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Tutorial #6

Exercise 1

Let N = {1, . . . , 10}. For each of the following three games determine whether it is additive,

whether it is convex, whether it is superadditive, and whether it is cohesive. Also determine

which of these games has a nonempty core.

(a) 〈N, v〉 with v : C 7→ |C|
(b) 〈N, v〉 with v : C 7→ |C|2

(c) 〈N, v〉 with v : C 7→ min(|C|, 7)

Exercise 2

Recall that a voting game is a tuple 〈N,w, q〉, where N = {1, . . . , n} is a the set of voters,

w = (w1, . . . , wn) ∈ Rn>0 is a vector of the weights of these voters, and q ∈ R>0 is the

quota. The idea is that the voters need to decide on whether a given proposal should be

accepted. If the sum of weights of the voters in favour meets the quota q, then the proposal is

accepted. Any coalition C ⊆ N is called a winning coalition in case
∑

i∈C wi > q. We require∑
i∈N wi > q, as otherwise no coalition would be a winning coalition. Recall that every

voting game is a simple game, and every simple game is a TU game. Specifically, the voting

game 〈N,w, q〉 is the TU game 〈N, v〉 with the characteristic function v : C 7→ 1∑
i∈C wi>q.

In this exercise we are going to explore how the choice of quota affects the nonemptiness

of the core of a voting game. Recall that the core of a TU game 〈N, v〉 is the set of all

imputations x = (x1, . . . , xn) ∈ Rn>0 that ensure that no coalition would want to break away

from the grand coalition, i.e., that ensure that
∑

i∈C xi > v(C) for all C ⊆ N .

Note that we want our games to have nonempty cores: the imputations in the core, arguably,

are the only ‘reasonable’ ways of distributing the surplus generated by the grand coalition.

(a) Recall that a TU game 〈N, v〉 is cohesive if v(N) > v(C1) + · · · + v(CK) for every

partitioning C1 ] · · · ] CK of N into mutually disjoint coalitions. Also recall that in

class we saw that cohesiveness is a necessary condition for nonemptiness of the core.

Give an example for a voting game that is not cohesive. What can you say about the

quota of the voting game you found?

(b) Now let us focus on voting games with ‘moderately high’ quotas:

q >
1

2
· (w1 + · · ·+ wn)

Show that any such voting game is cohesive.

(c) So, intuitively speaking, it looks like increasing the quota makes it more likely that the

core will be nonempty. So let us now consider voting games with ‘very high’ quotas:

q > (w1 + · · ·+ wn)−max{w1, . . . , wn}
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Recall that a TU game 〈N, v〉 is convex if v(C ∪C ′) > v(C) + v(C ′)− v(C ∩C ′) holds

for any two coalitions C,C ′ ⊆ N . Also recall that we saw in class that convexity is a

sufficient condition for nonemptiness of the core.

So if we can show that voting games with ‘very high’ quotas are convex, then we have

identified a sufficient condition on the quota for the voting game in question to have

a nonempty core. But can we actually show that all such voting games are convex?

(d) Another route towards showing that a voting game must have a nonempty core is to

use this characterisation result proved in class: a simple game has a nonempty core if

and only if it has a veto player. Recall that i ∈ N is a veto player of the TU game

〈N, v〉 if v(C) = 0 for all coalitions C ⊆ N \ {i} that exclude that player.

Show that every voting game with a ‘very high’ quota must have a veto player.

(e) At this point, you have shown that every voting game with a ‘very high’ quota must

have a nonempty core (by appealing to the characterisation result proved in class).

Is this is a positive result? And does the converse hold as well, i.e., does every voting

game with a nonempty core have a ‘very high’ quota?

Exercise 3

The purpose of this exercise is to help you understand the proof of the characterisation

theorem for the Shapley value presented in class. The theorem states that assigning payoffs

to players in line with the Shapley value is the only way of assigning payoffs in a manner that

satisfies four natural axioms: efficiency, symmetry, the dummy player axiom, and additivity.

One direction of the theorem is straightforward to prove: the Shapley value really does

satisfy the four axioms (but do make sure you understand this!). The tricky part is to show

that it is the only way of assigning payoffs that works.

But observe that if we can show that the axioms determine some unique payoff vector, then

it can only be the vector of payoffs suggested by the Shapley value. To prove that, indeed,

the axioms determine a unique solution, complete the following steps:

(a) Fix any set of players N = {1, . . . , n}. Now let us define a family of simple games for

this fixed set of players. For any given set S ⊆ N , let 〈N, vS〉 be the TU game with

the following characteristic function:

vS(C) =

{
1 if C ⊇ S
0 otherwise

Suppose we want to find functions x1, . . . , xn, with each xi mapping any given game

〈N, vS〉 to the payoff player i should receive when the grand coalition forms, such that

(at least) the first three of our four axioms will be respected (efficiency, symmetry, and

the dummy player axiom). Prove the following three claims (in that order):

(i) To satisfy the dummy player axiom, we must choose xi(N, vS) = 0 for all i 6∈ S.

That is, players not belonging to S (defining the game) will get no payoff at all.
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(ii) To satisfy efficiency, we must ensure
∑

i∈N xi(N, vS) = 1.

(iii) To satisfy the dummy player axiom, efficiency, and symmetry together, we must

choose xi(N, vs) = 1
|S| for all i ∈ S. That is, the surplus of 1 generated by the

grand coalition must be divided evenly between the players in S.

As an aside, observe that the Shapley value would recommend precisely the payoffs as

stated in the three statements above. But, importantly, we inferred these payments

from the axioms, not from the definition of the Shapley value. Also, note that this

observation is not in fact required for our proof to go through.

(b) Next, let us consider a larger family of TU games with players in the fixed set N ,

namely the family of games 〈N,αS · vS〉 defined by some set S ⊆ N together with a

coefficient αS ∈ R>0. A game in this family has the following characteristic function:

(αs · vS)(C) =

{
αS if C ⊇ S
0 otherwise

Show that, in order to satisfy the first three axioms, for any such game we must choose

xi(N,αS · vS) = αS
|S| for i ∈ S and xi(N,αS · vS) = 0 for i 6∈ S.

Observe that everything we have done up to this point will still go through if we extend

the definition of TU games to allow for characterisation functions v : 2N → R with

possibly negative values, if we extend the notion of payoff vector accordingly to allow

for negative payoffs, and if we also consider games of the form 〈N,αS ·vS〉 with αS < 0.

(c) Now consider an arbitrary TU game 〈N, v〉. We want to prove that we can find a

collection of games (in the extended sense, where negative values are permitted) that

are of the form 〈N,αS · vS〉, one for each S ∈ 2N \ {∅}, such that we obtain our given

game as the sum of all of those games we found. That is, we want to show:

v(C) =
∑

S∈2N\{∅}

αS · vS(C) for all C ⊆ N

Give this proof by showing that the following coefficients (and only those!) do the job:

αS := v(S) −
∑

S′∈2S\{∅,S}

αS′

(d) Explain, using the additivity axiom, how this completes the proof.
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