
Automated Reasoning 1 COMSOC 2024

Computational Social Choice 2024

Ulle Endriss

Institute for Logic, Language and Computation

University of Amsterdam

[
http://www.illc.uva.nl/~ulle/teaching/comsoc/2024/

]
Ulle Endriss 1

Automated Reasoning 1 COMSOC 2024

Plan for Today (and the Near Future)

Exciting trend in computational social choice: use of SAT solvers to

automate some of our tasks as researchers. Very cool. But difficult.

The next few lectures will be dedicated to covering this approach:

• Today: Putting basic machinery in place

• Next: Automating the proof of a classical impossibility theorem

• Later: Critique and refinement of the basic approach

• Later: Expanding the approach, with focus on explainability

• Later: Broader considerations of modelling SCT using logic

Hands-on: You can reproduce everything you see here directly on your

own machine, using the Jupyter Notebook provided. Try it!

Ulle Endriss 2

Automated Reasoning 1 COMSOC 2024

Need for New Techniques

The original proof of Arrow’s Theorem was not quite correct (though

the theorem itself was always fine). It took some years to fix this.

And the G-S Theorem is a deep result that long seemed elusive:

• People tried and failed to design strategyproof rules for centuries.

• After Arrow’s Theorem a result à la G-S seemed to be “in the air”.

• It still took two decades to find the right formulation and prove it.

• The original proofs are hard to digest.

Today the proofs of Arrow’s and the G-S Theorem are well understood.

But new results of this kind are still hard to discover and then prove.

Thus: need much better methodology to reason about social choice!

Ulle Endriss 3

Automated Reasoning 1 COMSOC 2024

Proving the Gibbard-Satterthwaite Theorem

Recall that the G-S Theorem says that every resolute voting rule that

is surjective and strategyproof must be a dictatorship.

This slight reformulation (which is equivalent) will be more convenient:

Gibbard-Satterthwaite Theorem: For m > 3 alternatives, no

resolute voting rule is strategyproof, surjective, and nondictatorial.

Let’s try to get a computer to prove it for us! But proving it for all

n > 1 (voters) and m > 3 (alternatives) is too ambitious for now . . .

Exercise: For which values of n and m is the theorem most surprising?

A. Gibbard. Manipulation of Voting Schemes. Econometrica, 1973.

M.A. Satterthwaite. Strategy-proofness and Arrow’s Conditions. JET, 1975.

Ulle Endriss 4

Automated Reasoning 1 COMSOC 2024

Base Case

So let’s prove G-S for n = 2 voters and m = 3 alternatives!

Credo: Even if (formally) the full theorem might not follow easily from

this ‘base case’, (intuitively) it will then be entirely unsurprising.

Ulle Endriss 5

Automated Reasoning 1 COMSOC 2024

Proof Idea

Go through all voting rules for n = 2 and m = 3 and check one by one

whether they satisfy our requirements. Confirm theorem if none do.

Exercise: How many (resolute) voting rules do we need to check?

Ulle Endriss 6

Automated Reasoning 1 COMSOC 2024

Better Idea: Logic Encoding

Bad news: there are a total of m(m!n) = 336 = 150094635296999121

resolute voting rules for us to check. So this won’t work.

Instead, let’s try to describe what we need in a compact way . . .

Idea: Define a logical language with propositional variables pr,x to say

that in profile r the outcome should include alternative x.

This will allow us to describe the behaviour of any irresolute voting rule

in a simple formal language using a fairly small number of variables.

Exercise: Count the variables for n = 2 voters and m = 3 alternatives!

Remark: During the lectures on working with SAT solvers, we will use

r rather than R for profiles, to hint at the fact that we will think of r

as a number referring to a profile R rather than being a profile itself.

Ulle Endriss 7

Automated Reasoning 1 COMSOC 2024

Example

Let us refer to the voters as 0 and 1, and the alternatives as 0, 1, and 2.

There are 3!× 3! = 36 profiles, so let us enumerate them from 0 to 35.

The exact enumeration does not matter (as long as we keep it fixed),

but suppose we have chosen an enumeration with these features:

Profile 2

1 � 0 � 2

0 � 1 � 2

Profile 5

2 � 1 � 0

0 � 1 � 2

Then strategyproofness requires that, if we want to elect 0 in profile 2,

then we must not elect 1 in profile 5. Exercise: Explain why!

Using our propositional language, we can express this as an implication:

p2,0 → ¬p5,1

Ulle Endriss 8

Automated Reasoning 1 COMSOC 2024

Correspondence

Let’s focus on irresolute voting rules F for now:

F : L(A)n → 2A \ {∅}

Every assignments of truth values to variables pr,x corresponds to a

function from profiles to sets of alternatives, i.e., a voting rule.

This is so because fixing the truth values for all variables pr,x amounts

to saying which alternatives x are (or are not) elected in a profile r.

Exercise: This is almost true, but not quite. Do you see the problem?

Ulle Endriss 9

Automated Reasoning 1 COMSOC 2024

Modelling Voting Rules and Axioms

A voting rule must return at least one alternative x for every profile r:

ϕat-least-one =
∧
r

(∨
x

pr,x

)
We obtain a perfect correspondence between voting rules and models

(= satisfying truth assignments) of this formula. Nice!

Can use similar formulas to encode axioms of interest. Then:

models satisfying formulas =̂ voting rules satisfying axioms

unsatisfiability =̂ impossibility theorem

Ulle Endriss 10

Automated Reasoning 1 COMSOC 2024

SAT Solving

Can use a SAT solver to check formulas (in CNF) for unsatisfiability.

DIMACS format: use list of lists of positive and negative integers to

represent set of clauses of positive and negative literals. Example:

[[1,-2,3],[4,-1]] represents (p1 ∨ ¬p2 ∨ p3) ∧ (p4 ∨ ¬p1)

Need: script to generate such formulas!

A. Biere, M. Heule, H. van Maaren, and T. Walsh (eds), Handbook of Satisfiability.

IOS Press, 2009.

A. Ignatiev, A. Morgado, and J. Marques-Silva. PySAT: A Python Toolkit for

Prototyping with SAT Oracles. SAT-2018.

Ulle Endriss 11

Automated Reasoning 1 COMSOC 2024

Preferences and Profiles

Fix an enumeration of voters, alternatives, preferences, profiles. Then

represent everything as integers: voters from 0 to n-1, alternatives

from 0 to m-1, preferences from 0 to m!-1, profiles from 0 to m!n−1.

Next we implement some basic methods to explore this model:

• allVoters(), allAlternatives(), allProfiles()

• voters(c), alternatives(c), profiles(c) for condition c

• prefers(i,x,y,r) — does voter i prefer x to y in profile r?

• top(i,x,r) — does voter i top-rank x in profile r?

• iVariants(i,r1,r2) — are profiles r1 and r2 i-variants?

• strProf(r) — return a string representation for profile r

Ulle Endriss 12

Automated Reasoning 1 COMSOC 2024

Implementation

Let’s inspect the Jupyter Notebook to understand the implementation

of these methods for preferences and profiles and run some examples . . .

Ulle Endriss 13

Automated Reasoning 1 COMSOC 2024

Detail: Extracting Preferences from Profiles

Maybe the most complicated bit in this part of the implementation . . .

Think of profiles as numbers with n digits in the number system with

base m!. So voter i’s preference in r is the ith digit (from the back):

def preference(i, r):

base = factorial(m)

return (r % (base ** (i+1))) // (base ** i)

For comparison, this is how, given a number in the decimal system, you

would extract the 3rd digit (counting backwards from the “0th digit”):

(975474 mod 103+1) / 103 = 5.474

Ulle Endriss 14

Automated Reasoning 1 COMSOC 2024

Exercises

Exercise: Write code to print the representations of all 36 profiles!

(012,012)

(021,012)

(102,012)

(120,012)

(201,012)
...

Exercise: Now just print those in which both voters prefer 0 to 2!

(012,012)

(021,012)

(102,012)

(012,021)

(021,021)
...

Ulle Endriss 15

Automated Reasoning 1 COMSOC 2024

Summary

We understood that the Gibbard-Satterthwaite Theorem is at its most

baffling for the base case of n = 2 voters and m = 3 alternatives.

We understood that the question of whether there exists an irresolute

voting rule for some fixed number of voters (such as n = 2) and some

fixed number of alternatives (such as m = 3) can be reduced to the

question of whether a given propositional formula is satisfiable.

To prepare for exploiting this correspondence later on, we saw how to

implement simple methods in Python for reasoning about profiles and

preferences (main idea: everything is a number!).

What next? Proving the base case of the G-S Thm with a SAT solver.

Ulle Endriss 16

