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Knowledge Representation
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We would like to be able to
ask a computer questions
regarding this knowledge.

Problems: What is the pre-
cise meaning of this ‘seman-
tic network’, e.g. what is the
difference between Adam and
Male or what is the difference
between a loves- and an is-
arrow?

Figure taken from: D. Gabbay et al., Many-Dimensional Modal Logics, 2002. Forthcoming.
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Formalising Semantic Networks

It seems useful to distinguish the following:

• Specific objects (or individuals) such as Adam and Eve.

• Classes or sets of objects, such as Female (later called concepts).

• The use of is as a subset-relation between concepts (like between

Mother and Female).

• The use of is as a membership-relation between individuals and

concepts (like between Adam and Father).

• Other binary relations (which we will call roles) between individuals,

such as loves between Eve and Adam.

• The use of the same kinds of relations (roles) between individuals and

concepts (e.g. has). In that case we may want to distinguish (at least)

whether the relation is meant to hold for all of the individuals

belonging to the concept or just for some of them.
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Description Logics

History. Description logics (DL) have been developed in the late
80s/early 90s to provide sound logical foundations for semantic
networks and similar semi-formal knowledge representation (KR)
languages.

Many logics. There is not just one DL, but many. In this course,
however, we will only introduce the most important one: ALC
(generally considered the ‘standard’ DL).

We will define its syntax and semantics, see how it can be used for
KR purposes, and give a Tableaux-based calculus to reason in ALC.

A hot topic. This is currently a very active research area (which
also includes people at King’s). People investigate (for example)
more expressive DLs, faster reasoning algorithms, combinations of
DLs with other logics, . . .
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Syntax and Semantics of Concepts

ALC concept formulas are built up from basic concept names and
roles. The semantics of a concept is defined in terms of a domain D
and an interpretation function I. Concept names are interpreted as
subsets of D and roles are interpreted as subsets of D ×D.

Syntax and semantics of complex concept formulas:

¬C D \ CI

C uD CI ∩DI

C tD CI ∪DI

∀R.C {x ∈ D | {y ∈ D | (x, y) ∈ RI} ⊆ CI}
∃R.C {x ∈ D | {y ∈ D | (x, y) ∈ RI} ∩ CI 6= ∅}
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TBoxes and ABoxes

We can distinguish terminological knowledge, i.e. knowledge about
concepts, from assertional knowledge, i.e. knowledge about
individuals. Accordingly, a DL knowledge base consists of a TBox
and an ABox.

TBox. A TBox is a set of concept definitions:

CN v̇ C CN =̇ C

Here, CN is a concept name and C is a concept formula.

ABox. An ABox is a set of instantiational and relational assertions:

a : C (a, b) : R

Here, a and b are individuals, C is a concept formula, and R is a role.
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Exercise

Translate the following text into a set of ABox and TBox formulas.

Britney is a superstar. She dislikes Christina. A superstar is
a person who is famous, attractive, and either very talented
or managed by a clever person. Also, every superstar dislikes
at least one rich but untalented superstar. Anyone who
manages Britney is bound to be very rich.

Use the following vocabulary:

• individuals: britney, christina

• roles: dislikes, managed-by

• concept names: Attractive, Clever, Famous, Person, Rich,
Superstar, Talented
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Truth in a Model

Recall that the interpretation function I maps concepts to subsets of
a domain D and roles to sets of pairs of elements of D. Furthermore,
let I map individual names a to elements aI of D.

The truth of ABox and TBox formulas in a model M = (D, I) is
defined as follows:

• M |= a : C iff aI ∈ CI

• M |= (a, b) : R iff (aI , bI) ∈ RI

• M |= C v̇D iff CI ⊆ DI

• M |= C =̇D iff CI = DI
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Reasoning Tasks

A DL system may typically offer some of the following inference
services:

• Concept satisfiability: Is the given concept formula C
satisfiable/consistent?
[check CI 6= {} for some model M = (D, I)]

• Concept subsumption: Given concept formulas C and D, is C
more specific than (or equivalent to) D?
[check CI ⊆ DI for all models M = (D, I)]

• ABox satisfiability: Is the given ABox A satisfiable/consistent?
[check M |= A (every formula in A) for some model M]

• Instance checking: Given ABox A, can we infer that the
individual a must be a member of the concept C?
[check M |= a : C for all models M with M |= A]
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TBox Reasoning

Typically, reasoning that involves a TBox is more complex than pure
ABox reasoning or reasoning about just one or two concept formulas.

We can formulate the reasoning tasks from the previous slide also
with respect to a TBox (but won’t learn how to actually do this kind
of stuff in this course). Example:

• Concept satisfiability: Is the given concept formula C satisfiable,
given the information in TBox T ?
[check CI 6= {} for some model M = (D, I) with M |= T ]

TBox unfolding. If we have only one TBox formula CN=̇ . . . per
concept name CN and the TBox is acyclic, then we can unfold the
concept definitions. In that case, the TBox may be regarded as a
simple list of abbreviations for complex concept formulas.
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Tableaux for ALC ABoxes

We shall give a Tableaux calculus to decide the satisfiability of a
given ABox in ALC.

The basic idea is the same as for FOL: we have a proof tree with
formulas on it, which we analyse according to certain expansion
rules. We succeed (i.e. prove unsatisfiability of the input ABox) iff we
can close all branches.

Formulas here are ALC ABox formulas, i.e. instantiational assertions
of the form a : C and relational assertions of the form (a, b) : R.
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Tableaux Rules for ALC ABoxes

Alpha Rules

a : C uD
a : C
a : D

a : ¬(C tD)

a : ¬C
a : ¬D

¬¬-Elim.

a : ¬¬C
a : C

Beta Rules

a : C tD
a : C a : D

a : ¬(C uD)

a : ¬C a : ¬D

Closing Branches

a : C
a : ¬C
×

Remark. Alternatively, we may use KE-style rules, i.e. PB and
non-branching beta rules. These actually have been shown to be
more efficient (but: only empirically and only for ALC).
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Tableaux Rules for ALC ABoxes (2)

Gamma Rules

a : ∀R.C
(a, b) : R

b : C

a : ¬∃R.C
(a, b) : R

b : ¬C

Delta Rules

a : ∃R.C
(a, b) : R
b : C

a : ¬∀R.C
(a, b) : R
b : ¬C

• Gamma formulas need to be analysed for every individual b with
(a, b) : R on the branch.

• The b in the delta rules is a new individual name.

• We don’t need to apply the delta rule if we already have a
‘witness’ on the branch.
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Soundness, Completeness and Termination

We can prove the following theorems:

Theorem 1 (Termination) For any input, the ALC Tableaux
algorithm will terminate after a finite number of steps.

Theorem 2 (Soundness) Whenever all branches in an ALC
tableau can be closed, then the input ABox is indeed unsatisfiable.

Theorem 3 (Completeness) Whenever an ALC tableau cannot be
closed completely, then the input ABox is indeed satisfiable.

Decidability. The crucial difference between FOL and ALC is that
for the latter we have termination, i.e. we will always get an answer.
This means, the ABox satisfiability problem for ALC is decidable.
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Termination Proof

Proof sketch. The central idea is to show that the number of
different ABox formulas that could possibly be generated is limited
and therefore the algorithm will stop at some point (because any
further rule applications would be redundant).

Observation 1. Any concept formula added to a branch will be a
subformula of a formula appearing in the input ABox.

Observation 2. The number of new individuals introduced via the
delta rule is limited by the ‘quantifier depth’ of concept formulas in
the input.

⇒ There can only be finitely many formulas on any one branch.

Observation 3. As the number of disjunctive formulas is limited as
well, there can only be finitely many branches.
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Soundness Proof

Proof sketch. Very similar to the FOL case. All we need to do is to
show that none of the proof rules can ‘destroy’ satisfiability. In other
words: applying any of the rules to a satisfiable branch (a branch
whose formulas form a satisfiable ABox) will always result in another
satisfiable branch.
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Completeness Proof

Proof sketch. Because of termination, for any input we either get a
closed tableau or one with an open saturated branch. This makes the
completeness proof much easier than for FOL.

All we need to show is that, given an open saturated branch, we can
construct a model for the input ABox (and thereby show its
satisfiability). The idea is very similar to that of deriving
countermodels from (terminating) unsuccessful KE proofs in FOL:

We define as the domain D the set of individual names appearing on
the branch. Instantiational assertions of the form a : CN (where CN
is a concept name) give rise to the interpretation of concept names;
relational assertions tell us how to interpret role names.

Then we use structural induction to show that this is indeed a model
for the input ABox.
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Using ALC Tableaux

We can use ALC Tableaux for the following reasoning tasks:

• ABox satisfiability: To show ABox A is not satisfiable, show the

tableau for A closes.

• Instance checking: To show a is an instance of C given ABox A, show

the tableau for A ∪ {a : ¬C} closes.

• Concept satisfiability: To show concept formula C is not satisfiable,

show the tableau for {a : C} closes.

• Concept subsumption: To show that concept C is more specific than

(or equivalent to) concept D, show the tableau for {a : C u¬D} closes.

Remark. It is also possible to incorporate TBoxes into Tableaux. In the

case of a simple acyclic TBox we could just unfold. In the general case

things get more complicated (the problem has to do with termination), but

there is a way (keyword ‘blocking’ ) . . .
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Standard Translation

Translating concepts. We can translate ALC concepts into FOL
formulas with a single free variable x.

During translation we will replace each concept name CN with a
unary predicate CN ′ and each role R with a binary predicate R′ (in
practice we can do without the ′).

The standard translation of concept formulas is defined inductively:

CN∗ = CN ′(x)

(¬C)∗ = ¬C∗

(C uD)∗ = C∗ ∧D∗

(C tD)∗ = C∗ ∨D∗

(∀R.C)∗ = (∀y)(R′(x, y)→ C∗[x← y])

(∃R.C)∗ = (∃y)(R′(x, y) ∧ C∗[x← y])
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Standard Translation (2)

Translating TBoxes. The standard translation of TBox formulas:

(C v̇D)∗ = (∀x)(C∗ → D∗)

(C =̇D)∗ = (∀x)(C∗ ↔ D∗)

Translating ABoxes. If we extend the translation to ABox
formulas we replace every individual a with a constant symbol a′.

The standard translation of ABox formulas is defined as follows:

(a : C)∗ = C∗[x← a′]

((a, b) : R)∗ = R′(a′, b′)

That is, TBox and ABox formulas are mapped to FOL sentences.

Remark. All of this means that ALC corresponds to a fragment of
first-order logic.
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