Computational Social Choice 2024

Ulle Endriss
Institute for Logic, Language and Computation
University of Amsterdam

http://www.illc.uva.nl/~ulle/teaching/comsoc/2024/

Plan for Today

Today we will complete our computer-aided proof of the G-S Theorem:

- encoding relevant axioms in propositional logic
- proving the base case by calling a SAT solver
- extending the result to the *general case*

Reminder

Aiming for a proof of the *G-S Thm*, we want to encode the special case of n=2 voters and m=3 alternatives as a *SAT instance*.

We want to use variables $p_{r,x}$ to say that when a voting rule is applied to profile r the outcome should include alternative x.

We decided to encode all components of the model as *integers*:

- voters from 0 to n-1 (0 to 1 for now)
- alternatives from 0 to m-1 (0 to 2 for now)
- preferences from 0 to m!-1 (0 to 5 for now)
- profiles from 0 to m!n-1 (0 to 35 for now)

We implemented some basic methods to retrieve objects of interest:

- allVoters(), allAlternatives(), allProfiles()
- voters(c), alternatives(c), profiles(c)

And some further methods to answer yes-no questions:

• prefers(i,x,y,r), top(i,x,r), iVariants(i,r1,r2)

Literals

Want propositional variable $p_{r,x}$ to say that in profile r the outcome should include alternative x. Enumerate them from 1 to $m!^n * m$:

```
def posLiteral(r, x):
    return r * m + x + 1

def negLiteral(r, x):
    return (-1) * posLiteral(r, x)
```

Given a literal $p_{r,x}$ (as a number), we need to be able to determine which profile r and which alternative x it is talking about.

Exercise: How can we compute r and x when given r * m + x + 1?

We can use this insight to implement a method to pretty-print literals:

```
>>> strLiteral(1)
'(012,012)->0'
>>> strLiteral(-108)
'not (210,210)->2'
```

Encoding the Requirements on Voting Rules

Now we can encode our requirements. Recall our basic formula saying that for every profile at least one alternative must be elected:

$$\varphi_{\text{at-least-one}} = \bigwedge_r \left(\bigvee_x p_{r,x}\right)$$

Translating this into code is immediate:

```
def cnfAtLeastOne():
    cnf = []
    for r in allProfiles():
        cnf.append([posLiteral(r,x) for x in allAlternatives()])
    return cnf
```

Try it on the Jupyter Notebook:

```
>>> cnfAtLeastOne()
[[1,2,3], [4,5,6], [7,8,9], [10,11,12], ..., [106,107,108]]
```

Resoluteness

Resoluteness says that for any profile r and any distinct alternatives x and y, not both alternatives are in the outcome for that profile.

Note: Can restrict last quantification to x < y (taken as numbers).

$$\varphi_{\mathsf{res}} \ = \ \bigwedge_r \left(\bigwedge_x \left(\bigwedge_{y \mid x < y} \neg p_{r,x} \vee \neg p_{r,y} \right) \right)$$

Again, coding this is immediate:

```
def cnfResolute():
    cnf = []
    for r in allProfiles():
        for x in allAlternatives():
            for y in alternatives(lambda y : x < y):
                 cnf.append([negLiteral(r,x), negLiteral(r,y)])
    return cnf</pre>
```

Remark: For the following axioms, we now can presuppose resoluteness.

Strategyproofness

SP says: for any voter i, any (truthful) profile r, any of its i-variants r', any alternative x, any alternative y dispreferred to x by i in r, either y (bad) loses in r (truthful) or x (good) loses in r' (manipulated).

$$\varphi_{\mathsf{sp}} = \bigwedge_{i} \left(\bigwedge_{r} \left(\bigwedge_{r' \in i\text{-}\mathsf{var}(r)} \left(\bigwedge_{x} \left(\bigwedge_{y \mid x \succ_{i}^{r} y} \neg p_{r,y} \vee \neg p_{r',x} \right) \right) \right) \right)$$

Ulle Endriss

Surjectivity

Surjectivity really is a conjunction of disjunctions of conjunctions: for all alternatives x, there is a profile r where x wins and all others lose. Could translate to CNF. But given resoluteness, this is easier:

$$\varphi_{\mathsf{sur}} = \bigwedge_{x} \left(\bigvee_{r} p_{r,x}\right)$$

```
def cnfSurjective():
    cnf = []
    for x in allAlternatives():
        cnf.append([posLiteral(r,x) for r in allProfiles()])
    return cnf
```

Ulle Endriss

Nondictatorship

A resolute rule is nondictatorial if for every voter i there is a profile r where top(i) loses (so: some alternative x equal to top(i) loses).

$$\varphi_{\mathsf{nd}} = \bigwedge_{i} \left(\bigvee_{r} \left(\bigvee_{x \mid x = \mathsf{top}_{r}(i)} \neg p_{r,x} \right) \right)$$

Remark: Instead of the last disjunction, we could just write $\neg p_{r,top_r(i)}$. The chosen encoding (no function in subscript) arguably is cleaner.

Ulle Endriss

Running the SAT Solver

We need to determine whether the *master formula* is satisfiable:

```
arphi_{
m gs} = arphi_{
m at-least-one} \wedge arphi_{
m res} \wedge arphi_{
m sp} \wedge arphi_{
m sur} \wedge arphi_{
m nd}
```

Btw: this is a conjunction of 1,445 clauses (using 108 variables).

The method solve() provides access to a SAT solver.

Let's see what happens:

```
>>> cnf = ( cnfAtLeastOne() + cnfResolute() + cnfStrategyProof()
... + cnfSurjective() + cnfNonDictatorial() )
>>>> len(cnf)
1445
>>> solve(cnf)
'UNSATISFIABLE'
```

So φ_{gs} really is unsatisfiable! Thus: G-S for n=2 and m=3 is true! \checkmark

Discussion: Does this count? Do we believe in computer proofs?

Computer Proofs

We can proof-read our *Python script* just like we would proof-read a mathematical proof. And we can use multiple *SAT solvers* and check they agree. So we can have some confidence in the result.

Missing Pieces

But some pieces are still missing:

- Does the theorem generalise to arbitrary $n \ge 2$ and $m \ge 3$? Intuitively almost obvious, though technically not that easy. Basic idea: *induction* over both n and m
- Why does the theorem hold? This proof does not tell us.
 But SAT technology can help here as well: MUS extraction

Completing the Proof of the G-S Theorem

Recall the theorem we want to prove:

Gibbard-Satterthwaite Theorem: For $m \geqslant 3$ alternatives, <u>no</u> resolute voting rule is strategyproof, surjective, and nondictatorial. Instead we proved:

Base Case Lemma: For n=2 voters and m=3 alternatives, <u>no</u> resolute voting rule is strategyproof, surjective, and nondictatorial.

To complete the proof of G-S we require two further lemmas:

- ullet impossible for $n \geqslant 2$ and $m = 3 \Rightarrow$ impossible for n+1 and m=3
- impossible for $n \ge 2$ and $m = 3 \implies$ impossible for n and any m > 3

Proving these lemmas is tricky but possible (\hookrightarrow next). A write-up can be found in the PhD thesis of Pingzhong Tang (2010).

P. Tang. Computer-aided Theorem Discovery: A New Adventure and its Application to Economic Theory. PhD thesis. HKUST, 2010.

Preparation

Recall that we have already seen a (fairly simple) proof of the fact that any resolute voting rule that is *surjective* and *strategyproof* must also be *Paretian*. We will use this fact for the two proofs that follow.

For the second proof, we also will make use of the fact that the G-S axioms entail *independence*, for which we saw another simple proof.

For each lemma, we prove the contrapositive of our first statement . . .

First Lemma: Induction on Voters

Lemma 1 If there exists a resolute voting rule for n+1>2 voters and three alternatives that is surjective, strategyproof, and nondictatorial, then there also exists such a rule for n voters and three alternatives.

<u>Proof sketch:</u> Let $A = \{a, b, c\}$ and $N = \{1, ..., n\}$. Now take any resolute rule $F : \mathcal{L}(A)^{n+1} \to A$ that is surjective, SP, and nondictatorial.

For every $i \in N$, define $F_i : \mathcal{L}(A)^n \to A$ via $F_i(\mathbf{R}) = F(\mathbf{R}, R_i)$. And check:

- All F_i are surjective: Immediate from F being Paretian. \checkmark
- All F_i are SP: First, no $j \neq i$ can manipulate, given that F is SP. Now suppose voter i can manipulate in \mathbf{R} using R_i' . Thus, i prefers $F(\mathbf{R}_{-i}, R_i', R_i')$ to $F(\mathbf{R}_{-i}, R_i, R_i)$. But then i also must prefer $F(\mathbf{R}_{-i}, R_i', R_i')$ to $F(\mathbf{R}_{-i}, R_i', R_i)$ or $F(\mathbf{R}_{-i}, R_i', R_i)$ to $F(\mathbf{R}_{-i}, R_i, R_i)$. But F would be manipulable in both cases (contradiction!) \checkmark
- At least one F_i is *nondictatorial* (proof on next slide). \checkmark

Proof Detail

Recall: $F: \mathcal{L}(A)^{n+1} \to A$. Fix $F_i: \mathcal{L}(A)^n \to A$ via $F_i(\mathbf{R}) = F(\mathbf{R}, R_i)$.

<u>Claim</u>: At least one F_i (for some voter $i \in N$) is *nondictatorial*.

<u>Proof sketch:</u> Towards a contradiction, suppose all F_i are dictatorial.

Then for at least one F_i , we must have $\operatorname{dictator}(F_i) = i$:

- In case all F_i have the same dictator, true by assumption. \checkmark
- Otherwise, focus on i, j with $i \neq \operatorname{dictator}(F_i) \neq \operatorname{dictator}(F_j) \neq j$. Now consider (n+1)-profile in which i and j vote as voter n+1, but $\operatorname{dictator}(F_i)$ and $\operatorname{dictator}(F_j)$ do not. Contradiction! \checkmark

But $dictator(F_i) = i$ entails that *voter* n+1 *can manipulate rule* F_i by copying i's ballot when i has n+1's second best alternative on top. \checkmark

Second Lemma: Reduction of Alternatives

Lemma 2 If there exists a resolute voting rule for n voters and m>3 alternatives that is surjective, strategyproof, and nondictatorial, then there also exists such a rule for n voters and three alternatives.

<u>Proof sketch:</u> Let m > 3 and let $A = \{a_1, a_2, a_3, \dots, a_m\}$. Take any resolute rule $F : \mathcal{L}(A)^n \to A$ that is surjective, SP, and nondictatorial.

For any $\{a,b,c\}\subseteq A$ and $R\in\mathcal{L}(\{a,b,c\})$, let $R^+=R(1)\succ R(2)\succ R(3)\succ\cdots$

Now define a rule $F^{a,b,c}: \mathcal{L}(\{a,b,c\})^n \to \{a,b,c\}$ for three alternatives:

$$F^{a,b,c}(R_1,\ldots,R_n) = F(R_1^+,\ldots,R_n^+)$$

 $F^{a,b,c}$ is well-defined (really maps to $\{a,b,c\}$) and surjective, because F is Paretian. $F^{a,b,c}$ also is immediately seen to be SP (given that F is).

Now show that $\{a,b,c\}\subseteq A$ can be selected so that $F^{a,b,c}$ is nondictatorial. If all subsets $\{x,y,z\}$ yield dictatorial rules, we obtain a contradiction: By independence, if $F^{x,y,z}$ has dictator i, that i is a "local dictator" for $\{x,y,z\}$ under F. So F has some local dictator for every triple. But these local dictators cannot be distinct voters, so F in fact must be dictatorial. \checkmark

Critique of the Approach

Proving such lemmas can be quite difficult, almost as difficult as proving the theorem itself. This is a valid concern. <u>But:</u>

- A successful proof for a special case with small n and m provides strong evidence for (though no formal proof of) a general result.
 Indeed: The G-S Theorem is surprising. Our lemmas are not at all!
 Can use this as a heuristic to decide what to investigate further.
- Sometimes you can prove a *general reduction lemma:* if the axioms meet certain conditions, every impossibility generalises from small to large scenarios (see examples cited below).
- C. Geist and U. Endriss. Automated Search for Impossibility Theorems in Social Choice Theory: Ranking Sets of Objects. *Journal of AI Research*, 2011.
- U. Endriss. Analysis of One-to-One Matching Mechanisms via SAT Solving: Impossibilities for Universal Axioms. AAAI-2020.

Summary

We completed the proof of the Gibbard-Satterthwaite Theorem:

- base case corresponds to an unsatisfiable formula
- general case can be settled using an inductive argument

In methodological terms, we understood that, at least in principle, any axiom can be expressed in propositional logic; and we saw that, at the very least, some common axioms can be expressed rather easily.

What next? Understanding the impossibility through MUS extraction.