cnfSurjective():

cnf = []

for x in allAlternatives():

cnf.append([posLiteral(r,x) for r in allProfiles()])

return cnf

Ulle Endriss 16



Automated Reasoning for SCT COMSOC 2019

Preparation for Modelling Strategyproofness

To model strategyproofness we need to be able to model that two

profiles are so-called i-variants (for some agent i ∈ N):

R =−i R
′ iff Rj = R′j for all agents j ∈ N \ {i}

Recall: preference(j,r) returns the preference of voter j in profile r

Now our implementation is straightforward:

def iVariants(i, r1, r2):

return all(preference(j,r1) ==

preference(j,r2) for j in voters(lambda j : j!=i))
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Strategyproofness

Resolute F is strategyproof if for all voters i, all (truthful) profiles

R1, all of its i-variants R2, all alternatives x, and all alternatives y

dispreferred to x by i in R1 we have: F (R1) = y implies F (R2) 6= x.

ϕSP =
∧
i∈N

 ∧
R1∈L(A)n

 ∧
R2∈L(A)n

s.t. R1=−iR2

∧
x∈A

 ∧
y∈A

s.t. i∈NR1
x�y

¬pR1,y ∨ ¬pR2,x






def cnfStrategyProof():

cnf = []

for i in allVoters():

for r1 in allProfiles():

for r2 in profiles(lambda r2 : iVariants(i,r1,r2)):

for x in allAlternatives():

for y in alternatives(lambda y : prefers(i,x,y,r1)):

cnf.append([negLiteral(r1,y), negLiteral(r2,x)])

return cnf
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Nondictatorship

Resolute F is nondictatorial if for all voters i there exists a profile R

such that F (R) 6= x for alternative x = topi(R).

ϕnondictatorial =
∧
i∈N

 ∨
R∈L(A)n

 ∨
x∈A

s.t. x=topi(R)

¬pR,x


 this works as

x = topi(R)
for just one x

def cnfNondictatorial():

cnf = []

for i in allVoters():

clause = []

for r in allProfiles():

for x in alternatives(lambda x : top(i,x,r)):

clause.append(negLiteral(r,x))

cnf.append(clause)

return cnf
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Proving the (Special Case of the) Theorem

Putting it all together:

>>> cnf = ( cnfAtLeastOne() + cnfResolute() + cnfSurjective()

... + cnfStrategyProof() + cnfNondictatorial() )

This is a conjunction of 1445 clauses (using 108 variables, as we saw):

>>> len(cnf)

1445

We make Lingeling available like this:

from pylgl import solve

And now the moment of truth has come:

>>> solve(cnf)

’UNSAT’

Done! So the G-S Theorem really holds for n = 2 and m = 3. Nice. X
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Discussion: Confidence in Computer Proofs?

Some will object to this approach. Can we trust this kind of proof?

Your computer-generated proof using a SAT solver is valid only if:

• your encoding of your question into propositional logic is correct

• the implementation of the SAT solver is correct

• the environment the solver is running in works to specification

Fortunately, there are some pretty good counterarguments:

• Correctness of (leading) SAT solvers not an issue: was scrutinised

by many more people than most manual proofs in the literature.

So, if the part you implement yourself is short and clean (if it can

be printed in a paper submitted for publication), then you are ok.

• Due to standardised input/output format for SAT solvers, you can

verify the correctness of your proof using third-party tools.

• Sometimes you can automatically extract a human-readable proof.
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Completing the Proof of the G-S Theorem

We now have a proof of the Gibbard-Satterthwaite Theorem for the

special case of n = 2 voters and m = 3 alternatives. Next we show:

• impossible for n>2 and m=3 ⇒ impossible for n+1 and m=3

• impossible for n>2 and m=3 ⇒ impossible for n and any m>3

Observe how this entails an impossibility result for all n > 2 and m > 3.

Next: Proofs of (the contrapositives of) the above two lemmas.

Remark: Recall that we had seen in an earlier lecture that any resolute

SCF that is both surjective and strategyproof must also be Paretian.

We will use this fact for the proofs of both lemmas.
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First Lemma

Lemma 2 If there exists a resolute SCF for n+ 1 > 2 voters and three

alternatives that is surjective, strategyproof, and nondictatorial, then there

also exists such a SCF for n voters and three alternatives.

Proof: Let A = {a, b, c} and N = {1, . . . , n}. Now take any resolute SCF

F : L(A)n+1 → A that is surjective, SP, and nondictatorial.

For every i ∈ N , define Fi : L(A)n → A via Fi(R) = F (R, Ri). And check:

• All Fi are surjective: Immediate from F being Paretian. X

• All Fi are SP: First, no j 6= i can manipulate, given that F is SP.

Now suppose voter i can manipulate in R using R′i. Thus, i prefers

F (R−i, R
′
i, R
′
i) to F (R−i, Ri, Ri). But then i also must prefer

F (R−i, R
′
i, R
′
i) to F (R−i, R

′
i, Ri) or F (R−i, R

′
i, Ri) to F (R−i, Ri, Ri).

So F is manipulable in both cases. Contradiction. X

• At least one Fi is nondictatorial : If all Fi are dictatorial, F must elect

the top-choice of voter n+1 whenever at least one other voter submits

the same ballot. But any such F is manipulable. Contradiction. X
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Second Lemma

Lemma 3 If there exists a resolute SCF for n voters and m > 3

alternatives that is surjective, strategyproof, and nondictatorial, then

there also exists such a SCF for n voters and three alternatives.

Proof: Let m > 3 and let A = {a,b,c,a4, . . . ,am}. Take any resolute

SCF F : L(A)n → A that is surjective, SP, and nondictatorial.

For any R ∈ L({a,b,c}), let R+ = R(1)�R(2)�R(3)�a4�· · ·�am.

Now define a SCF F ′ : L({a,b,c})n → {a,b,c} for three alternatives:

F ′(R1, . . . , Rn) = F (R+
1 , . . . , R

+
n )

F ′ is well-defined (really maps to {a,b,c}) and surjective, because F is

Paretian. F ′ also is immediately seen to be SP and nondictatorial. X
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Critique of the Approach

A possible objection to this approach is that proving the lemmas can

be quite difficult, almost as difficult as proving the theorem itself.

This is a valid concern. But:

• A successful proof for a special case with small n and m provides

strong evidence for (though no formal proof of) a general result.

Indeed: The G-S Theorem is surprising. Our lemmas are not at all!

Can use this as a heuristic to decide what to investigate further.

• Sometimes it may be possible to prove a general lemma: as long

as the axioms involved meet certain conditions, every impossibility

established for a small scenario will generalise to all larger ones.
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Refinements of the Approach (1)

The approach was originally developed by Tang and Lin (2009) who

used it to reprove Arrow’s Theorem and related impossibility results.

Since then there have been several refinements of the basic approach:

• General reduction lemma that applies to all axioms meeting

certain syntactic restrictions. Allows for automated discovery

(not just verification) of results (Geist and Endriss, 2011).

Trivia: Christian Geist’s MoL thesis from 2010 lists 84 impossibility

theorems discovered in a space of 20 axioms (by trying all subsets).

P. Tang and F. Lin. Computer-aided Proofs of Arrow’s and other Impossibility

Theorems. Artificial Intelligence, 2009.

C. Geist and U. Endriss. Automated Search for Impossibility Theorems in Social

Choice Theory: Ranking Sets of Objects. Journal of AI Research, 2011.

Ulle Endriss 26



Automated Reasoning for SCT COMSOC 2019

Refinements of the Approach (2)

Further developments have taken place very recently:

• More sophisticated encodings into SAT (Brandt and Geist, 2016).

• Extraction of minimally unsatisfiable sets to enable construction of

human-readable proofs (Brandt and Geist, 2016).

• Extension to SMT solving (satisfiability modulo theories). Used to

obtain results for probabilistic social choice (Brandl et al., 2018).

F. Brandt and C. Geist. Finding Strategyproof Social Choice Functions via SAT

Solving. Journal of Artificial Intelligence Research, 2016.

F. Brandl, F. Brandt, M. Eberl, and C. Geist. Proving the Incompatibility of

Efficiency and Strategyproofness via SMT Solving. Journal of the ACM, 2018.
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Summary

This has been an introduction to the application of tools from logic

and automated reasoning to the study of social choice.

Our focus has been on a hands-on example: proving the “base case”

of the Gibbard-Satterthwaite Theorem with a SAT solver.

An approach with lots of potential (but steep learning curve!).

Related work discussed only very briefly:

• logical modelling of social choice scenarios using a variety of logics

• verification of known proofs using interactive theorem provers

• formal verification of implementations of voting rules

What next? Applications of knowledge representation techniques.
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