Unification

Definition 1 (Unification) A substitution σ (of possibly several variables by terms) is called a unifier of a set of formulas $\Delta = \{\varphi_1, \ldots, \varphi_n\}$ iff $\sigma(\varphi_1) = \cdots = \sigma(\varphi_n)$ holds. We also write $|\sigma(\Delta)| = 1$ and call Δ unifiable.

Definition 2 (MGU) A unifier μ of a set of formulas Δ is called a most general unifier (mgu) of Δ iff for every unifier σ of Δ there exists a substitution σ' with $\sigma = \mu \circ \sigma'$.

(The composition $\mu \circ \sigma'$ is the substitution we get by first applying μ to a formula and then σ'.)

Remark. We also speak of unifiers (and mgus) for sets of terms.

Unification Algorithm: Preparation

We shall formulate a unification algorithm for literals only, but it can easily be adapted to work with general formulas (or terms).

Subexpressions. Let φ be a literal. We refer to formulas and terms appearing within φ as the subexpressions of φ. If there is a subexpression in φ starting at position i we call it $\varphi(i)$ (otherwise $\varphi(i)$ is undefined; for example, if there is a comma at the ith position).

Disagreement pairs. Let φ and ψ be literals with $\varphi \neq \psi$ and let i be the smallest number such that $\varphi(i)$ and $\psi(i)$ are defined and $\varphi(i) \neq \psi(i)$. Then $(\varphi(i), \psi(i))$ is called the disagreement pair of φ and ψ.

Example:

$\varphi = P(g_1(c), f_1(a, g_1(x), g_2(a, g_1(b))))$

$\psi = P(g_1(c), f_1(a, g_1(x), g_2(f_2(x, y), z)))$

Disagreement pair: $(a, f_2(x, y))$
Robinson’s Unification Algorithm

set $\mu := []$ (empty substitution)

while $|\mu(\Delta)| > 1$ do {
 pick a disagreement pair p in $\mu(\Delta)$;
 if no variable in p then {
 stop and return ‘not unifiable’;
 } else {
 let $p = (x, t)$ with x being a variable;
 if x occurs in t then*
 stop and return ‘not unifiable’;
 } else {
 set $\mu := \mu \circ [x \leftarrow t]$;
 }
 }
return μ;

Input: Δ (set of literals)
Output: μ (mgu of Δ)
or ‘not unifiable’

* so-called occur-check

Unification ≠ Matching (Prolog)

Most Prolog systems do not implement a sound unification algorithm, as this would be computationally too expensive (they usually omit the occur-check).

Example: SWI-Prolog matching the variable X and the term $f(X)$:

?- $X = f(X)$.
$X = f(f(f(f(f(f(f(f(f(f(f(...)))))))))))$

Yes

If you require sound unification you have to implement it yourself.