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Abstract

Musical scales have both general and culture-specific
properties. While most common scales use octave
equivalence and discrete pitch relationships, there seem
to be no other universal properties. This paper presents
an additional property across the world’s musical scales
that may qualify for universality. When the intervals of
998 (just intonation) scales from the Scala Archive are
represented on an Euler lattice, 96.7% of them form star-
convex structures. For the subset of traditional scales this
percentage is even 100%. We present an attempted
explanation for the star-convexity feature, suggesting
that the mathematical search for universal musical
properties has not yet reached its limits.

1. Introduction

What makes a set of notes a musical scale? If one looks
up the definition of a scale in Grove Music Online, one
finds ‘A sequence of notes in ascending or descending
order of pitch’, and also ‘a scale is a sequence long
enough to define unambiguously a mode, tonality, or
some special linear construction’. It is difficult from this
and other definitions of a scale to determine what then
exactly a scale is, and what it is not (Lindley & Turner-
Smith, 1993). Some properties of scales have been
proposed, such as maximal evenness (Clough &
Douthett, 1991), Myhill’s property (Clough & Myerson,
1985), well-formedness (Carey & Clampitt, 1989), and
cardinality equals variety (Clough & Myerson, 1985),
most of which have been defined mathematically. Well-
known scales like the diatonic scales or the chromatic 12-
tone scale are special in the sense that they possess many

of these properties (Balzano, 1980; Agmon, 1989).
However, the aforementioned authors also show that
none of these properties are required for a set of notes to
form a scale, and thus they do not present universal
properties and neither do they contribute to the
definition of a scale.

Apart from these rather mathematical properties,
more intuitive features of scales have been proposed as
well. The notes of a scale tend to be arranged
asymmetrically within the octave, with some pitch steps
bigger than others. The asymmetry offers clues about a
melody’s tonal centre, letting a listener quickly figure out
where the tune is in relation to the tonic note (Browne,
1981; Ball, 2008). Furthermore, the use of discrete pitch
relationships, as well as the concept of octave equivalence
seem, while not universal in early and prehistoric music
(Nettl, 1956; Sachs, 1962), rather common to current
musical systems (Burns, 1999).

In this paper, we will give an in-depth examination of
two previously proposed scale properties (Honingh &
Bod, 2005), convexity and star-convexity, across a wide
range of music cultures, and we try to relate these
properties to more intuitive features of scales. In contrast
to the scale properties listed above, the properties of
convexity and star-convexity can be validated both
mathematically and empirically. In previous work we
showed that for a small collection of scales, all scales
were star-convex (Honingh & Bod, 2005). However,
since that collection represents only a tiny part of all
existing scales, the current work tests the convexity-
hypothesis on a much larger dataset of 998 scales from all
over the world, and presents an attempted explanation of
this (star-)convexity property.

It should be emphasized that we do not wish to
present a new definition of the concept ‘scale’. Yet we do
investigate a condition that can possibly be used to refine
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a definition of a scale. Therefore, we look into a large
corpus, the Scala Archive (Scala Archive, 2010), which is
a database of scales collected from books, articles,
websites and other media.

2. Scales visualized on the Euler lattice

2.1 Just intonation scales

Just intonation (JI) is a tuning system in which the
frequencies of notes are related by integer ratios.
Similarly, a just intonation scale is a scale in which
every element is defined by an integer ratio. This ratio
represents the frequency ratio of the scale tone, with
respect to the tonic of the scale. An example of a just
intonation scale is the well-known diatonic major scale,
which may be represented as 1/1, 9/8, 5/4, 4/3, 3/2, 5/3,
15/8, 2/1, in which the element 1/1 represents the tonic. A
frequency ratio from a just intonation scale can be
expressed as integer powers of primes:

2p � 3q � 5r . . . ; with p; q; r 2 Z: ð1Þ

If the highest prime that is used in a particular just
intonation scale is n, that scale is called an n-limit just
intonation scale. An n-limit just intonation scale can be
visualized on an n-dimensional lattice (representing the n
-limit just intonation system) as follows. Each axis of the
lattice represents a prime and the grid points on the axis
represent an integer power. The frequency ratio 5/3 can
be written as 20 � 371 � 51 and thus be visualized as point
(0,71,1) in the three-dimensional lattice representing the
first three primes. Since most scales repeat themselves
every octave, usually the axis representing the prime 2
can be omitted. In this way five-limit scales can be
visualized on a two-dimensional lattice and seven-limit
scales on a three-dimensional lattice. Beyond three
dimensions, visualization is not possible any more.
However, in theory, the higher limit scales can be
represented in higher dimensional lattices.

We refer to these lattices as generalized Euler lattices.1

Usually the Euler lattice is known as the two-dimensional
lattice in which one axis is represented by integer powers
of the fifth 3/2, and the other axis by integer powers of
the major third 5/4 (see Figure 1). This lattice is obtained
by applying a basis transformation to the two-dimen-
sional lattice having primes 3 and 5 representing the axes
(Honingh & Bod, 2005).

2.2 Equal tempered scales

Not all scales are just intonation scales. In the history
of music, the notion of the equal tempered scale has
existed since the middle ages. Equal temperament is a
tuning system in which the octave (or more rarely,
another interval) is equally divided into a certain
number of intervals. An equal tempered scale is a scale
that can be expressed in terms of elements of an equal
temperament. Equal tempered scales are usually de-
noted in terms of cents, where one cent is defined as a
hundredth part of a 12-tone equal tempered semitone.
In this way, an octave measures 1200 cents. The 12-tone
chromatic equal tempered scale can thus be written as:
0, 100, 200, 300, 400, 500, 600, 700, 800, 900, 1000,
1100. Equal tempered scales cannot be visualized on the
Euler lattice, unless they are approximations of a just
intonation scale. Fokker’s periodicity blocks form a
method by which an equal tempered approximation of
a just intonation scale can be made (Fokker, 1969). In
an Euler lattice as shown in Figure 1 or 2, unison
vectors can be found which represent very small ratios,
which are known as commas. If ratios that are
separated by a comma are treated as being equivalent,
the Euler lattice can fold, and the dimension of the
lattice reduces by one. Each comma that is identified in
this way reduces the dimension of the lattice, such that
n commas reduces an n-dimensional lattice to zero,
which means that the number of pitches in the lattice is
finite. This 0-dimensional lattice is called a periodicity
block. The m pitches of the periodicity block can be
identified with m-tone equal temperament and thus
gives approximations of the just intonation ratios on

Fig. 1. The two-dimensional Euler lattice where one axis is
represented by integer powers of the fifth 3/2, and the other axis
by integer powers of the major third 5/4. Only a small part of

the two-dimensional Euler lattice is shown. In theory it can be
extended infinitely in both the horizontal and the vertical
direction. The origin of the lattice is shown in bold.

1This lattice representation and minor variants of it appear in

numerous discussions on tuning systems, for example Von
Helmholtz (1863/1954), Riemann (1914), Fokker (1949), and
Longuet-Higgins (1962a, 1962b). Fokker (1949) attributes this
lattice representation originally to Leonhard Euler, whence

Euler lattice.
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the (original) Euler lattice. In Figure 2, it is shown how
a periodicity block is created.

3. Convexity and star-convexity

When just intonation scales are represented in the
Euler lattice, a very high percentage of them share a
surprising property: they form convex shapes. Intui-
tively this means that these shapes have no coves or
holes. An exact definition of convexity in discrete space
is not trivial, however. It is convenient to first define
convexity for (Euclidean) continuous space: an object
is convex if for every pair of points within the object
every point of the straight line segment that joins them
is also within the object. Star-convexity is related to
convexity. An object is star-convex if there exists
a point such that the line segment from this point to
any other point in the object is contained within the
object. If a set is convex, it is also star-convex. See
Figure 3 for a two-dimensional representation of these
concepts.

In a discrete (Euclidean) space, the concept of (star-)
convexity is different from that concept in a continuous
space, but the underlying intuition remains the same. In a
discrete (two-dimensional Euclidean) space convexity is
defined as follows: a set is convex if the convex-hull of the
set contains no more than all points of the set. A convex
hull of a set X is the minimal convex set – following the
definition of a convex set for continuous space –
containing X. A discrete set is star-convex if there exists
a point x0 in the set such that all points (of the set) lying
on the line segment from x0 to any point in the set are
contained in the set.

We have shown elsewhere that under a basis
transformation of the space, a convex set remains convex
(Honingh, 2006).

4. Convex just intonation scales

While we previously demonstrated that the major and
minor diatonic scales, and a small selection of other five-
limit JI scales, are (star-)convex (Honingh & Bod, 2005),
the property was never systematically investigated for all
known JI scales. We will use the Scala Archive for this
purpose. This archive is one of the largest databases of
musical scales in existence and is available as freeware
(Scala Archive, 2010). The majority of the scales in Scala
are theoretically constructed by music theorists and
composers, such as Ellis, Von Oettingen, Fokker, Partch,
Wilson, Johnston and Erlich. Other scales correspond to
traditional scales by which we mean ancient or cultural
scales that have been passed down from generation to
generation. Scala contains Greek, Arabic, Chinese,
Japanese, Korean, Persian, Indian, Vietnamese, Indone-
sian and Turkish scales.

Two problems need to be considered here. The first is
that the traditional scales are mainly based on oral
tradition. For a scale to be included in the Scala Archive,
the scale needs to be notated in either ratios or cents. As
ethnomusicological measurements of scales face various

Fig. 2. (a) Construction of periodicity block from unison vectors. (b) The 12-tone equal temperament, denoted by pitch classes 0 to 11,
is created.

Fig. 3. A convex and a star-convex object in two dimensional
Euclidean space.
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difficulties (Ellis, 1965; Schneider, 2001) this can lead to
misinterpretations of the scale. The second problem is
that, since no complete definition of a scale exists, and
since the Scala Archive scales have been collected from
various media, any set of notes that is labelled by
somebody as a scale, could have been added to the Scala
Archive. As a consequence, the corpus may contain sets
of notes on which no overall agreement exists whether or
not it serves as a scale. However, one could wonder
whether there is one correct representation of a scale
based on oral tradition, and whether agreement on a
scale is possible without a complete definition of a scale.
We believe the Scala Archive is still worth using since it is
interesting to study sets of notes that are labelled as
scales by individuals. The fact that there may be no
agreement corresponds with the incomplete existing
definitions of a scale.

We have extracted all three-limit, five-limit and seven-
limit JI scales from the Scala Archive,2 forming a test set
of 1002 scales. Four scales turned out to have dupli-
cates,3 which were removed from the dataset, resulting in
a total of 998 scales. We wrote Java routines to evaluate
all scales on convexity and star-convexity. The test set
consisted of two groups, the first containing all three-
limit and five-limit scales, and the second group contain-
ing the seven-limit scales. The routines calculating the
(star-)convexity of the first part included the standard
java routine InPolyh.java. The routines calculating the
(star-)convexity of the seven-limit scales included rou-
tines from the freely available QuickHull3D (Lloyd,
2004). The cases for which seven-limit scales were lying in
a plane (instead of in three-dimensional space) were
calculated and evaluated separately.

We have tested how many of the 998 three-limit, five-
limit and seven-limit just intonation scales of the Scala
Archive are convex and star-convex. The results are
displayed in Table 1. In total, 86.9% of the tested scales
are convex and 96.7% are star-convex. This percentage is
high because there is no evidence that composers and
music theorists construct their scales deliberately on the
basis of star-convexity. While the boundary between
theoretically constructed and traditional scales is some-
times hard to establish, it was easy to determine that the
33 non-star-convex scales (out of 998) were clearly
theoretically constructed, meaning that 100% of the
traditional scales are star-convex. Although the high
percentages of convexity and star-convexity contribute to
our knowledge about the features of scales, we do not
claim that (star-)convexity serves as a necessary property
for a scale. Furthermore, it is most definitely not a

sufficient condition: not all (star-)convex sets form good
scales. Figure 4 presents examples of both traditional and
theoretically constructed convex and star-convex scales,
visualized in the Euler lattice.

The three-limit scales can be visualized on a
one-dimensional lattice, the five-limit scales on a two-
dimensional lattice and seven-limit scales on a three-
dimensional lattice. Somewhat surprisingly, the percen-
tage of (star)-convex scales increases with the dimension-
ality of the scales: relatively more seven-limit scales are
(star-)convex than five-limit scales, and relatively more
five-limit scales are (star-)convex than three-limit scales.

In Figure 5, the length distribution of the test set scales is
shown. The length of the scales varies from 3 to 171
elements with a mean of 16.8. Most scales are located in the
area between 7 and 25 elements. Not every scale has a
unique JI representation. For example, for the well-known
major scale, both three-limit and five-limit representations
exist. In our test set we included all JI representations for
each scale as they can be found in Scala.

It may be interesting to see where the convex scales
appear in the length distribution of the tested scales.
Figure 6(a) shows the number of convex scales per
specific length of a scale. Figure 6(b) gives the same result
as a percentage of all tested scales. For each specific scale
length the percentage of convex scales are given.

One may expect that the scales that are non-(star-)
convex are longer than average since the chance that a
randomly chosen set is (star-)convex decreases to zero
with the number of elements of that set (Honingh & Bod,
2005). However, for most scales with more than 50
elements and for all scales with more than 100 elements,
the percentage of convex scales is 100% (Figure 6(b)).
Furthermore, the non-star-convex scales are relatively
short: the average number of elements being 13.9. The
average number of elements of the non-convex scales is
17.4.

5. Other convex scales

In Section 2.2 we saw that equal tempered scales, when
constructed as Fokker blocks, could be represented in the

Table 1. The percentage (and number) of the three-, five- and

seven-limit just intonation (JI) scales from the Scala Archive
that are convex and star-convex.

convex star-convex total

3-limit JI scales 70.0% (21) 70.0% (21) 30

5-limit JI scales 84.0% (316) 97.9% (368) 376
7-limit JI scales 89.5% (530) 97.3% (576) 592
total 86.9% (867) 96.7% (965) 998

2The dataset that we used is available from http://staff.science.
uva.nl/*ahoningh/data.html
3The duplicate pairs are: (1) sal-farabi_diat2.scl and ptolemy_
diat.scl, (2) hexany6.scl and smithgw_pel2.scl, (3) hirajoshi2.scl

and pelog_jc.scl, (4) ptolemy.scl and zarlino.scl.
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Euler lattice. All equal tempered scales that are
constructed in this way are necessarily convex since the
periodicity block forms the whole space. Note that scales
can only be constructed in this way if they are equal to
the tuning system in which they are embedded, like for
example the familiar 12-tone chromatic scale. Since the

Euler lattice is reduced to zero dimensions, actually a
new definition of convexity would be needed (Honingh,
2006). However, since the scale is made up of all the
elements of the new lattice, it would be impossible for the
scale to be non-convex. And if a Fokker block is viewed
as a subset of the original Euler lattice, it is clear that
Fokker blocks are convex.4 Still, because it is not
possible to evaluate the (star-)convexity of equal
tempered scales that cannot be represented as Fokker
blocks, equal tempered scales have not been part of the
experiments in this paper.

Most of the properties that have been defined for
scales, do not apply directly to just intonation scales.
Therefore, one cannot compare the property of convexity
to other scale properties like well-formedness (Carey &
Clampitt, 1989) (which is defined in terms of step-size,
and requires the scale to be generated by a single
interval), maximal evenness (Clough & Douthett, 1991)
(which is defined in terms of pitch classes), and Myhill’s

Fig. 4. Four scales on the generalized Euler lattice in two dimensions. Scales (a) and (b) are traditional scales, scales (c) and (d) are

invented scales. Scales (a), (b) and (c) are convex, (d) is star-convex.

Fig. 5. Length distribution of the tested scales.

4Remember, however, that an equal tempered scale can
only be visualized as a Fokker block if it forms an
approximation of a just intonation scale. Thus, not all equal

tempered scales can be evaluated in terms of convexity.
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property (Clough & Myerson, 1985) (which applies to
rank-two regular temperaments).

6. Interpretation of (star-)convexity

Obtaining a (star-)convex set by randomly choosing
points on a lattice is highly unlikely. It decreases to less
than 1% if a (random) scale is longer than three notes in
the case of convexity and longer than 10 notes in the case
of star-convexity (Honingh & Bod, 2005). Hence we
wonder whether we can explain the (star-)convexity of
these scales from more general scale properties. Intuition
may tell us that it is quite natural for the elements of a
scale to be in close connection to one another on the
Euler lattice, and thus have a higher chance of forming a
convex set. But why is this so?

Sensory consonance seems to be an important factor
in scales (Sethares, 1999). Sensory consonance is, at least
in Western scales, related to simple integer ratios, and
there is an apparent relation between the simplicity of a
ratio and the number of elements it passes in the Euler
lattice when a straight line is drawn between this ratio
and the origin: the simpler the ratio, the fewer elements it
passes (however, this statement cannot be turned
around). We can therefore imagine that if we choose a
number of intervals, starting with the most consonant
ones5 and choosing the most consonant interval that is
left every time we choose, we will end up with a star-
convex scale which is probably convex as well. Of course,
this way of creating scales produces a very limited
number of scales without much variety. Yet still, from
this example we can infer that the concept of consonance

is linked to the concept of convexity, at least for Western
scales.

There is another important property of scales, which is
related to the distribution of scale elements. The elements
of a scale tend to be arranged not symmetrically within the
octave, some pitch steps being larger than others (Ball,
2008). However, this asymmetry does not mean that such
arrangement corresponds to a random distribution.
Usually, the notes of a scale divide the octave somewhat
equally: there can be different sizes of scale steps, but not
too many. (This is formalized in the Maximal Evenness
property (Clough & Douthett, 1991) which applies to
scales defined in terms of pitch classes.) It is remarkable
that the Grove Music Online (Drabkin, 2011), the Oxford
Companion to Music (Scholes, Nagley, & Temperley,
2011), and the Oxford Dictionary of Music (‘Scale’, 2011)
all fail to make notice of the properties of consonance and
element distribution when defining a scale.

Fig. 6. Number of convex scales (a) and percentage of convex scales (b) per scale length.

Fig. 7. Using rule 1 (see text for details), the percentages of
convex and star-convex scales are shown. For each number of

notes, a scale is generated randomly a thousand times.

5There is of course not one way to do this, since consonance is

not unambiguously defined.
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The property of ‘somewhat equal element distribu-
tion’ is not directly related to convexity, but it restricts
the possibilities of forming scales. To investigate
whether the properties of distribution and consonance
influence the property of convexity, we generated
random five-limit just intonation scale elements, from
an m6m Euler lattice, using one of the following two
constraints/rules.

1. The octave is divided into n equal intervals, and from
each interval (a determined width from the octave, in
which a number of ratios from the m6m Euler
lattice fit), a five-limit just intonation ratio is
randomly chosen.

2. Having obtained the octave division of n equal
intervals, from each interval the most consonant
ratio is chosen, according to Euler’s Gradus func-
tion6 (which calculates the simplicity of an interval)
(Euler, 1739/1865).

Note that the division of the octave into n equal
intervals is unrelated to any tuning system or (equal)
temperament. It has only been introduced as a method
to create a somewhat equal division of five-limit just
intonation ratios, representing a scale. Rule 1 takes
into account this ‘somewhat equal element distribution’
property of scales, while rule 2 takes into account the
consonance property. Making certain choices, the

behaviour of both rules can be shown graphically.
That is, we have used a 156 15 Euler lattice, and have
chosen the number of notes in the scale to run from 3
to 40. In Figure 7 the percentages of convex and star-
convex scales are shown when rule 1 is used, and
when, for each octave division, a scale is chosen
randomly a thousand times. The figure shows that the
percentage of convex scales is zero for almost every
octave division. The percentage of star-convex scales
diminishes when the number of notes in the scale
increases. If rule 2 is used, there is no random
component any more, and for each number of notes,
one scale is returned (according to the rule). Figures
8(a) and (b) show the convexity and star-convexity for
scales with 3 to 40 elements. Thus the number of
convex scales diminishes when the number of elements
increases. For star-convexity, however, there is a high
correlation: almost all scales created by rule 2 are star-
convex.

It is difficult to draw hard conclusions from these
results. We cannot directly address the correlation
between the ‘somewhat equal element distribution’
property and (star-)convexity, and between the con-
sonance property and (star-)convexity, since the two
rules above are not a literal translation of these
properties. However, we can note the following.

. Rule 1 does not have any implications for the
property of convexity of scales.

. For scales with a large number of elements, there is a
low chance of randomly obtaining a star-convex
scale, even if rule 1 is taken into account.

. For scales with a large number of elements, there is a
low chance of obtaining a convex scale, even if rule 2
is taken into account.

. Virtually all scales that are created using rule 2, are
star-convex.

Fig. 8. Using rule 2 (see text for details), the (a) convexity and (b) star-convexity are plotted as a binary property against the scale
length.

6Any positive integer a can be written as a unique product

a ¼ pe11 � p
e2
2 . . . penn of positive integer powers ei of primes

p15p25 . . .5pn. Euler’s Gradus function is defined as:

�ðaÞ ¼ 1þ
Xn

k¼1
ek pk � 1ð Þ

and for the ratio x/y (which should be given in lowest terms) the

value is �(x � y).
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These results show that star-convexity is related to
consonance (as defined by Euler). But since rule 2 only
generates a limited number of scales, it can at best
explain the star-convexity for a small part of our
test set.

A further relation between consonance and star-
convexity is shown by the following. The centre x0 of a
star-convex set is in contact with all elements of the
scale, i.e. all elements can be reached with a straight
line, such that all elements on the line are within the set.
A star-convex set does not necessarily have only one
point that can act as a centre. We found that for 90.5%
of the five-limit star-convex scales, the defined tonic of
the scale is among the notes that can act as x0. For the
seven-limit star-convex scales, this turned out to be the
case for 98.3%. For the three-limit star-convex scales,
any point could serve as x0 since a three-limit (star-)
convex scale is visualized as a connected straight line on
the Euler lattice. So in most cases, the tonic of the scale
can embody the centre of the star-convex set. This
means that the tonic of the scale is among the notes that
form most consonant intervals with the other notes of the
scale.

7. Conclusions

While several authors have defined and noticed specific
properties of certain scales, the property of convexity
seems to be especially noteworthy since so many scales
possess this property. On average, 86.9% of the tested
scales are convex and 96.7% of the scales are star-
convex. Of the set of traditional scales, even 100% turned
out to be star-convex. Although most just intonation
scales are (star-)convex, it turned out to be far from
trivial to explain this property, nor can we relate the
property to other more well-known features of scales. We
have seen that even artificially constructed scales, which
circumscribe the major part of the used database, turn
out to be star-convex in most of the cases. This is the
more surprising since no evidence exists that composers
develop their scales following this property.

Finally it may be noteworthy that star-convexity is not
unique for musical scales, but seems to be a prevalent
property in many other areas of human perception, from
language (Gärdenfors & Williams, 2001) to vision
(Jaeger, 2009). In this light, the star-convexity of scales
may perhaps only be an instantiation of a more general
cognitive property for the domain of music.
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