
More on Tableaux for First-order Logic ILCS 2006

Introduction to
Logic in Computer Science: Autumn 2006

Ulle Endriss

Institute for Logic, Language and Computation

University of Amsterdam

Ulle Endriss 1

More on Tableaux for First-order Logic ILCS 2006

Plan for Today

We’ll be looking into several extensions and variations of the

tableau method for first-order logic:

• Free-variable tableaux to increase efficiency

• Tableaux for first-order logic with equality

• Clause tableaux for input in CNF

Ulle Endriss 2

More on Tableaux for First-order Logic ILCS 2006

A Problem and an Idea

One of the main drawbacks of either variant of the tableau method

for FOL, as presented so far, is that for every application of the

gamma rule we have to guess a good term for the substitution.

And idea to circumvent this problem would be to try to “postpone”

the decision of what substitution to choose until we attempt to

close branches, at which stage we would have to check whether

there are complementary literals that are unifiable.

Instead of substituting with ground terms we will use free variables.

As this would be cumbersome for KE-style tableaux, we will only

present free-variable Smullyan-style tableaux.

But first, we need to speak about unification in earnest . . .

Ulle Endriss 3

More on Tableaux for First-order Logic ILCS 2006

Unification

Definition 1 (Unification) A substitution σ (of possibly several

variables by terms) is called a unifier of a set of formulas

∆ = {ϕ1, . . . , ϕn} iff σ(ϕ1) = · · · = σ(ϕn) holds. We also write

|σ(∆)| = 1 and call ∆ unifiable.

Definition 2 (MGU) A unifier µ of a set of formulas ∆ is called

a most general unifier (mgu) of ∆ iff for every unifier σ of ∆ there

exists a substitution σ′ with σ = µ ◦ σ′.

(The composition µ ◦ σ′ is the substitution we get by first applying

µ to a formula and then σ′.)

Remark. We also speak of unifiers (and mgus) for sets of terms.

Ulle Endriss 4

More on Tableaux for First-order Logic ILCS 2006

Unification Algorithm: Preparation

We shall formulate a unification algorithm for literals only, but it

can easily be adapted to work with general formulas (or terms).

Subexpressions. Let ϕ be a literal. We refer to formulas and

terms appearing within ϕ as the subexpressions of ϕ. If there is a

subexpression in ϕ starting at position i we call it ϕ(i) (otherwise

ϕ(i) is undefined; say, if there is a comma at the ith position).

Disagreement pairs. Let ϕ and ψ be literals with ϕ 6= ψ and let

i be the smallest number such that ϕ(i) and ψ(i) are defined and

ϕ(i) 6= ψ(i). Then (ϕ(i), ψ(i)) is called the disagreement pair of ϕ

and ψ. Example:

ϕ = P (g1(c), f1(a, g1(x), g2(a, g1(b)))

ψ = P (g1(c), f1(a, g1(x), g2(f2(x, y), z))

↑
Disagreement pair: (a, f2(x, y))

Ulle Endriss 5

More on Tableaux for First-order Logic ILCS 2006

Robinson’s Unification Algorithm

set µ := [] (empty substitution)

while |µ(∆)| > 1 do {

pick a disagreement pair p in µ(∆);

if no variable in p then {

stop and return ‘not unifiable’;

} else {

let p = (x, t) with x being a variable;

if x occurs in t then∗ {

stop and return ‘not unifiable’;

} else {

set µ := µ ◦ [x/t];

}

}

}

return µ;

Input: ∆ (set of literals)

Output: µ (mgu of ∆)

or ‘not unifiable’

∗ so-called occurs-check

Ulle Endriss 6

More on Tableaux for First-order Logic ILCS 2006

Exercise

Run Robinson’s Unification Algorithm to compute the mgu of the

following set of literals (assuming x, y and z are the only variables):

∆ = {Q(f(x, g(x, a)), z), Q(y, h(x)), Q(f(b, w), z)}

Ulle Endriss 7

More on Tableaux for First-order Logic ILCS 2006

Free-variable Tableaux

The Smullyan-style tableau method for propositional logic can be

extended with the following quantifier rules.

Gamma Rules:

γ

γ1(y)

Delta Rules:

δ

δ1(f(x1, . . . , xn))

Here y is a (new) free variable, f is a new function symbol, and

x1, . . . , xn are the free variables occurring in δ.

An additional tableau rule is added to the system: an arbitrary

substitution may be applied to the entire tableau.

The closure rule is being restricted to complementary literals (to

avoid dealing with unification for formulas with bound variables).

Ulle Endriss 8

More on Tableaux for First-order Logic ILCS 2006

Closing Branches

There are different ways in which to use the interplay of the

substitution rule and the closure rule:

• One approach is to develop the tableau until a single

application of the substitution rule produces complementary

literals on all branches. Nice in theory, but not that efficient.

• Another approach is to use compute mgus of potentially

complementary literals to close branches as you go along.

This is more goal-directed, but as substitutions carry over to

other branches, we may make suboptimal choices.

Ulle Endriss 9

More on Tableaux for First-order Logic ILCS 2006

Exercises

Give free-variable tableaux for the following theorems:

• |= (∃x)(P (x) → (∀y)P (y))

• |= (∃x)(∀y)(∀z)(P (y) ∨Q(z) → P (x) ∨Q(x))

Ulle Endriss 10

More on Tableaux for First-order Logic ILCS 2006

Handling Equality

Three approaches to tableaux for first-order logic with equality:

• Introduce a binary predicate symbol to represent equality and

explicitly axiomatise it as part of the premises. This requires

no extension to the calculus. ; Possible, but very inefficient.

• Add expansion and closure rules to your favourite tableau

method to handle equality. There are different ways of doing

this (we’ll look at some of them next).

• For free-variable tableaux, take equalities and inequalities into

account when searching for substitutions to close branches

(“E-unification”). ; Requires serious work on algorithms for

E-unification, but is potentially the best method.

We use the symbol ≈ to denote the equality predicate.

Ulle Endriss 11

More on Tableaux for First-order Logic ILCS 2006

Axiomatising Equality

We can use our existing tableau methods for first-order logic with

equality if we explicitly axiomatise the (relevant) properties of the

special predicate symbol ≈ (using infix-notation for readability):

• Reflexivity axiom: (∀x)(x ≈ x)

• Replacement axiom for each n-place function symbol f :

(∀x1) · · · (∀xn)(∀y1) · · · (∀yn)[(x1 ≈ y1) ∧ · · · ∧ (xn ≈ yn) →

f(x1, . . . , xn) ≈ f(y1, . . . , yn)]

• Replacement axiom for each n-place predicate symbol P :

(∀x1) · · · (∀xn)(∀y1) · · · (∀yn)[(x1 ≈ y1) ∧ · · · ∧ (xn ≈ yn) →

(P (x1, . . . , xn) → P (y1, . . . , yn))]

This is taken from Fitting’s textbook, where you can also find a

proof showing that it works.

Ulle Endriss 12

More on Tableaux for First-order Logic ILCS 2006

Jeffrey’s Tableau Rules for Equality

These are the classical tableau rules for handling equality and

apply to ground tableaux:

A(t)
t ≈ s

A(s)

A(t)
s ≈ t

A(s)

¬(t ≈ t)

×

Exercise: Show |= (a ≈ b) ∧ P (a, a) → P (b, b).

For even just slightly more complex examples, these rules quickly

give rise to a huge search space . . .

Ulle Endriss 13

More on Tableaux for First-order Logic ILCS 2006

Reeves’ Tableau Rules for Equality

These rules, also for ground tableaux, are more “goal-oriented” and

hence somewhat reduce the search space (let P be atomic):

P (t1, . . . , tn)
¬P (s1, . . . , sn)

¬((t1 ≈ s1) ∧ · · · ∧ (tn ≈ sn))

¬(f(t1, . . . , tn) ≈ f(s1, . . . , sn))

¬((t1 ≈ s1) ∧ · · · ∧ (tn ≈ sn))

We also need a rule for symmetry, and the closure rule from before:

t ≈ s

s ≈ t

¬(t ≈ t)

×

Exercise: Show |= (∀x)(∀y)(∀z)[(x ≈ y) ∧ (y ≈ z) → (x ≈ z)].

Ulle Endriss 14

More on Tableaux for First-order Logic ILCS 2006

Fitting’s Tableau Rules for Equality

Jeffrey’s approach can also be combined with free-variable

tableaux, but we need to interleave substitution steps with other

steps to make equality rules applicable. Alternatively, equality

rules can also be formulated so as to integrate substitution:

A(t)
t′ ≈ s

[A(s)]µ

A(t)
s ≈ t′

[A(s)]µ

¬(t ≈ t′)

×µ

Here µ is an mgu of t and t′ and must be applied to the entire tree.

Exercise: Show that the following set of formulas is unsatisfiable:

{ (∀x)[(g(x) ≈ f(x)) ∨ ¬(x ≈ a)],

(∀x)(g(f(x)) ≈ x), b ≈ c,

P (g(g(a)), b), ¬P (a, c) }

Ulle Endriss 15

More on Tableaux for First-order Logic ILCS 2006

Tableaux and Resolution

The most popular deduction system in automated reasoning is the

resolution method (to be discussed briefly later on in the course).

Resolution works for formulas in CNF. This restriction to a normal

form makes resolution very efficient. Still, the tableau method has

several advantages:

• Tableaux proofs are a lot easier to read than resolution proofs.

• Input may not be in CNF and translation may result in an

exponential blow-up.

• For some non-classical logic, translation may be impossible.

Nevertheless, people interested in developing powerful theorem

provers for FOL (rather than in using tableaux as a more general

framework) are often interested in tableaux for CNF, also to allow

for better comparison with resolution.

Ulle Endriss 16

More on Tableaux for First-order Logic ILCS 2006

Normal Forms

Recall: Conjunctive Normal Form (CNF) and Disjunctive Normal

Form (DNF) for propositional logic

Prenex Normal Form. A FOL formula ϕ is said to be in Prenex

Normal Form iff all its quantifiers (if any) “come first”. The

quantifier-free part of ϕ is called the matrix of ϕ.

Every sentence can be transformed into a logically equivalent

sentence in Prenex Normal Form.

Ulle Endriss 17

More on Tableaux for First-order Logic ILCS 2006

Transformation into Prenex Normal Form

If necessary, rewrite the formula first to ensure that no two

quantifiers bind the same variable and no variable has both a free

and a bound occurrence (variables need to be “named apart”).

¬(∀x)A ≡ (∃x)¬A

((∀x)A) ∧B ≡ (∀x)(A ∧B)

((∀x)A) ∨B ≡ (∀x)(A ∨B)

¬(∃x)A ≡ (∀x)¬A

((∃x)A) ∧B ≡ (∃x)(A ∧B)

((∃x)A) ∨B ≡ (∃x)(A ∨B)

etc.

To avoid making mistakes, formulas involving → or ↔ should first

be translated into formulas using only ¬, ∧ and ∨ (and quantifiers).

Ulle Endriss 18

More on Tableaux for First-order Logic ILCS 2006

Skolemisation

Skolemisation is the process of removing existential quantifiers from

a formula in Prenex Normal Form (without affecting satisfiability).

Algorithm. Given: a formula in Prenex Normal Form.

(1) If necessary, turn the formula into a sentence by adding (∀x) in

front for every free variable x (“universal closure”).

(2) While there are still existential quantifiers, repeat: replace

• (∀x1) · · · (∀xn)(∃y)ϕ with

• (∀x1) · · · (∀xn)ϕ[y/f(x1, . . . , xn)],

where f is a new function symbol.

Ulle Endriss 19

More on Tableaux for First-order Logic ILCS 2006

Skolemisation (cont.)

Definition 3 (Skolem Normal Form) A formula ϕ is said to be

in Skolem Normal Form (SNF) iff it is of the following form:

ϕ = (∀x1)(∀x2) · · · (∀xn)ϕ′,

where ϕ′ is a quantifier-free formula in CNF (with n ∈ N0).

Theorem 1 (Skolemisation) For every formula ϕ there exists a

formula ϕsk in SNF such that ϕ is satisfiable iff ϕsk is satisfiable.

ϕsk can be obtained from ϕ through the process of Skolemisation.

Proof: By induction over the sequence of transformation steps in

the Skolemisation algorithm [details omitted].

Note that ϕ and ϕsk are not (necessarily) equivalent.

Ulle Endriss 20

More on Tableaux for First-order Logic ILCS 2006

Exercise

Compute the Skolem Normal Form of the following formula:

(∀x)(∃y)[P (x, g(y)) → ¬(∀x)Q(x)]

Ulle Endriss 21

More on Tableaux for First-order Logic ILCS 2006

Clauses

Clauses. A clause is a set of literals. Logically, it corresponds to

the disjunction of these literals.

Sets of clauses. A set of clauses logically corresponds to the

conjunction of the clauses in the set.

This means, any formula in Skolem Normal Form can be written as

a set of clauses. Variables are understood to be implicitly

universally quantified. Example:

{ {P (x), Q(y)}, {¬P (f(y))} } ∼ (∀x)(∀y)[(P (x)∨Q(y))∧¬P (f(y))]

Ulle Endriss 22

More on Tableaux for First-order Logic ILCS 2006

Clause Tableaux

The input (root of the tree) is a set of clauses. We need a beta rule

and a closure rule for literals:

{L1, . . . , Ln}

{L1} · · · {Ln}

{L}
{¬L}

×

We also need a rule that allows us to add any number of copies of

the input clauses to a branch, with variables being renamed

(corresponds to multiple applications of the gamma rule).

The substitution rule is the same as before: arbitrary substitutions

may be applied to the entire tableau (but will typically be guided

by potentially complementary literals).

Ulle Endriss 23

More on Tableaux for First-order Logic ILCS 2006

Summary

• Free-variable tableaux: postpone instantiations and close by

unification (; compute mgus with Robinson’s algorithm)

• Handling equality: several approaches, including several ways

of defining additional expansion rules

• Clause tableaux: simplified system for clauses rather than

general formulas (; requires translation into SNF)

• Much of what we have done today can be found in:

– R. Hähnle. Tableaux and Related Methods. In: A. Robinson

and A. Voronkov (eds.), Handbook of Automated Reasoning,

Elsevier Science and MIT Press, 2001.

The material on handling equality is taken from:

– B. Beckert. Semantic Tableaux with Equality. Journal of

Logic and Computation, 7(1):39–58, 1997.

Ulle Endriss 24

