
NP-Completeness and Beyond ILCS 2006

Introduction to
Logic in Computer Science: Autumn 2006

Ulle Endriss
Institute for Logic, Language and Computation

University of Amsterdam

Ulle Endriss 1

NP-Completeness and Beyond ILCS 2006

Plan for Today

Now that we have a basic understanding of what complexity classes
are and how they relate to each other, we are going to identify
some specific decision problems that are complete with respect to
interesting complexity classes (mostly NP):

• The original NP-complete problem: the satisfiability problem
for propositional logic

• Variants of the satisfiability problem, some of which are also
NP-complete, and some of which are not

• NP-complete problems in graph theory

• An example for a PSPACE-complete problem: satisfiability
for quantified boolean formulas

Ulle Endriss 2

NP-Completeness and Beyond ILCS 2006

Cook’s Theorem

The first decision problem ever to be shown to be NP-complete is
the satisfiability problem for propositional logic.

Satisfiability (Sat)

Instance: Propositional formula ϕ

Question: Is ϕ satisfiable?

The size of an instance of Sat is the length of ϕ. Clearly, Sat can
be solved in exponential time (by trying all possible models), but
no (deterministic) polynomial algorithm is known.

Theorem 1 (Cook) Sat is NP-complete.

Proof: NP-membership is easy to show: if someone guesses a
satisfying assignment of truth values to propositional letters
(model), then we can check its correctness in polynomial time. X

The proof of NP-hardness is sketched on the following slides . . .

Ulle Endriss 3

NP-Completeness and Beyond ILCS 2006

Proof of NP-Hardness (1)

We need to show that any problem in NP can be reduced to Sat. By

definition, for any problem in NP there is a nondeterministic algorithm

that accepts or rejects all instances of the problem in polynomial time.

We now sketch how to encode this algorithm as a propositional formula.

Suppose the algorithm runs in time ≤ nk. So it will use at most nk

memory cells. Hence, there exists (nondeteminism!) a table of size

nk × nk for each possible run of the algorithm, with each table cell

holding an element belonging to some (small) alphabet.

Introduce a propositional variable xijs for each row i, column j, symbol

s, saying whether or not cell (i, j) is holding symbol s. The number of

these variables is polynomial in n.

If we can fully specify all constraints these xijk have to meet to represent

a well-formed computation table for an accepting run as a formula (of

polynomial size), then we are done, as that formula will be satisfiable iff

there is an accepting run.

Ulle Endriss 4

NP-Completeness and Beyond ILCS 2006

Proof of NP-Hardness (2)

Follows Sipser (1997). Each table cell must hold exactly one symbol:

ϕcell =
^

1≤i,j≤nk

24 _
s∈S

xijs ∧
^

s,s′∈S

¬(xijs ∧ xijs′)

35
We can also encode the initial configuration as a conjunction ϕstart , and

the characteristics of an accepting configuration as a formula ϕaccept.

To encode what is a legal move from one configuration to the next, we

need to be more specific about our machine model. As any algorithm

can be implemented on a Turing machine, we may assume that the

contents of memory cell (i, j) will only depend on the content of its

predecessor and that cells neighbours: (i−1, j−1), (i−1, j), (i−1, j+1).

We can write a formula ϕmove(i,j) specifying all possible moves of this sort

for (i, j). Then ϕmove =
V

1≤i,j≤nk ϕmove(i,j) describes all legal moves.

Finally, ϕcell ∧ ϕstart ∧ ϕaccept ∧ ϕmove encodes the algorithm. X

M. Sipser. Introduction to the Theory of Computation. Thomson, 1997.

Ulle Endriss 5

NP-Completeness and Beyond ILCS 2006

Variants of Satisfiability

If we restrict the structure of propositional formulas, then there’s a
chance that the satisfiability problem will become easier.

k-Satisfiability (kSat)

Instance: Conjunction ϕ of disjunctions of k literals each

Question: Is ϕ satisfiable?

Alternative formulation: Check whether a given set S of k-clauses
is satisfiable.

By close inspection of the proof for Sat, it is possible to show
(see book for details):

Theorem 2 3Sat is NP-complete.

Only once we go down from 3 to 2, we get a positive result . . .

Ulle Endriss 6

NP-Completeness and Beyond ILCS 2006

2SAT is in P

Theorem 3 2Sat is in P.

Proof sketch: Recall that Reachability ∈ P. We are going to
reduce 2Sat to Reachability.

Let ϕ be a formula in CNF with clauses of length 2 and let P be
the set of propositional variables in ϕ.

Build a graph G = (V,E) with V = P ∪ {¬p | p ∈ P} and
(x, y) ∈ E iff a there is a clause in ϕ that is equivalent to x → y.

Observe that ϕ is unsatisfiable iff there is a p ∈ P such that there is
both a path from p to ¬p and from ¬p to p in G.

This condition can be tested by running our algorithm for
Reachability several times. X

Ulle Endriss 7

NP-Completeness and Beyond ILCS 2006

Counting Clauses

If not all clauses of a given formula in CNF can be satisfied
simultaneously, what is the maximum number of clauses that can?

Maximum k-Satisfiability (MaxkSat)

Instance: Set S of k-clauses and K ∈ N
Question: Is there a satisfiable S′ ⊆ S such that |S′| ≥ K?

For this kind of problem, we cross the border between P and NP
already for k = 2 (rather than k = 3, as before):

Theorem 4 Max2Sat is NP-complete.

Proof sketch: Max2Sat is clearly in NP: if someone guesses an
S′ ⊆ S and a model with |S′| ≥ K, we can check whether S′ is true
in that model in polynomial time. X

Next we show NP-hardness by reducing 3Sat to Max2Sat . . .

Ulle Endriss 8

NP-Completeness and Beyond ILCS 2006

Reduction from 3SAT to MAX2SAT

Consider the following 10 clauses:

(x), (y), (z), (w),

(¬x ∨ ¬y), (¬y ∨ ¬z), (¬z ∨ ¬x),

(x ∨ ¬w), (y ∨ ¬w), (z ∨ ¬w)

Observe: any model satisfying (x∨ y ∨ z) can be extended to satisfy
(at most) 7 of them; all other models satisfy at most 6 of them.

Given an instance of 3Sat, construct an instance of Max2Sat:
For each clause Ci = (xi ∨ yi ∨ zi) in ϕ, write down these 10 clauses
with a new wi. If the input has n clauses, set K = 7n.

Then ϕ is satisfiable iff (at least) K of the 2-clauses in the new
problem are satisfiable. X

Ulle Endriss 9

NP-Completeness and Beyond ILCS 2006

Satisfiability for Horn Clauses

Another restriction of the satisfiability problem:

Horn Satisfiability (HornSat)

Instance: Conjunction ϕ of Horn clauses

Question: is ϕ satisfiable?

Recall that Prolog is built around Horn clauses.

Theorem 5 HornSat is in P.

Proof sketch: The following (polynomial) algorithm does the job.

Distinguish negative Horn clauses: (¬x1 ∨ · · · ∨ ¬xk); and implications

(including atoms: x1 = true): (x1 ∧ · · · ∧ x` → y).

Initially, make all variables false. Iterate: if (x1 ∧ · · · ∧ x` → y) not

satisfied, then make y true ; minimal model M for implications.

Full formula can only be satisfiable if M satisfies all negative clauses as

well. For if not, we’d get {x1, . . . , xk} ⊆ M and we’d have to make one of

the xi false, thereby contradicting minimality. X

Ulle Endriss 10

NP-Completeness and Beyond ILCS 2006

Independent Sets

Many conceptually simple problems that are NP-complete can be

formulated as problems in graph theory. Example:

Let G = (V, E) be an undirected graph. An independent set is a set

I ⊆ V such that there are no edges between any of the vertices in I.

Independent Set

Instance: Undirected graph G = (V, E) and K ∈ N
Question: Does G have an independent set I with |I| ≥ K?

Theorem 6 Independent Set is NP-complete.

Proof sketch: NP-membership: easy X

NP-hardness: by reduction from 3Sat with n clauses —

Given a conjunction ϕ of 3-clauses, construct a graph G = (V, E).

V is the set of occurrences of literals in ϕ. Edges: make a “triangle” for

each 3-clause, and connect complementary literals. Set K = n.

Then ϕ is satisfiable iff there is an independent set of size K. X

Ulle Endriss 11

NP-Completeness and Beyond ILCS 2006

More Graph-theoretic Problems

All of the following are also NP-complete problems. They each
take an undirected graph G = (V,E) and an integer K as input.

• Clique: Is there a V ′ ⊆ V with |V ′| ≥ K such that any two
vertices in V ′ are joined by an edge in E?

• Vertex Cover: Is there a V ′ ⊆ V with |V ′| ≤ K such that
for any edge (x, y) ∈ E either x ∈ V ′ or y ∈ V ′?

• Hamilton Path: Does G have a Hamilton path (that is, a
path visiting every vertex)? (no K needed as input)

• Travelling Salesman Problem: Is there a path ≤ K

visiting each vertex once? (additional input: distances)

• MaxCut: Is there a V ′ ⊆ V such that the number of edges
between nodes in V ′ and in V \V ′ exceeds K?

Ulle Endriss 12

NP-Completeness and Beyond ILCS 2006

Quantified Boolean Formulas

The canonical example for a PSPACE-complete problem is the
satisfiability problem for quantified boolean formulas.

A quantified boolean formula (QBF) is a propositional formula ϕ

preceded by either ∀x or ∃x for each propositional variable in ϕ:

∀x.∃y.∀z.[(x → y) ∨ z]

The semantics is exactly what you would expect it to be . . .

This gives rise to a new decision problem:

Quantified Satisfiability (QSat)

Instance: Quantified boolean formula ϕ

Question: Is ϕ satisfiable (true)?

The size of a QSat instance is the length of ϕ.

Ulle Endriss 13

NP-Completeness and Beyond ILCS 2006

PSPACE-Completeness

Theorem 7 QSat is PSPACE-complete.

Proof idea: PSPACE-membership: Recursively go through the
formula in the obvious manner. The recursion depth is given by the
number of propositional variables, and at each state we have to
remember what “satisfiability requirements” we still need to meet
(polynomial space). X

PSPACE-hardness: We need to chow that any problem in
PSPACE can be encoded as a QBF. Use the same idea as for
Cook’s Theorem: encode the computation table as a formula.
Problem: the number of rows in the table might be exponential.
Solution: Use the idea from the proof of Savitch’s Theorem and
write a QBF expressing that you can go from configuration c1 to
configuration c2 in t steps if there’s another configuration c such
that you can go from c1 to c and from c to c2 in d t

2e steps each . . .

Ulle Endriss 14

NP-Completeness and Beyond ILCS 2006

Remark

The satisfiability and the validity problem coincide for QBFs. This
matches up nicely with PSPACE = coPSPACE.

For comparison, in propositional logic these are distinct problems
and we don’t know whether NP =? coNP.

Ulle Endriss 15

NP-Completeness and Beyond ILCS 2006

References

Again, all of today’s material can be found in Papadimitriou’s book.

• Cook’s Theorem is proved in Chapter 8, and further
NP-completeness results are established in Chapter 9.

• The PSPACE-completeness proof for quantified boolean
formulas may be found in Chapter 19.

For large collections of NP-complete problems, the books by Garey
and Johnson (1979) and Ausiello et al. (1999) are useful references.

C.H. Papadimitriou. Computational Complexity. Addison-Wesley, 1994.

M.R. Garey and D.S. Johnson. Computers and Intractability: A Guide to the

Theory of NP-Completeness. W.H. Freeman and Company, 1979.

G. Ausiello, P. Crescenzi, G. Gambosi, V. Kann, A. Marchetti-Spaccamela,

and M. Protasi. Complexity and Approximation. Springer-Verlag, 1999.

Ulle Endriss 16

NP-Completeness and Beyond ILCS 2006

Summary

We have seen a range of NP-complete problems:

• Logic: Sat, 3Sat, Max2Sat, but not 2Sat and HornSat

• Graph Theory: Independent Set and others

Recall that the P-NP borderline is widely considered to represent
the move from tractable to intractable problems, so developing a
feel for what sort of problems are NP-complete is important to
understand what can and what cannot be computed in practice.

In logic, in particular, we also encounter problems that are a lot
harder: the PSPACE-completeness result for QSat is an example.

Ulle Endriss 17

