Unification

Definition 1 (Unification) A substitution σ (of possibly several variables by terms) is called a unifier of a set of formulas $\Delta = \{\varphi_1, \dots, \varphi_n\}$ iff $\sigma(\varphi_1) = \dots = \sigma(\varphi_n)$ holds. We also write $|\sigma(\Delta)| = 1$ and call Δ unifiable.

Definition 2 (MGU) A unifier μ of a set of formulas Δ is called a most general unifier (mgu) of Δ iff for every unifier σ of Δ there exists a substitution σ' with $\sigma = \mu \circ \sigma'$.

(The composition $\mu \circ \sigma'$ is the substitution we get by first applying μ to a formula and then σ' .)

Remark. We also speak of unifiers (and mgus) for sets of *terms*.

Ulle Endriss, King's College London

CS3AUR: Automated Reasoning 2002

Unification

1

Unification Algorithm: Preparation

We shall formulate a unification algorithm for literals only, but it can easily be adapted to work with general formulas (or terms).

Subexpressions. Let φ be a literal. We refer to formulas and terms appearing within φ as the *subexpressions* of φ . If there is a subexpression in φ starting at position *i* we call it $\varphi^{(i)}$ (otherwise $\varphi^{(i)}$ is undefined; for example, if there is a comma at the *i*th position).

Disagreement pairs. Let φ and ψ be literals with $\varphi \neq \psi$ and let *i* be the smallest number such that $\varphi^{(i)}$ and $\psi^{(i)}$ are defined and $\varphi^{(i)} \neq \psi^{(i)}$. Then $(\varphi^{(i)}, \psi^{(i)})$ is called the *disagreement pair* of φ and ψ . Example:

 $\varphi = P(g_1(c), f_1(a, g_1(x), g_2(a, g_1(b)))$ $\psi = P(g_1(c), f_1(a, g_1(x), g_2(f_2(x, y), z))$

Î

Disagreement pair: $(a, f_2(x, y))$

Ulle Endriss, King's College London

2

CS3AUR: Automated Reasoning 2002

Ulle Endriss, King's College London

CS3AUR: Automated Reasoning 2002

Unification

Unification \neq Matching (Prolog)

Most Prolog systems do not implement a sound unification algorithm, as this would be computationally too expensive (they usually omit the *occur-check*).

Example: SWI-Prolog matching the variable X and the term f(X):

?-X = f(X). Yes

If you require sound unification you have to implement it yourself.

Ulle Endriss, King's College London

4