CS3AUR: Automated Reasoning 2002 Unification

4 N

Unification

Definition 1 (Unification) A substitution o (of possibly several
variables by terms) is called a unifier of a set of formulas
A={p1,...,on}t iff o(p1) =+ = 0(pn) holds. We also write
lo(A)] =1 and call A unifiable.

Definition 2 (MGU) A unifier p of a set of formulas A is called a
most general unifier (mgu) of A iff for every unifier o of A there
exists a substitution o’ with o = poo’.

(The composition p o o’ is the substitution we get by first applying u
to a formula and then o’.)

Remark. We also speak of unifiers (and mgus) for sets of terms.

o /

Ulle Endriss, King's College London 1
CS3AUR: Automated Reasoning 2002 Unification
/ Unification Algorithm: Preparation \

We shall formulate a unification algorithm for literals only, but it can
easily be adapted to work with general formulas (or terms).

Subexpressions. Let ¢ be a literal. We refer to formulas and terms
appearing within ¢ as the subexpressions of ¢. If there is a
subexpression in ¢ starting at position i we call it p(?) (otherwise (*)
is undefined; for example, if there is a comma at the ith position).

Disagreement pairs. Let ¢ and v be literals with ¢ # v and let ¢
be the smallest number such that ¢(* and ¢ are defined and
0@ £ p) Then (o,) is called the disagreement pair of ¢ and

1. Example:
¢ = Plg(c), fi(a,91(x), 92(a, g1(D)))

Y = P(gl(c)vfl(aagl(x)ng(fQ(xay)vz))
Qisagreement pair: (a, fa(x,y)) ! J

Ulle Endriss, King's College London 2

CS3AUR: Automated Reasoning 2002 Unification

/ Robinson’s Unification Algorithm \
set v :=[] (empty substitution)
while [n(A)[> 1 do { Input: A (set of literals)

?mk a disagreement pair p in p(A); Output: 1 (mgu of A)
if no variable in p then {
or ‘not unifiable’

stop and return ‘not unifiable’;
} else {
let p = (x,t) with = being a variable;

if x occurs in t then™ {

stop and return ‘not unifiable’;

} else {
set p:= po [z« tf;
} * so-called occur-check l
\return 75 /
Ulle Endriss, King's College London 3
CS3AUR: Automated Reasoning 2002 Unification

4 N

Unification # Matching (Prolog)

Most Prolog systems do not implement a sound unification
algorithm, as this would be computationally too expensive (they

usually omit the occur-check).

Example: SWI-Prolog matching the variable X and the term £ (X):

7- X =£fX).
X=f(fEEETEEEEEC.. DO NN
Yes

If you require sound unification you have to implement it yourself.

o /

Ulle Endriss, King's College London 4

