



# Mechanism Design with Predictions Improved Mechanisms for Facility Location

Guido Schäfer

Centrum Wiskunde & Informatica (CWI) Institute for Logic, Language and Computation (UvA) g.schaefer@cwi.nl

> Course: Game Theory 2025 Lecture May 21, 2025

#### **Previous Lectures:**

- Incentive Compatibility and Vickrey Auction
- Direct-Revelation Mechanisms with Money
- Combinatorial Auctions and VCG
- Mechanism Design Without Money

#### Today's Lecture: Approximate Mechanism Design

- Facility Location on the Line
- Design strategyproof mechanism with best-possible approximation guarantee
- Impossibility Barrier: strategyproofness vs. approximate efficiency
- New Paradigm: Mechanism Design With Predictions
- Derive improved facility location mechanism using predictions

# **Facility Location on the Line**

# **Facility Location on the Line**

### Setting:

- set of agents  $N = \{1, ..., n\}$  and a single facility (no opening cost)
- each agent  $i \in N$  has a true location  $v_i \in \mathbb{R}$  (private information)
- each agent  $i \in N$  declares a (possibly false) location  $x_i \in \mathbb{R}$

### Mechanism $\mathcal{M}$ :

- Mechanism  $\mathcal{M}$ : collects declared locations of all agents:  $\mathbf{x} = (x_1, \dots, x_n)$  (location profile)
- determines a location  $z = (z(x)) \in \mathbb{R}$  where the facility is opened
- $\rightarrow$  direct-revelation mechanism without money!

**Agents' costs:** each agent *i* wants to minimize their (true) distance to the facility

$$C_i(z) = C_i(z, \mathbf{v}_i) = |z - \mathbf{v}_i|$$









Strategyproofness (SP): mechanism ensures that for each agent *i*, it is a dominant strategy to report their true location:
∀*i* ∈ N ∀*x*<sub>-i</sub> ∈ ℝ<sup>n-1</sup>:
*c<sub>i</sub>(z(v<sub>i</sub>, x<sub>-i</sub>))* ≤ *c<sub>i</sub>(z(x<sub>i</sub>, x<sub>-i</sub>))* ∀*x<sub>i</sub>* ∈ ℝ

 $(1 \in \mathbb{N} \setminus \mathbb{A} = \mathbb{N} ) = \mathbb{O}(\mathbb{P}(\mathbb{P}(\mathbb{N} \setminus \mathbb{A} = \mathbb{N})) = \mathbb{O}(\mathbb{P}(\mathbb{P}(\mathbb{N} \setminus \mathbb{N})) = \mathbb{O}(\mathbb{P}(\mathbb{P}(\mathbb{N} \setminus \mathbb{N}))) = \mathbb{O}(\mathbb{P}(\mathbb{P}(\mathbb{N} \setminus \mathbb{N})) = \mathbb{O}(\mathbb{P}(\mathbb{P}(\mathbb{N} \setminus \mathbb{N})) = \mathbb{O}(\mathbb{P}(\mathbb{P}(\mathbb{N} \setminus\mathbb{N}))) = \mathbb{O}(\mathbb{P}(\mathbb{P}(\mathbb{N} \setminus\mathbb{N})) = \mathbb{O}(\mathbb{P}(\mathbb{P}(\mathbb{N} \setminus\mathbb{N}))) = \mathbb{O}(\mathbb{P}(\mathbb{P}(\mathbb{N} \setminus\mathbb{N})) = \mathbb{O}(\mathbb{P}(\mathbb{P}(\mathbb{N}))) = \mathbb{O}(\mathbb{P}(\mathbb{P}(\mathbb$ 

**2 Efficiency (EFF):** mechanism minimizes the maximum cost over all agents:

$$\forall \boldsymbol{x} \in \mathbb{R}^n : \quad z(\boldsymbol{x}) = \arg\min_{z \in \mathbb{R}} SC(z, \boldsymbol{x}) \quad \text{where} \quad SC(z, \boldsymbol{x}) = \max_{i \in N} c_i(z, x_i)$$

**Egalitarian Social Cost:** choose location that minimizes cost of furthest-away agent  $\rightarrow$  use  $z^*(x) / OPT(x)$  to refer to optimal location / egalitarian social cost

**Question:** How can we design a mechanism satisfying SP and EFF?



thoose Z as center interval [x2, x3]

۲

**Notation:** given location profile  $\mathbf{x} = (x_1, \ldots, x_n)$ , define

- $lt(\mathbf{x}) = \min_{i \in N} x_i$  (leftmost location)
- $rt(\mathbf{x}) = \max_{i \in N} x_i$  (rightmost location)
- cen( $\mathbf{x}$ ) =  $\frac{1}{2}(\operatorname{lt}(\mathbf{x}) + \operatorname{rt}(\mathbf{x}))$  (center of  $[\operatorname{lt}(\mathbf{x}), \operatorname{rt}(\mathbf{x})]$ ) =  $\mathcal{L}(\mathbf{x}) + \frac{1}{2}(\operatorname{rt}(\mathbf{x}) - \mathcal{L}(\mathbf{x}))$

#### Mechanism: CENTER

- 1 Collect location profile  $\mathbf{x} = (x_1, \dots, x_n)$  of the agents' reports
- 2 Choose the center:  $z(\mathbf{x}) = \operatorname{cen}(\mathbf{x})$

#### Can prove: CENTER satisfies EFF.

**Question:** What about strategyproofness?







Example:



Example:



#### Example:



Example:





Example:



# Idea: MEDIAN Mechanism



#### Notation:

- Let  $\sigma$  be permutation of [n] such that  $x_{\sigma(1)} \leq x_{\sigma(2)} \leq \cdots \leq x_{\sigma(n)}$
- Define median as  $med(\mathbf{x}) = x_{\sigma(k+1)}$  for  $n = \{2k \mid 2k+1\}$

#### Mechanism: MEDIAN

- 1 Collect location profile  $\mathbf{x} = (x_1, \dots, x_n)$  of the agents' reports
- 2 Choose the median:  $z(\mathbf{x}) = med(\mathbf{x})$

### Can prove: MEDIAN is strategyproof!

Lemma 1: MEDIAN satisfies strategyproofness.

Proof (by picture):





Define  $\Delta = |\operatorname{rt}(\mathbf{x}) - \operatorname{lt}(\mathbf{x})|$ . Optimal cost is  $OPT(\mathbf{x}) = \frac{1}{2}\Delta$ . But MEDIAN outputs  $z = z(\mathbf{x})$  and has social cost  $SC(z, \mathbf{x}) = \Delta$ .  $\rightarrow$  we lose a factor of 2 here!

 $\alpha$ -Efficiency ( $\alpha$ -EFF): mechanism  $\alpha$ -approximates egalitarian social cost ( $\alpha \ge 1$ ):

$$orall oldsymbol{x} \in \mathbb{R}^n: \quad \textit{SC}(z(oldsymbol{x}),oldsymbol{x}) \leq lpha \cdot \textit{OPT}(oldsymbol{x})$$



Define  $\Delta = |rt(\mathbf{x}) - lt(\mathbf{x})|$ . Optimal cost is  $OPT(\mathbf{x}) = \frac{1}{2}\Delta$ . But MEDIAN outputs  $z = z(\mathbf{x})$  and has social cost  $SC(z, \mathbf{x}) = \Delta$ .  $\rightarrow$  we lose a factor of 2 here!

 $\alpha$ -Efficiency ( $\alpha$ -EFF): mechanism  $\alpha$ -approximates egalitarian social cost ( $\alpha \geq 1$ ):

$$orall oldsymbol{x} \in \mathbb{R}^n: \quad \textit{SC}(z(oldsymbol{x}),oldsymbol{x}) \leq lpha \cdot \textit{OPT}(oldsymbol{x})$$



Define  $\Delta = |\operatorname{rt}(\boldsymbol{x}) - \operatorname{lt}(\boldsymbol{x})|$ . Optimal cost is  $OPT(\boldsymbol{x}) = \frac{1}{2}\Delta$ . But MEDIAN outputs  $z = z(\boldsymbol{x})$  and has social cost  $SC(z, \boldsymbol{x}) = \Delta$ .  $\rightarrow$  we lose a factor of 2 here!

 $\alpha$ -Efficiency ( $\alpha$ -EFF): mechanism  $\alpha$ -approximates egalitarian social cost ( $\alpha \geq 1$ ):

$$orall oldsymbol{x} \in \mathbb{R}^n: \quad \textit{SC}(z(oldsymbol{x}),oldsymbol{x}) \leq lpha \cdot \textit{OPT}(oldsymbol{x})$$



Define  $\Delta = |\operatorname{rt}(\boldsymbol{x}) - \operatorname{lt}(\boldsymbol{x})|$ . Optimal cost is  $OPT(\boldsymbol{x}) = \frac{1}{2}\Delta$ . But MEDIAN outputs  $z = z(\boldsymbol{x})$  and has social cost  $SC(z, \boldsymbol{x}) = \Delta$ .  $\rightarrow$  we lose a factor of 2 here!

 $\alpha$ -Efficiency ( $\alpha$ -EFF): mechanism  $\alpha$ -approximates egalitarian social cost ( $\alpha \ge 1$ ):

$$\forall \boldsymbol{x} \in \mathbb{R}^n : SC(z(\boldsymbol{x}), \boldsymbol{x}) \leq \alpha \cdot OPT(\boldsymbol{x})$$

**Theorem 1:** MEDIAN is strategyproof and 2-efficient.

**Proof** (2-EFF). Let *x* be given. The optimal cost is

$$OPT(\boldsymbol{x}) = |\mathsf{rt}(\boldsymbol{x}) - \mathsf{cen}(\boldsymbol{x})| = \mathsf{rt}(\boldsymbol{x}) - \frac{1}{2}(\mathsf{lt}(\boldsymbol{x}) + \mathsf{rt}(\boldsymbol{x})) = \frac{1}{2}(\mathsf{rt}(\boldsymbol{x}) - \mathsf{lt}(\boldsymbol{x}))$$

MEDIAN returns location  $z = z(\mathbf{x})$  of cost

$$SC(z, \boldsymbol{x}) \leq \operatorname{rt}(\boldsymbol{x}) - \operatorname{lt}(\boldsymbol{x}) = 2 \cdot OPT(\boldsymbol{x}).$$

#### **Remarks:**

- Choosing any *k*-th order statistic  $x_{\sigma(k)}$  with  $k \in \{1, \ldots, n\}$  works as well!
- Generalizes to single-peaked preferences and group-strategyproofness

**Theorem 2:** There is no strategyproof mechanism that is  $\alpha$ -efficient with  $\alpha < 2$ .

Proof. Suppose  $\mathcal{M}$  is strategyproof and  $\alpha$ -efficient with  $\alpha < 2$ . Let  $N = \{1, 2\}$ .  $\begin{matrix} \iota \\ 0 \\ z_1 = \frac{1}{2} + \epsilon \end{matrix}$ 

1 Consider  $\mathbf{x}^1 = (0, 1)$ . Then  $z_1^* = \frac{1}{2}$  has cost  $\frac{1}{2}$ . Assume wlog that  $\mathcal{M}$  returns  $z_1 = \frac{1}{2} + \epsilon$  for some  $\epsilon \in [0, \frac{1}{2})$ . Open ! 2 Consider  $\mathbf{x}^2 = (0, \frac{1}{2} + \epsilon)$ . Then  $z_2^* = \frac{1}{4} + \frac{\epsilon}{2}$  has cost  $\frac{1}{4} + \frac{\epsilon}{2}$ . Since  $\mathcal{M}$  is  $\alpha$ -efficient with  $\alpha < 2$ , we have  $z_2 \in (0, \frac{1}{2} + \epsilon)$ .

**But then:** Suppose true locations are  $x^2$  as in 2. We have  $c_2(z_2) > 0$ . If agent 2 declares  $x_2^2 = 1$ , we are in 1 and  $c_2(z_1) = 0$ , contradicting strategyproofness.

**1** MEDIAN Mechanism: derived a strategyproof mechanism that is 2-efficient for facility location on the line

 $\rightarrow$  MEDIAN can be implemented to run in polynomial time

2 Impossibility Barrier: there is no strategyproof mechanism that achieves  $(2 - \varepsilon)$ -efficiency for any  $\varepsilon > 0$ 

 $\rightarrow$  holds because of conflicting objectives SP and  $\alpha$ -EFF, independently of any computational constraints (e.g., even for exponential time mechanisms!)

- 3 Contributions 1 and 2 together imply that our mechanism is best-possible: no better mechanism exists in terms of SP vs.  $\alpha$ -EFF tradeoff
- 4 Glimpse only: more complex facility location problems, different incentive compatibility notions, social cost objectives, etc. have been studied in the literature

# **Towards Mechanism Design with Predictions**



### **Objectives:**

• . . .

- strategyproofness  $\mathcal{M}$  incentivizes truthful reports  $x_i = v_i$
- $\alpha$ -efficiency  $\mathcal{M}$  computes  $\alpha$ -approximate solution

Note: we provide guarantees by proving that these objectives are always achieved

# **Mechanisms with Predictions**



**Prediction:**  $\hat{p}$  is prediction of some problem-relevant parameters

- predictions might be obtained from actual data via machine-learning techniques
- Question: Can we leverage predictions to develop improved mechanisms?
- **NB:**  $\hat{p}$  might be erroneous, but we still care about provable guarantees!

### **Objectives:**

- strategyproofness  $\mathcal{M}$  incentivizes truthful reports  $x_i = v_i$
- *α*-consistency
- $\beta$ -robustness
- $\gamma$ -approximability
- $\mathcal{M}$  computes  $\alpha$ -approximate solution if prediction is accurate
- $\mathcal{M}$  computes  $\beta$ -approximate solution even if prediction is off
- $\mathcal{M}$  computes  $\gamma(\eta)$ -approximate solution if prediction error is  $\eta$

#### What are suitable predictions?

- prediction of the true location profile  $\mathbf{v} = (v_1, \dots, v_n)$
- prediction of the optimal facility location  $\hat{z}$  (aggregated information)

### **Facility Location Mechanism with Predictions:**

- **1** Obtain prediction  $\hat{z}$  of the optimal facility location
- **2** Collect location profile  $\mathbf{x} = (x_1, \dots, x_n)$  of the agents' reports
- **3** Choose facility location  $z = z(\mathbf{x}, \hat{z})$

(**Crucial:**  $\hat{z}$  does not depend on reports!)

**Question:** How can we exploit the prediction  $\hat{z}$  to design improved mechanisms?

# Consistency, Robustness, Approximability

•  $\alpha$ -consistent: mechanism is  $\alpha$ -approximate if the prediction is accurate

$$\forall \boldsymbol{x}, \ \hat{\boldsymbol{z}} = \boldsymbol{z}^*(\boldsymbol{x}): \qquad \boldsymbol{SC}(\boldsymbol{z}(\boldsymbol{x}, \hat{\boldsymbol{z}}), \boldsymbol{x}) \leq \alpha \cdot \boldsymbol{OPT}(\boldsymbol{x})$$

•  $\beta$ -robust: mechanism is always  $\beta$ -approximate even if the prediction is off

$$\forall \boldsymbol{x} \ \forall \hat{\boldsymbol{z}} : \qquad SC(\boldsymbol{z}(\boldsymbol{x}, \hat{\boldsymbol{z}}), \boldsymbol{x}) \leq \beta \cdot OPT(\boldsymbol{x})$$

•  $\gamma$ -approximate: mechanism is  $\gamma(\eta)$ -approximate if prediction error is bounded by  $\eta$  $\forall \boldsymbol{x} \ \forall \hat{z} : \eta(\boldsymbol{x}, \hat{z}) \leq \eta : \qquad SC(z(\boldsymbol{x}, \hat{z}), \boldsymbol{x}) \leq \gamma(\eta) \cdot OPT(\boldsymbol{x})$ 

# **Facility Location with Predictions**



#### Mechanism: WITHINBOUNDARIES

- 1 Obtain prediction  $\hat{z}$  of the optimal facility location
- **2** Collect location profile  $\mathbf{x} = (x_1, \dots, x_n)$  of the agents' reports
- 3 if  $\hat{z} < \operatorname{lt}(\boldsymbol{x})$  then choose leftmost location:  $z(\boldsymbol{x}, \hat{z}) = \operatorname{lt}(\boldsymbol{x})$
- 4 else if  $\hat{z} > \operatorname{rt}(\boldsymbol{x})$  then choose rightmost location:  $z(\boldsymbol{x}, \hat{z}) = \operatorname{rt}(\boldsymbol{x})$
- **5** else choose predicted location:  $z(\mathbf{x}, \hat{z}) = \hat{z}$

#### Can prove: WITHINBOUNDARIES is 1-consistent and 2-robust!

#### Implications:

- mechanism outputs optimal solution if prediction is accurate
- mechanism is never worse than 2-efficient (same guarantee as before)
- by using predictions, we can break the impossibility barrier!

**Theorem 3:** WITHINBOUNDARIES is strategyproof, 1-consistent and 2-robust.



Fix some agent *i* and reports  $\mathbf{x}_{-i}$ . Assume  $v_i \leq \hat{z}$  (analogous otherwise).

**Case 1:** all reported locations in  $\mathbf{x}_{-i}$  are to the left of  $v_i$ Then  $z((v_i, \mathbf{x}_{-i}), \hat{z}) = v_i$  and *i* does not want to deviate.

**Case 2:** at least one reported location in  $\mathbf{x}_{-i}$  is to the right of  $v_i$ Then  $z((v_i, \mathbf{x}_{-i}), \hat{z}) \ge v_i$ . If *i* misreports  $x_i \le v_i$ : no change in outcome. If *i* misreports  $x_i > v_i$ :  $z((x_i, \mathbf{x}_{-i}), \hat{z})$  can only move to the right and thus away from  $v_i$ .

V:

**Theorem 3:** WITHINBOUNDARIES *is strategyproof,* 1*-consistent and* 2*-robust.* 

#### **Proof:** 1-consistent

Suppose the prediction is accurate, i.e.,  $\hat{z} = z^*(\mathbf{x})$ . Then  $\hat{z} = z^*(\mathbf{x}) \in [lt(\mathbf{x}), rt(\mathbf{x})]$  and the mechanism thus outputs  $\hat{z}$ .

#### Proof: 2-robust

The mechanism always outputs a location in  $[lt(\mathbf{x}), rt(\mathbf{x})]$ . Cost of any agent is thus at most  $rt(\mathbf{x}) - lt(\mathbf{x})$ . Optimal solution has egalitarian social cost  $\frac{1}{2}(rt(\mathbf{x}) - lt(\mathbf{x}))$ .

# **Outlook:** How about Facility Location in $\mathbb{R}^2$ ?

#### Mechanism: MINBOUNDINGBOX

- 1 Obtain prediction  $\hat{z} = (\hat{x}, \hat{y})$  of the optimal facility location
- 2 Collect reported location profile  $\mathbf{x} = ((x_1, y_1), \dots, (x_n, y_n))$  of the agents
- 3  $x_z = WITHINBOUNDARIES((x_1, \ldots, x_n), \hat{x})$
- 4  $y_z = WITHINBOUNDARIES((y_1, \ldots, y_n), \hat{y})$
- 5 Choose  $z(\mathbf{x}, \hat{z}) = (x_z, y_z)$

Given prediction  $\hat{z}$ , define error parameter  $\eta(\mathbf{x}, \hat{z}) = \frac{|\hat{z} - z^*(\mathbf{x})|}{OPT(\mathbf{x})}$ 

**Theorem 4:** MINBOUNDINGBOX *is* min $\{1 + \eta, 1 + \sqrt{2}\}$ *-approximate.* 

**1** WITHINBOUNDARIES Mechanism: simple predictions lead to mechanism with improved guarantees for facility location

2 Best of Both Worlds: here we can improve best-case guarantee (1-consistent) without worsening the worst-case guarantee (2-robust). But: not always possible!

#### **3** Power of Predictions:

- might overcome traditional impossibility barriers
- overarching theme: beyond worst-case analysis
- game-changer: advent of ML techniques
- results might make it into actual applications (Google, Meta, etc.)

4 Mechanism Design with Predictions is a just emerging research field!

| join | AGT   |  |  |  |  |
|------|-------|--|--|--|--|
| in   | Sept! |  |  |  |  |

- Ariel D. Procaccia and Moshe Tennenholtz. 2013. Approximate Mechanism Design without Money. ACM Transactions on Economics and Computation, 1(4), Article 18, 26 pages. https://doi.org/10.1145/2542174.2542175.
- Priyank Agrawal, Eric Balkanski, Vasilis Gkatzelis, Tingting Ou, and Xizhi Tan. 2022. Learning-Augmented Mechanism Design: Leveraging Predictions for Facility Location. arXiv preprint arXiv:2204.01120. https://arxiv.org/abs/2204.01120.

|                                               |   |      |  |  |  |      |  |   |  |      |         |  |      |        |       | + |
|-----------------------------------------------|---|------|--|--|--|------|--|---|--|------|---------|--|------|--------|-------|---|
|                                               | _ |      |  |  |  |      |  |   |  |      |         |  |      |        |       |   |
|                                               |   |      |  |  |  |      |  |   |  |      |         |  |      |        |       |   |
|                                               | _ |      |  |  |  | <br> |  |   |  |      |         |  | <br> |        |       |   |
|                                               | _ |      |  |  |  |      |  |   |  |      |         |  |      |        |       |   |
|                                               | _ |      |  |  |  |      |  |   |  |      |         |  |      |        |       |   |
|                                               |   |      |  |  |  |      |  |   |  |      |         |  |      |        |       |   |
|                                               |   |      |  |  |  |      |  |   |  |      |         |  |      |        |       |   |
|                                               |   |      |  |  |  |      |  |   |  |      |         |  |      |        |       |   |
|                                               |   |      |  |  |  |      |  |   |  |      |         |  |      |        |       |   |
|                                               |   |      |  |  |  |      |  |   |  |      |         |  |      |        |       |   |
|                                               |   |      |  |  |  |      |  |   |  |      |         |  |      |        |       |   |
|                                               |   |      |  |  |  |      |  |   |  |      |         |  |      |        |       |   |
|                                               |   |      |  |  |  |      |  |   |  |      |         |  |      |        |       |   |
|                                               |   | <br> |  |  |  |      |  |   |  |      |         |  |      |        |       |   |
|                                               |   |      |  |  |  |      |  |   |  |      |         |  |      |        |       |   |
|                                               |   |      |  |  |  |      |  |   |  |      |         |  |      |        |       |   |
|                                               | _ |      |  |  |  |      |  |   |  |      |         |  |      |        |       |   |
|                                               | _ |      |  |  |  |      |  | _ |  |      |         |  | <br> |        |       | + |
| Guide Schäfer L. GT 2025: MD with Predictions |   |      |  |  |  |      |  |   |  |      |         |  |      |        |       | + |
|                                               |   |      |  |  |  |      |  |   |  | Cuid | L Cobëf |  |      | Dradia | tiono |   |