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Plan for Today (and the Near Future)

Exciting trend in computational social choice: use of SAT solvers to

automate some of our tasks as researchers. Very cool. But difficult.

The next few lectures will be dedicated to covering this approach:

• Today: Putting basic machinery in place

• Next: Automating the proof of a classical impossibility theorem

• Later: Critique and refinement of the basic approach

• Later: Expanding the approach, with focus on explainability

• Later: Broader considerations of modelling SCT using logic

Hands-on: You can reproduce everything you see here directly on your

own machine, using the Jupyter Notebook provided. Try it!
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Need for New Techniques

The original proof of Arrow’s Theorem was not quite correct (though

the theorem itself was always fine). It took some years to fix this.

And the G-S Theorem is a deep result that long seemed elusive:

• People tried and failed to design strategyproof rules for centuries.

• After Arrow’s Theorem a result à la G-S seemed to be “in the air”.

• It still took two decades to find the right formulation and prove it.

• The original proofs are hard to digest.

Today the proofs of Arrow’s and the G-S Theorem are well understood.

But new results of this kind are still hard to discover and then prove.

Thus: need much better methodology to reason about social choice!
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Proving the Gibbard-Satterthwaite Theorem

Recall that the G-S Theorem says that every resolute voting rule that

is surjective and strategyproof must be a dictatorship.

This slight reformulation (which is equivalent) will be more convenient:

Gibbard-Satterthwaite Theorem: For m > 3 alternatives, no

resolute voting rule is strategyproof, surjective, and nondictatorial.

Let’s try to get a computer to prove it for us! But proving it for all

n > 1 (voters) and m > 3 (alternatives) is too ambitious for now . . .

Exercise: For which values of n and m is the theorem most surprising?

A. Gibbard. Manipulation of Voting Schemes. Econometrica, 1973.

M.A. Satterthwaite. Strategy-proofness and Arrow’s Conditions. JET, 1975.

Ulle Endriss 4



Automated Reasoning 1 COMSOC 2024

Base Case

So let’s prove G-S for n = 2 voters and m = 3 alternatives!

Credo: Even if (formally) the full theorem might not follow easily from

this ‘base case’, (intuitively) it will then be entirely unsurprising.
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Proof Idea

Go through all voting rules for n = 2 and m = 3 and check one by one

whether they satisfy our requirements. Confirm theorem if none do.

Exercise: How many (resolute) voting rules do we need to check?
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Better Idea: Logic Encoding

Bad news: there are a total of m(m!n) = 336 = 150094635296999121

resolute voting rules for us to check. So this won’t work.

Instead, let’s try to describe what we need in a compact way . . .

Idea: Define a logical language with propositional variables pr,x to say

that in profile r the outcome should include alternative x.

This will allow us to describe the behaviour of any irresolute voting rule

in a simple formal language using a fairly small number of variables.

Exercise: Count the variables for n = 2 voters and m = 3 alternatives!

Remark: During the lectures on working with SAT solvers, we will use

r rather than R for profiles, to hint at the fact that we will think of r

as a number referring to a profile R rather than being a profile itself.
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Example

Let us refer to the voters as 0 and 1, and the alternatives as 0, 1, and 2.

There are 3!× 3! = 36 profiles, so let us enumerate them from 0 to 35.

The exact enumeration does not matter (as long as we keep it fixed),

but suppose we have chosen an enumeration with these features:

Profile 2

1 � 0 � 2

0 � 1 � 2

Profile 5

2 � 1 � 0

0 � 1 � 2

Then strategyproofness requires that, if we want to elect 0 in profile 2,

then we must not elect 1 in profile 5. Exercise: Explain why!

Using our propositional language, we can express this as an implication:

p2,0 → ¬p5,1
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Correspondence

Let’s focus on irresolute voting rules F for now:

F : L(A)n → 2A \ {∅}

Every assignments of truth values to variables pr,x corresponds to a

function from profiles to sets of alternatives, i.e., a voting rule.

This is so because fixing the truth values for all variables pr,x amounts

to saying which alternatives x are (or are not) elected in a profile r.

Exercise: This is almost true, but not quite. Do you see the problem?
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Modelling Voting Rules and Axioms

A voting rule must return at least one alternative x for every profile r:

ϕat-least-one =
∧
r

(∨
x

pr,x

)
We obtain a perfect correspondence between voting rules and models

(= satisfying truth assignments) of this formula. Nice!

Can use similar formulas to encode axioms of interest. Then:

models satisfying formulas =̂ voting rules satisfying axioms

unsatisfiability =̂ impossibility theorem
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SAT Solving

Can use a SAT solver to check formulas (in CNF ) for unsatisfiability.

DIMACS format: use list of lists of positive and negative integers to

represent set of clauses of positive and negative literals. Example:

[[1,-2,3],[4,-1]] represents (p1 ∨ ¬p2 ∨ p3) ∧ (p4 ∨ ¬p1)

Need: script to generate such formulas!

A. Biere, M. Heule, H. van Maaren, and T. Walsh (eds), Handbook of Satisfiability.

IOS Press, 2009.

A. Ignatiev, A. Morgado, and J. Marques-Silva. PySAT: A Python Toolkit for

Prototyping with SAT Oracles. SAT-2018.
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Preferences and Profiles

Fix an enumeration of voters, alternatives, preferences, profiles. Then

represent everything as integers: voters from 0 to n-1, alternatives

from 0 to m-1, preferences from 0 to m!-1, profiles from 0 to m!n−1.

Next we implement some basic methods to explore this model:

• allVoters(), allAlternatives(), allProfiles()

• voters(c), alternatives(c), profiles(c) for condition c

• prefers(i,x,y,r) — does voter i prefer x to y in profile r?

• top(i,x,r) — does voter i top-rank x in profile r?

• iVariants(i,r1,r2) — are profiles r1 and r2 i-variants?

• strProf(r) — return a string representation for profile r
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Implementation

Let’s inspect the Jupyter Notebook to understand the implementation

of these methods for preferences and profiles and run some examples . . .
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Detail: Extracting Preferences from Profiles

Maybe the most complicated bit in this part of the implementation . . .

Think of profiles as numbers with n digits in the number system with

base m!. So voter i’s preference in r is the ith digit (from the back):

def preference(i, r):

base = factorial(m)

return ( r % (base ** (i+1)) ) // (base ** i)

For comparison, this is how, given a number in the decimal system, you

would extract the 3rd digit (counting backwards from the “0th digit”):

( 975474 mod 103+1 ) / 103 = 5.474
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Exercises

Exercise: Write code to print the representations of all 36 profiles!

(012,012)

(021,012)

(102,012)

(120,012)

(201,012)
...

Exercise: Now just print those in which both voters prefer 0 to 2!

(012,012)

(021,012)

(102,012)

(012,021)

(021,021)
...
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Summary

We understood that the Gibbard-Satterthwaite Theorem is at its most

baffling for the base case of n = 2 voters and m = 3 alternatives.

We understood that the question of whether there exists an irresolute

voting rule for some fixed number of voters (such as n = 2) and some

fixed number of alternatives (such as m = 3) can be reduced to the

question of whether a given propositional formula is satisfiable.

To prepare for exploiting this correspondence later on, we saw how to

implement simple methods in Python for reasoning about profiles and

preferences (main idea: everything is a number!).

What next? Proving the base case of the G-S Thm with a SAT solver.
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