Computational Social Choice 2020

Ulle Endriss Institute for Logic, Language and Computation University of Amsterdam

http://www.illc.uva.nl/~ulle/teaching/comsoc/2020/

Plan for Today

In *judgment aggregation* (JA) agents are asked to judge whether each of a given number of propositions is true or false, and we then need to aggregate this information into a single collective judgment.

Today's lecture will be an introduction to JA:

- motivating example: *doctrinal paradox*
- formal model for JA and relationship to preference aggregation
- some *specific aggregation rules* to use in practice
- two examples for results using the *axiomatic method*

Most of this material is covered in my book chapter cited below.

U. Endriss. Judgment Aggregation. In F. Brandt, V. Conitzer, U. Endriss, J. Lang, and A.D. Procaccia (eds.), *Handbook of Computational Social Choice*. CUP, 2016.

Example: The Doctrinal Paradox

A court with three judges is considering a case in contract law. Legal doctrine stipulates that the defendant is *liable* (r) <u>iff</u> the contract was *valid* (p) and has been *breached* (q): $r \leftrightarrow p \land q$.

	p	q	r
Judge 1	Yes	Yes	Yes
Judge 2	No	Yes	No
Judge 3	Yes	No	No

Exercise: Should this court pronounce the defendant guilty or not?

L.A. Kornhauser and L.G. Sager. The One and the Many: Adjudication in Collegial Courts. *California Law Review*, 1993.

Why Paradox?

So why is this example usually referred to as a "paradox"?

	p	q	$p \wedge q$
Agent 1	Yes	Yes	Yes
Agent 2	No	Yes	No
Agent 3	Yes	No	No
Majority	Yes	Yes	No

<u>Explanation 1:</u> Two natural aggregation rules, the *premise-based rule* and the *conclusion-based rule*, produce *different* outcomes.

<u>Explanation 2</u>: Each individual judgment is *logically consistent*, but the collective judgment returned by the (natural) *majority rule* is *not*.

In philosophy, this is also known as the *discursive dilemma* of choosing between *responsiveness* to the views of decision makers (by respecting majority decisions) and the *consistency* of collective decisions.

The Model

<u>Notation</u>: Let $\sim \varphi := \varphi'$ if $\varphi = \neg \varphi'$ and let $\sim \varphi := \neg \varphi$ otherwise.

An agenda Φ is a finite nonempty set of propositional formulas (w/o double negation) closed under complementation: $\varphi \in \Phi \implies \sim \varphi \in \Phi$.

A judgment set J on an agenda Φ is a subset of Φ . We call J:

- complete if $\varphi \in J$ or $\sim \varphi \in J$ for all $\varphi \in \Phi$
- complement-free if $\varphi \not\in J$ or $\sim \varphi \not\in J$ for all $\varphi \in \Phi$
- consistent if there exists an assignment satisfying all $\varphi \in J$

Let $\mathcal{J}(\Phi)$ be the set of all complete and consistent subsets of Φ . Now a finite set of *agents* $N = \{1, \ldots, n\}$, with $n \ge 2$, express judgments on the formulas in Φ , producing a *profile* $\mathbf{J} = (J_1, \ldots, J_n)$. A (resolute) *aggregation rule* for an agenda Φ and a set of n agents is a function mapping a profile of complete and consistent individual judgment sets to a single collective judgment set: $F : \mathcal{J}(\Phi)^n \to 2^{\Phi}$.

Example: Majority Rule

Suppose three agents ($N = \{1, 2, 3\}$) express judgments on the propositions in the agenda $\Phi = \{p, \neg p, q, \neg q, p \lor q, \neg (p \lor q)\}$.

For simplicity, we only show the positive formulas in our tables:

	p	q	$p \lor q$	formal notation
Agent 1	Yes	No	Yes	$J_1 = \{p, \neg q, p \lor q\}$
Agent 2	Yes	Yes	Yes	$J_2 = \{p, q, p \lor q\}$
Agent 3	No	No	No	$J_3 = \{\neg p, \ \neg q, \ \neg (p \lor q)\}$

Under the (strict) majority rule we accept a formula if more than half of the agents do: $F_{maj}(J) = \{p, \neg q, p \lor q\}$ [complete and consistent!] <u>Recall:</u> F_{maj} does not guarantee consistent outcomes in general. <u>Exercise:</u> Show that F_{maj} guarantees complement-free outcomes. <u>Exercise:</u> Show that F_{maj} guarantees complete outcomes iff n is odd.

Embedding Preference Aggregation

In preference aggregation, agents express preferences (linear orders) over a set of alternatives A. We want a SWF $F : \mathcal{L}(A)^n \to \mathcal{L}(A)$.

Introduce a propositional variable $p_{x\succ y}$ for every $x, y \in A$ with $x \neq y$. Build $\Phi = \{p_{x\succ y}, \neg p_{x\succ y} \mid x \neq y\} \cup \{\Gamma, \neg \Gamma\}$, where Γ is conjunction of:

- Antisymmetry: $p_{x\succ y} \leftrightarrow \neg p_{y\succ x}$ for all distinct $x, y \in A$
- Transitivity: $p_{x\succ y} \wedge p_{y\succ z} \rightarrow p_{x\succ z}$ for all distinct $x, y, z \in A$

Now the *Condorcet Paradox* can be modelled in JA:

	Γ	$p_{a\succ b}$	$p_{b\succ c}$	$p_{a\succ c}$	corresponding order
Agent 1	Yes	Yes	Yes	Yes	$a \succ b \succ c$
Agent 2	Yes	No	Yes	No	$b \succ c \succ a$
Agent 3	Yes	Yes	No	No	$c\succ a\succ b$
Majority	Yes	Yes	Yes	No	not a linear order

Quota Rules

Let N_{φ}^{J} denote the *coalition* of *supporters* of φ in J, i.e., the set of all those agents who accept formula φ in profile $J = (J_1, \ldots, J_n)$:

$$N_{\varphi}^{\boldsymbol{J}} := \{i \in N \mid \varphi \in J_i\}$$

The (uniform) quota rule F_q with quota $q \in \{0, 1, ..., n+1\}$ accepts all propositions accepted by at least q of the individual agents:

$$F_q(\boldsymbol{J}) = \{ \varphi \in \Phi \mid \# N_{\varphi}^{\boldsymbol{J}} \ge q \}$$

<u>Example</u>: The *(strict) majority rule* is the quota rule with $q = \lceil \frac{n+1}{2} \rceil$. <u>Intuition</u>: high quotas good for consistency (but bad for completeness) <u>Exercise</u>: Show that F_q with q = n guarantees consistent outcomes! <u>Recall</u>: The doctrinal paradox agenda is $\{p, \neg p, q, \neg q, p \land q, \neg (p \land q)\}$. <u>Exercise</u>: For the doctrinal paradox agenda and n agents, what is the lowest uniform quota q that will guarantee consistent outcomes?

Premise-Based Aggregation

Suppose we can divide the agenda into *premises* and *conclusions*:

 $\Phi = \Phi_p \uplus \Phi_c$ (each closed under complementation)

Then the *premise-based rule* F_{pre} for Φ_p and Φ_c is this function:

$$\begin{split} F_{\rm pre}(\boldsymbol{J}) &= \Delta \cup \{\varphi \in \Phi_c \mid \Delta \models \varphi\},\\ \text{where } \Delta &= \{\varphi \in \Phi_p \mid \#N_{\varphi}^{\boldsymbol{J}} > \frac{n}{2}\} \end{split}$$

A common assumption is that *premises* = *literals*.

<u>Exercise:</u> Show that this assumption guarantees consistent outcomes. <u>Exercise:</u> Does it also guarantee completeness? What detail matters?

<u>Remark:</u> The *conclusion-based rule* is less attractive from a theoretical standpoint (as it is incomplete by design), but often used in practice.

Example: Premise-Based Aggregation

Suppose *premises* = *literals*. Consider this example:

	p	q	r	$p \lor q \lor r$
Agent 1	Yes	No	No	Yes
Agent 2	No	Yes	No	Yes
Agent 3	No	No	Yes	Yes
$\overline{F_{ m pre}}$	No	No	No	No

So the *unanimously accepted* conclusion is *collectively rejected*! <u>Discussion</u>: *Is this ok*?

The Kemeny Rule

<u>Recall</u>: The Kemeny rule in preference aggregation (as a SWF) returns linear orders that minimise the cumulative distance to the profile.

We can generalise this idea to JA:

$$F_{\text{Kem}}(\boldsymbol{J}) = \operatorname*{argmin}_{J \in \mathcal{J}(\Phi)} \sum_{i \in N} H(J, J_i), \text{ where } H(J, J_i) = |J \setminus J_i|$$

Here the Hamming distance $H(J, J_i)$ counts the number of positive formulas in the agenda on which J and J_i disagree.

This is an attractive rule, but outcome determination is *intractable*.

Exercise: How would you generalise the Slater rule to JA?

Basic Axioms for Judgment Aggregation

What makes for a "good" aggregation rule F? The following *axioms* all express intuitively appealing (but always debatable!) properties:

- Anonymity: Treat all agents symmetrically! For any profile J and any permutation $\pi : N \to N$, we should have $F(J_1, \ldots, J_n) = F(J_{\pi(1)}, \ldots, J_{\pi(n)})$.
- Neutrality: Treat all propositions symmetrically! For any φ , ψ in the agenda Φ and any profile \boldsymbol{J} with $N_{\varphi}^{\boldsymbol{J}} = N_{\psi}^{\boldsymbol{J}}$ we should have $\varphi \in F(\boldsymbol{J}) \Leftrightarrow \psi \in F(\boldsymbol{J})$.
- Independence: Only the "pattern of acceptance" should matter! For any φ in the agenda Φ and any profiles \boldsymbol{J} and $\boldsymbol{J'}$ with $N_{\varphi}^{\boldsymbol{J}} = N_{\varphi}^{\boldsymbol{J'}}$ we should have $\varphi \in F(\boldsymbol{J}) \Leftrightarrow \varphi \in F(\boldsymbol{J'})$.

Observe that the *majority rule* satisfies all of these axioms.

Exercise: But so do some other rules! Can you think of examples?

A Basic Impossibility Theorem

We saw that the majority rule cannot guarantee consistent outcomes. Is there some other "reasonable" aggregation rule that does not have this problem? *Surprisingly, no!* (at least not for certain agendas)

This is the main result in the original paper introducing the formal model of JA and proposing to apply the axiomatic method:

Theorem 1 (List and Pettit, 2002) <u>No</u> judgment aggregation rule for an agenda Φ with $\{p, q, p \land q\} \subseteq \Phi$ that is anonymous, neutral, and independent can guarantee outcomes that are complete and consistent.

Note that the theorem requires $n \ge 2$. (Why?)

C. List and P. Pettit. Aggregating Sets of Judgments: An Impossibility Result. *Economics and Philosophy*, 2002.

Proof: Part 1

<u>Recall</u>: N_{φ}^{J} is the set of agents who accept formula φ in profile J. Let F be any aggregator that is independent, anonymous, and neutral. We observe:

- Due to *independence*, whether $\varphi \in F(\mathbf{J})$ only depends on $N_{\varphi}^{\mathbf{J}}$.
- Then, due to anonymity, whether $\varphi \in F(\mathbf{J})$ only depends on $|N_{\varphi}^{\mathbf{J}}|$.
- Finally, due to *neutrality*, the manner in which the status of $\varphi \in F(\mathbf{J})$ depends on $|N_{\varphi}^{\mathbf{J}}|$ must itself *not* depend on φ .

<u>Thus:</u> If φ and ψ are accepted by the same number of agents, then we must either accept both of them or reject both of them.

Proof: Part 2

 $\underline{\mathsf{Recall:}} \ \text{For all } \varphi, \psi \in \Phi, \text{ if } |N_{\varphi}^{\boldsymbol{J}}| = |N_{\psi}^{\boldsymbol{J}}|, \text{ then } \varphi \in F(\boldsymbol{J}) \Leftrightarrow \psi \in F(\boldsymbol{J}).$

First, suppose the number n of agents is *odd* (and n > 1):

Consider a profile J where $\frac{n-1}{2}$ agents accept p and q; one accepts p but not q; one accepts q but not p; and $\frac{n-3}{2}$ accept neither p nor q. That is: $|N_p^J| = |N_q^J| = |N_{\neg(p \land q)}^J|$. Then:

- \bullet Accepting all three formulas contradicts consistency. \checkmark
- But if we accept none, completeness forces us to accept their complements, which also contradicts consistency. ✓

If n is *even*, we can get our impossibility even without having to make (almost) any assumptions regarding the structure of the agenda:

Consider a profile J with $|N_p^J| = |N_{\neg p}^J|$. Then:

- Accepting both contradicts consistency. \checkmark
- Accepting neither contradicts completeness. \checkmark

<u>Note:</u> Neutrality only has "bite" here because we also have $q \in \Phi$.

Consistent Aggregation under the Majority Rule

An agenda Φ is said to have the *median property* (MP) <u>iff</u> every *minimally inconsistent subset* (mi-subset) of Φ has size ≤ 2 .

Intuition: MP means that all possible inconsistencies are "simple".

Theorem 2 (Nehring and Puppe, 2007) The (strict) majority rule guarantees consistent outcomes for agenda Φ iff it has the MP (if $n \ge 3$).

<u>Remark</u>: Note how $\{p, \neg p, q, \neg q, p \land q, \neg (p \land q)\}$ violates the MP.

Exercise: Is this a positive or a negative result?

Checking whether Φ has the MP is *intractable* (Endriss et al., 2012).

K. Nehring and C. Puppe. The Structure of Strategy-proof Social Choice. Part I: General Characterization and Possibility Results on Median Space. *Journal of Economic Theory*, 2007.

U. Endriss, U. Grandi, and D. Porello. Complexity of Judgment Aggregation. *Journal of Artificial Intelligence Research (JAIR)*, 2012.

Proof

<u>Claim</u>: Φ is safe $[F_{mai}(J)$ is consistent] $\Leftrightarrow \Phi$ has the MP [mi-sets ≤ 2]

(\Leftarrow) Let Φ be an agenda with the MP. Now assume that there exists an admissible profile $J \in \mathcal{J}(\Phi)^n$ such that $F_{\text{maj}}(J)$ is *not* consistent.

- \rightsquigarrow By MP, there exists an inconsistent set $\{\varphi, \psi\} \subseteq F_{\text{maj}}(\boldsymbol{J})$.
- \rightsquigarrow Each of φ and ψ must have been accepted by a strict majority.
- \rightsquigarrow One agent must have accepted both φ and $\psi.$
- \rightsquigarrow Contradiction (individual judgment sets must be consistent). \checkmark

 (\Rightarrow) Let Φ be an agenda that violates the MP, i.e., there exists a minimally inconsistent set $\Delta = \{\varphi_1, \ldots, \varphi_k\} \subseteq \Phi$ with k > 2.

Consider the profile J, in which agent i accepts all formulas in Δ except for $\varphi_{1+(i \mod 3)}$. Note that J is consistent. But the majority rule will accept all formulas in Δ , i.e., $F_{\text{maj}}(J)$ is inconsistent. \checkmark

Summary

This has been an introduction to the field of *judgment aggregation*, which (as we saw) is a *generalisation* of preference aggregation.

- examples for *rules*: quota rules, premise-based rule, Kemeny rule
- examples for axioms: anonymity, neutrality, independence
- examples for results: *impossibility* and *agenda characterisation*

JA is a powerful framework for modelling collective decision making that generalises several other models studied in COMSOC.

Topics not discussed: strategic behaviour, other logics, complexity, ...

What next? Fair division, and specifically the cake cutting problem.