Game Theory 2025

Ulle Endriss Institute for Logic, Language and Computation University of Amsterdam

Plan for Today

Today we are going to focus on the special case of *zero-sum games* and discuss two positive results that do not hold for games in general.

- new solution concepts: *maximin* and *minimax solutions*
- *Minimax Theorem:* maximin = minimax = NE for zero-sum games
- *fictitious play:* basic model for learning in games
- *convergence result* for the case of zero-sum games

The first part of this is also covered in Chapter 3 of the *Essentials*.

K. Leyton-Brown and Y. Shoham. *Essentials of Game Theory: A Concise, Multidisciplinary Introduction*. Morgan & Claypool Publishers, 2008. Chapter 3.

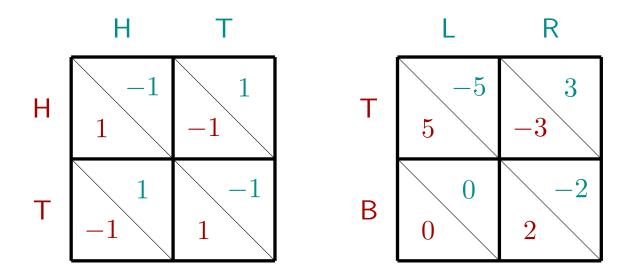
Zero-Sum Games

Today we focus on *two-player games* $\langle N, \boldsymbol{A}, \boldsymbol{u} \rangle$ with $N = \{1, 2\}$.

<u>Notation</u>: Given player $i \in \{1, 2\}$, we refer to her opponent as -i.

<u>Recall</u>: A zero-sum game is a two-player normal-form game $\langle N, A, u \rangle$ for which $u_i(a) + u_{-i}(a) = 0$ for all action profiles $a \in A$.

Examples include (but are not restricted to) games in which you can win (+1), lose (-1), or draw (0), such as Matching Pennies (left):



Constant-Sum Games

A constant-sum game is a two-player normal-form game $\langle N, A, u \rangle$ for which there exists a $c \in \mathbb{R}$ such that $u_i(a) + u_{-i}(a) = c$ for all $a \in A$. <u>Thus:</u> A zero-sum game is a constant-sum game with constant c = 0. Everything about zero-sum games to be discussed today also applies to constant-sum games, but for simplicity we only talk about the former.

<u>Fun Fact:</u> Football is *not* a constant-sum game, as you get 3 points for a win, 0 for a loss, and 1 for a draw. But prior to 1994, when the "three-points-for-a-win" rule was introduced, World Cup games were constant-sum (with 2, 0, 1 points, for win, loss, draw, respectively).

Maximin Strategies

The definitions on this slide apply to arbitrary normal-form games ...

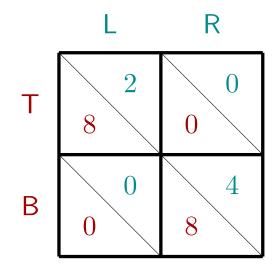
Suppose player i wants to maximise her worst-case expected utility (e.g., if all others conspire against her). Then she should play:

$$s_i^{\star} \in \operatorname*{argmax}_{s_i \in S_i} \min_{\boldsymbol{s}_{-i} \in \boldsymbol{S}_{-i}} u_i(s_i, \boldsymbol{s}_{-i})$$

Any such s_i^{\star} is called a *maximin strategy* (typically there is just one). Solution concept: assume each player will play a maximin strategy. Call $\max_{s_i} \min_{s_{-i}} u_i(s_i, s_{-i})$ player *i*'s *maximin value* (or *security level*).

Exercise: Maximin and Nash

Consider the following two-player game:

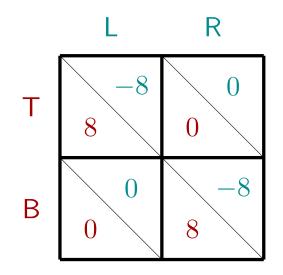


What is the maximin solution? How does this relate to Nash equilibria?

<u>Note:</u> This is neither a zero-sum nor a constant-sum game.

Exercise: Maximin and Nash Again

Now consider this fairly similar game, which is zero-sum:



What is the maximin solution? How does this relate to Nash equilibria?

Minimax Strategies

Now focus on two-player games only, with players i and -i ...

Suppose player *i* wants to minimise -i's best-case expected utility (e.g., to *punish* her). Then *i* should play:

$$s_i^{\star} \in \operatorname*{argmin}_{s_i \in S_i} \max_{s_{-i} \in S_{-i}} u_{-i}(s_i, s_{-i})$$

Any such s_i^{\star} is called a *minimax strategy* (typically there is just one). Call $\min_{s_i} \max_{s_{-i}} u_{-i}(s_i, s_{-i})$ player -i's *minimax value*. So, by analogy, player i's minimax value is $\min_{s_{-i}} \max_{s_i} u_i(s_i, s_{-i})$. <u>Remark:</u> An alternative interpretation of player i's minimax value is

what she gets when her opponent has to play first and i can respond.

Equivalence of Maximin and Minimax Values

<u>Recall:</u> For two-player games, we have seen the following definitions.

- Player *i*'s maximin value is $\max_{s_i} \min_{s_{-i}} u_i(s_i, s_{-i})$.
- Player *i*'s minimax value is $\min_{s_{-i}} \max_{s_i} u_i(s_i, s_{-i})$.

Lemma 1 In a two-player game, maximin and minimax value coincide:

$$\max_{s_i} \min_{s_{-i}} u_i(s_i, s_{-i}) = \min_{s_{-i}} \max_{s_i} u_i(s_i, s_{-i})$$

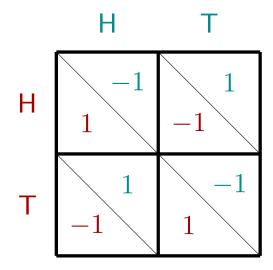
Exercise: Can you see why?

Interlude

To see that the lemma is not trivial, observe that it becomes *false* if we quantify over actions rather than strategies:

$$\max_{a_i} \min_{a_{-i}} u_i(a_i, a_{-i}) = \min_{a_{-i}} \max_{a_i} u_i(a_i, a_{-i})$$

Take *Matching Pennies* with players being confined to pure strategies. If you go first (LHS) you get -1 but if you go second (RHS) you get 1.



Proof of Lemma

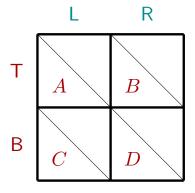
Let us now prove the lemma. The claim is, for any two-player game:

$$\max_{s_i} \min_{s_{-i}} u_i(s_i, s_{-i}) = \min_{s_{-i}} \max_{s_i} u_i(s_i, s_{-i})$$

One direction is straightforward:

(\leq) LHS is what *i* can achieve when she *has to* move first, while RHS is what *i* can achieve when she *can* move second. \checkmark

For the full equation, we sketch the proof for 2x2-games only:



Rowena's maximin strategy is to play T with probability p so Colin cannot affect her EU: Ap+C(1-p) = Bp+D(1-p)So maximin value is Ap+C(1-p) for this $p \Rightarrow \frac{AD-BC}{A-B-C+D}$ Colin's minimax strategy is to play L with probability q so Rowena cannot affect her EU: Aq+B(1-q) = Cq+D(1-q)So minimax value is Aq+B(1-q) for this $q \Rightarrow \frac{AD-BC}{A-B-C+D}$

So we really get the same value! \checkmark (Exercise: Verify this!)

The Minimax Theorem

<u>Recall</u>: A zero-sum game is a two-player game with $u_i(a) + u_{-i}(a) = 0$.

Theorem 2 (Von Neumann, 1928) In a zero-sum game, a strategy profile is a NE <u>iff</u> each player's expected utility equals her minimax value.

<u>Proof:</u> Let v_i be the minimax/maximin value of player i (and $v_{-i} = -v_i$ that of player -i).

(1) Suppose $u_i(s_i, s_{-i}) \neq v_i$. Then one player does worse than she could (v_i as maximin value). So she can deviate: (s_i, s_{-i}) is not a NE. \checkmark

(2) Suppose $u_i(s_i, s_{-i}) = v_i$. Then you cannot do better even if you were allowed to move second $(v_i \text{ as } minimax \text{ value})$. So (s_i, s_{-i}) is a NE. \checkmark

John von Neumann (1903–1957)

J. von Neumann. Zur Theorie der Gesellschaftsspiele. *Mathematische Annalen*, 100(1):295–320, 1928.

Computing Nash Equilibria in Zero-Sum Games

The Minimax Theorem suggests a way of computing Nash equilibria for zero-sum games that is simpler than the general approach.

The reason why this simplifies matters is that, to compute the maximin (or minimax) value of a player, you only need to consider *her* payoffs.

Learning in Games

Suppose you keep playing the same game against the same opponents. You might try to *learn* their *strategies*.

A good hypothesis might be that the *frequency* with which player i plays action a_i is approximately her *probability* of playing a_i .

Now suppose you always best-respond to those hypothesised strategies. And suppose everyone else does the same. *What will happen?*

We are going to see that for *zero-sum games* this process *converges* to a NE. This yields a method for *computing a NE* for the (non-repeated) game: just *imagine* players engage in such *"fictitious play"*.

Empirical Mixed Strategies

Given a history of actions $H_i^{\ell} = a_i^0, a_i^1, \dots, a_i^{\ell-1}$ played by player i in ℓ prior plays of game $\langle N, \boldsymbol{A}, \boldsymbol{u} \rangle$, fix her empirical mixed strategy $s_i^{\ell} \in S_i$:

$$s_i^{\ell}(a_i) = \underbrace{\frac{1}{\ell} \cdot \#\{k < \ell \mid a_i^k = a_i\}}_{\ell} \quad \text{for all } a_i \in A_i$$

relative frequency of a_i in H_i^ℓ

Best Pure Responses

<u>Recall</u>: Strategy $s_i^* \in S_i$ is a *best response* for player *i* to the (partial) strategy profile s_{-i} if $u_i(s_i^*, s_{-i}) \ge u_i(s_i', s_{-i})$ for all $s_i' \in S_i$.

Due to expected utilities being convex combinations of plain utilities:

Observation 3 For any given (partial) strategy profile s_{-i} , the set of best responses for player *i* must include at least one pure strategy.

So we can restrict attention to *best pure responses* for player *i* to s_{-i} :

$$a_i^\star \in \operatorname*{argmax}_{a_i \in A_i} u_i(a_i, \boldsymbol{s}_{-i})$$

Fictitious Play

Take any action profile $a^0 \in A$ for the normal-form game $\langle N, A, u \rangle$.

Fictitious play of $\langle N, \boldsymbol{A}, \boldsymbol{u} \rangle$, starting in \boldsymbol{a}^0 , is the following process:

- In round $\ell = 0$, each player $i \in N$ plays action a_i^0 .
- In any round ℓ > 0, each player i ∈ N plays a best pure response to her opponents' empirical mixed strategies:

$$\begin{aligned} a_i^{\ell} &\in \operatorname*{argmax}_{a_i \in A_i} u_i(a_i, \boldsymbol{s}_{-i}^{\ell}), \text{ where} \\ s_{i'}^{\ell}(a_{i'}) &= \frac{1}{\ell} \cdot \#\{k < \ell \mid a_{i'}^k = a_{i'}\} \text{ for all } i' \in N \text{ and } a_{i'} \in A_{i'} \end{aligned}$$

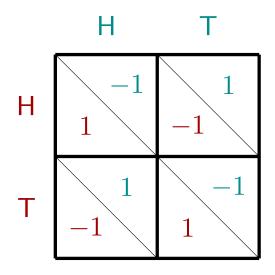
Assume some deterministic way of *breaking ties* between maxima.

This yields a sequence $a^0 \twoheadrightarrow a^1 \twoheadrightarrow a^2 \twoheadrightarrow \ldots$ with a corresponding sequence of empirical-mixed-strategy profiles $s^0 \twoheadrightarrow s^1 \twoheadrightarrow s^2 \twoheadrightarrow \ldots$

<u>Question</u>: Does $\lim_{\ell \to \infty} s^{\ell}$ exist and is it a meaningful strategy profile?

Example: Matching Pennies

Let's see what happens when we start in the upper lefthand corner HH (and break ties between equally good responses in favour of H):



Any strategy can be represented by a single probability (of playing H).

$$\begin{array}{ccc} \mathsf{HH} \left(\frac{1}{1},\frac{1}{1}\right) \twoheadrightarrow \mathsf{HT} \left(\frac{2}{2},\frac{1}{2}\right) & \twoheadrightarrow \mathsf{HT} \left(\frac{3}{3},\frac{1}{3}\right) & \twoheadrightarrow \mathsf{TT} \left(\frac{3}{4},\frac{1}{4}\right) & \twoheadrightarrow \mathsf{TT} \left(\frac{3}{5},\frac{1}{5}\right) \\ & \twoheadrightarrow \mathsf{TT} \left(\frac{3}{6},\frac{1}{6}\right) & \twoheadrightarrow \mathsf{TH} \left(\frac{3}{7},\frac{2}{7}\right) & \twoheadrightarrow \mathsf{TH} \left(\frac{3}{8},\frac{3}{8}\right) & \twoheadrightarrow \mathsf{TH} \left(\frac{3}{9},\frac{4}{9}\right) \\ & \twoheadrightarrow \mathsf{TH} \left(\frac{3}{10},\frac{5}{10}\right) \twoheadrightarrow \mathsf{HH} \left(\frac{4}{11},\frac{6}{11}\right) \twoheadrightarrow \mathsf{HH} \left(\frac{5}{12},\frac{7}{12}\right) \twoheadrightarrow \cdots \end{array}$$

Exercise: Can you guess what this will converge to?

Convergence Profiles are Nash Equilibria

In general, $\lim_{\ell \to \infty} s^{\ell}$ does not exist (no guaranteed convergence). <u>But:</u> **Lemma 4** If fictitious play converges, then to a Nash equilibrium. <u>Proof:</u> Suppose $s^{\star} = \lim_{\ell \to \infty} s^{\ell}$ exists. To see that s^{\star} is a NE, note that s_i^{\star} is the strategy that *i* seems to play when she best-responds to s^{\star}_{-i} , which she believes to be the profile of strategies of her opponents. \checkmark <u>Remark:</u> This lemma is true for arbitrary (not just zero-sum) games.

Convergence for Zero-Sum Games

Good news:

Theorem 5 (Robinson, 1951) For any zero-sum game and initial action profile, fictitious play will converge to a Nash equilibrium.

We know that <u>if</u> FP converges, then to a NE. Thus, we still have to show <u>that</u> it will converge. The proof of this fact is difficult and we are not going to discuss it here.

Julia Robinson (1919–1985)

J. Robinson. An Iterative Method of Solving a Game. *Annals of Mathematics*, 54(2):296–301, 1951.

Summary

We have seen that *zero-sum games* are particularly well-behaved:

- *Minimax Theorem:* your expected utility in a Nash equilibrium will simply be your minimax/maximin value
- Convergence of *fictitious play*: if each player keeps responding to their opponent's estimated strategy based on observed frequencies, these estimates will converge to a Nash equilibrium

Both results give rise to alternative methods for computing a NE.

What next? Players who have incomplete information (are uncertain) about certain aspects of the game, such as their opponents' utilities.