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KE/Tableaux

The term Tableaux refers to a family of deduction methods for
different logics. We start by introducing one of them:

“non-free-variable KE for classical FOL”

What is it for?

Given: set of premises ∆ and conclusion ϕ (all FOL sentences)

Task: prove ∆ |= ϕ

How? show ∆ ∪ {¬ϕ} is not satisfiable (which is equivalent),

i.e. add the complement of the conclusion to the premises

and derive a contradiction (“refutation procedure”)

Ulle Endriss, King’s College London 1

CS3AUR: Automated Reasoning 2002 KE/Tableaux'

&

$

%

Constructing KE Proofs

Data structure. A KE proof is represented as a tableau: a binary
tree whose nodes are labelled with formulas.

Start. We start by writing the premises and the negated conclusion
into the root of an otherwise empty tableau.

Expansion. We apply expansion rules to the formulas on the tree;
this results in new formulas being added and branches being split.

Closure. A branch that is obviously contradictory can be closed.

Success. A proof is successful iff we can close all branches.
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Propositional KE Rules

Alpha Rules

A ∧B
A
B

¬(A ∨B)

¬A
¬B

¬(A→ B)

A
¬B

¬¬-Elimination

¬¬A
A

Beta Rules

A ∨B
¬A
B

A ∨B
¬B
A

A→ B
A

B

A→ B
¬B
¬A

¬(A ∧B)
A

¬B

¬(A ∧B)
B

¬A
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Propositional KE Rules (2)

PB

A ¬A

Closing branches

A
¬A
×

Eta Rules

A↔ B
A

B

A↔ B
B

A

¬(A↔ B)
A

¬B

¬(A↔ B)
B

¬A

A↔ B
¬A
¬B

A↔ B
¬B
¬A

¬(A↔ B)
¬A
B

¬(A↔ B)
¬B
A
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Quantifier Rules

Gamma Rules

(∀x)A

A[x← t]

¬(∃x)A

¬A[x← t]

Delta Rules

(∃x)A

A[x← c]

¬(∀x)A

¬A[x← c]

• t is an arbitrary ground term

• c is a constant symbol new to the branch
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Observations

• Rule application order. The order in which rules are applied
can change the size of proof trees significantly. Example:
applying α before PB is generally a good idea, etc.

• Beta simplification. If we have a β-formula (like A→ B) and
the complement of a matching minor premise (like ¬A) on the
same branch, then we don’t need to apply the β-rule.

• Analytic PB. The choice of PB-formulas can be restricted to
subformulas appearing on the branch (more precisely: to
subformulas of non-analysed β- and η-formulas).

• Gamma rule. The γ-rule is the only rule we may have to apply
more than once to the same formula. (This is precisely what
makes things so difficult: we don’t know how often we have to
apply it.)
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Can a proof ever fail?

General answer: No! The algorithm can only return “yes” or
“don’t know” (but not “no”). It is a so-called semi-decision procedure
(there can be no decision procedure for FOL).

Special cases. In special cases, however, we may be able to “see”
that a proof could never succeed (i.e. we can declare it a failure).

This is, for example, the case when we have enough information to
construct a countermodel . . .
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Saturated Branches

An open branch is called saturated iff every (complex) formulas has
been analysed at least once and, additionally, every γ-formula has
been instantiated with every term we can construct using the
function symbols on the branch.

Failing proofs. A tableau with an open saturated branch can never
be closed, i.e. we can stop an declare the proof a failure.

The solution? This only helps us in special cases though. (A single
1-ary function symbol together with a constant is already enough to
construct infinitely many terms . . . )

Propositional logic. In propositional logic (where we have no
γ-formulas), after a limited number of steps, every branch will be
either closed or saturated. This gives us a decision procedure.

Ulle Endriss, King’s College London 8



CS3AUR: Automated Reasoning 2002 KE/Tableaux'

&

$

%

Countermodels

If a KE proof fails with a saturated open branch, you can use it to
help you define a model M for all the formulas on that branch:

• domain: set of all terms we can construct using the function
symbols appearing on the branch (so-called Herbrand universe)

• terms are interpreted as themselves (sic! )

• interpretation of predicate symbols: see literals on branch

In particular, M will be a model for the premises ∆ and the negated
conclusion ¬ϕ, thereby constituting a counterexample for the
attempted proof of ∆ |= ϕ.

Careful: There’s a bug in WinKE: sometimes, what is presented as
a countermodel is in fact only part of a countermodel (but it can
always be extended to an actual model).
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Soundness and Completeness

Again, let ϕ be a sentence and let ∆ be a set of sentences. We write
∆ `KE ϕ to say that there exists a closed KE tableau for ∆ ∪ {¬ϕ}.

Before you can believe in KE you need to prove the following:

Theorem 1 (Soundness) If ∆ `KE ϕ then ∆ |= ϕ.

Theorem 2 (Completeness) If ∆ |= ϕ then ∆ `KE ϕ.

Important note: The mere existence of a closed tableau does not
entail that we have an effective method of finding it! Concretely: we
don’t know how often we need to apply the γ-rule and what terms to
use in the substitutions.

From now on, to simplify things, we shall not consider →, ↔, >,
and ⊥ (which can be regarded as abbreviations).
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Smullyan’s Uniform Notation

Formulas of conjunctive (α) and disjunctive (β) type:

α α1 α2

A ∧B A B

¬(A ∨B) ¬A ¬B
¬(A→ B) A ¬B

β β1 β2

A ∨B A B

A→ B ¬A B

¬(A ∧B) ¬A ¬B

We can now state alpha and beta rules as follows:

α

α1

α2

β
βc

1

β2

β
βc

2

β1

where Ac =

 A′ for A = ¬A′,
¬A otherwise
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Smullyan’s Uniform Notation (2)

Formulas of universal (γ) and existential (δ) type:

γ γ1(u)

(∀x)A A[x← u]

¬(∃x)A ¬A[x← u]

δ δ1(u)

(∃x)A A[x← u]

¬(∀x)A ¬A[x← u]

We can now state gamma and delta rules as follows:

γ

γ1(t)

δ

δ1(c)
where:

• t is an arbitrary ground term

• c is a constant symbol new to
the branch
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Soundness Proof

Satisfiable branches. We say that a branch is satisfiable iff the set
of sentences on that branch is satisfiable.

Proof sketch. First prove the following lemma:

Lemma 1 (Satisfiable branches) If a non-branching KE rule is
applied to a satisfiable branch, the result is another satisfiable branch.
If PB is applied to a satisfiable branch, at least one of the resulting
branches is also satisfiable.

Now we can prove soundness by contradiction: assume ∆ `KE ϕ but
∆ 6|= ϕ and try to derive a contradiction.

∆ 6|= ϕ ⇒ ∆ ∪ {¬ϕ} satisfiable ⇒ initial branch satisfiable
⇒ always at least one branch satisfiable (by above lemma)

This contradicts our assumption that at one point all branches will
be closed (∆ `KE ϕ), because a closed branch is not satisfiable.
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Hintikka’s Lemma

Definition 1 (Hintikka set) A set of sentences H is called a
Hintikka set provided the following hold:

(i) not both P ∈ H and ¬P ∈ H for propositional atoms P ;

(ii) if ¬¬ϕ ∈ H then ϕ ∈ H for all formulas ϕ;

(iii) if α ∈ H then α1 ∈ H and α2 ∈ H for alpha formulas α;

(iv) if β ∈ H then β1 ∈ H or β2 ∈ H for beta formulas β;

(v) for all terms t constructible from function symbols in H (at least
one constant symbol): if γ ∈ H then γ1(t) for gamma formulas γ;

(vi) if δ ∈ H then δ1(t) ∈ H for some term t, for delta formulas δ.

Lemma 2 (Hintikka) Every Hintikka set is satisfiable.
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Completeness Proof

Fairness. We call a KE proof fair iff every (complex) formula gets
eventually analysed on every branch and, additionally, every
γ-formula gets eventually instantiated with every term constructible
from the function symbols appearing on a branch.

Proof sketch. We will show the contrapositive: assume ∆ 6`KE and
try to conclude ∆ 6|= ϕ.

If there is no KE proof for ∆ ∪ {¬ϕ} (assumption), then there can
also be no fair KE proof. Show that a fairly constructed non-closable
branch enumerates the elements of a Hintikka set H.

H is satisfiable (Hintikka’s Lemma) and we have ∆ ⊂ H and ¬ϕ ∈ H.

So there is a model for ∆ ∪ {¬ϕ}, i.e. we get ∆ 6|= ϕ.
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Smullyan Tableaux

The “standard” Tableaux rules (introduced by R. Smullyan in 1968)
differ from the KE rules as follows:

• There is no PB rule.

• Beta rules are branching rules:

A ∨B
A B

A→ B

¬A B

¬(A ∧B)

¬A ¬B
in short:

β

β1 β2

• Similarly for eta rules.

The rest is the same as with the KE system.
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