
1

COMPUTATION AS SOCIAL AGENCY: WHAT AND HOW

ILLC course ‘Logic, Language & Computation’, Amsterdam, 10 December 2013

Johan van Benthem, Amsterdam & Stanford, http://staff.science.uva.nl/~johan

Turing Year, Manchester Logic Colloquium, Summer 2012

 Turing’s achievements, and what remains of them in the Arrow Airport Taxi Company.

Classical themes from the ‘golden age’

Universal Machine can do any computation [basis for both practice and basic theory], Church

Thesis: computation captured completely, Turing Test: computation also covers human cognition.

Current debates in US and Europe

Is the Turing model outdated, can we compute a larger class of functions/problems after all?

Logic and fine-structuring views of computation

The rise of programming languages. From computable functions to other levels of structure, say,

‘algorithms’? Output and internal structure: what one computes vs. how one computes: behavior.

Modal logic: WHILE programs (Hoare), Dijkstra structured programming, C+, dynamic logic.

Lambda calculus: LISP, functional programming. Divide keeps reemerging in modern versions.

The major challenge around 1980: distributed computation and process theory

Process Algebra (Milner, Bergstra & Klop): bisimulation, trace equivalence... no ‘CT’: [van Emde

Boas on machine models]. [Sequential views also alive: µ-calculus, co-algebra of infinite streams.]

New computational paradigms still appearing

Multi-agent lines: computation as agency [1980s]: Halpern & TARK. 1990s: game semantics,

linear logic, Abramsky in Handbook of Philosophy of Information. Telling detail: communication

complexity. Andrew Yao rediscovered von Neumann-Morgenstern Theorem from game theory.

Life after Turing: facebook of logic and computer science

Scott & De Bakker, Kowalski, McCarthy, Dijkstra, Hoare, Pnueli, Milner, Emerson, & others:

2

Theme today: human metaphor for interactive computation, works both ways.

 ‘Computer’ from human to machine. Reverse trends ever since: social metaphors of computing,

AI & cognition, agent societies of humans and machines, interactive foundations of computation.

Conquering daily life: conversation as computation

Example of the Muddy Children: updates solve the information puzzle, conversation has program

structure, sequential and parallel. Dynamic-epistemic logics: again what and how, model events.

Miller & Moss 2005: PAL* is Π1
1-complete. [But: complexity of logics ≠ complexity of tasks.]

Daily life strikes back: computation as conversation

Computing is action plus information. Methods can be programs (machine), or plans (human).

Two basic features of conversation: knowledge [and belief], and multi-agent interaction. Suggests

exploring transformations from standard algorithms to social procedures. Start with knowledge:

Epistemizing computational tasks

Graph Reachability: Given a graph G with two points x, y, does there exist a chain of arrows in G

from x to y? Solvable in Ptime in size of G (Papadimitriou 1994). The GR algorithm performs two

tasks: determining if a route exists, and giving an actual plan to get from x to y (see later).

Knowing you made it. You want to reach goal region φ, but have only limited observation. G = (G, R, ~)

now has arrows plus epistemic uncertainty links. Brafman, Latombe & Shoham 1993: robot with sensors in-

spects current node to see if it is in the goal region: Kφ. Su et al. on sensors inspired logic and epistemology.

Recent cases of epistemizing: make knowledge explicit in auctions, voting, social choice.

Epistemization in general

Systematic transformation can be studied as such, few general results known. (Turing himself?)

Knowledge programs. Not just epistemize specifications, also algorithms. ‘Epistemic programs’

(Fagin et al. 1995): test conditions depend on what the agent executing them knows about the facts,

or other agents. Connections with imperfect information games. Two roles of knowledge interact:

Having a reliable plan. If we are to trust a plan, should we know it to be successful?

 φ

3

After one step, the agent no longer knows if moving Across or rather Up will reach the φ-point. What if we

require that [a1]K[a2]Kφ, where a = a1;a2, etc.? What about more complex programs?

Knowing a program

Know–that versus know–how. New issue: What does it mean to know a program, plan, or method?

Attempted reduction to knowledge of effects, dependence on agent types (perfect recall).

Typical informational action: learning. From propositional knowledge goals to ‘understanding’.

When does an agent understand a program or plan? [What is understanding a mathematical proof?]

Philosophical analyses of knowledge may be relevant. Importance of possibly wrong beliefs and

other information-driven attitudes, importance of program revision under new circumstances.

Aside: Various kinds of information are relevant, here not just semantic. Syntax and computing.

Next: Many-mind problems, multi-agent interaction. Gamification of computational tasks:

communication, sabotage. Systematic change in algorithms, from programs to logic of strategies.

Gamifying algorithms

Reaching a goal comes with variants where others should not know. Many subtle algorithms are of

social forms [security]. [See also Agotnes & van Ditmarsch 2009.] Much simpler case:

Reachability and sabotage. Consider Graph Reachability in the heart of Western Europe:

 Amsterdam train
 plane
 Brussel taxi

 Luxemburg Koblenz

 Saarbruecken

What if transportation breaks down, and a malevolent Demon starts disrupting the network? At

every stage, let Demon first take out one connection. Now we have a two-player sabotage game to

be solved. [Current experimental uses as a learning game in cognitive experiments.]

General transformation gamifying any algorithmic task to a sabotage game with more players.

New logical languages defining these games, and players’ strategies. How does computational

complexity change? For sabotaged reachability, complexity jumps to Pspace-complete (Rohde

2005, like Go or Chess). [But cf. Sevenster 2006 on Scotland Yard games, and IF games.]

4

Issue: how does the graph search algorithm itself get ‘sabotaged’ into a game solution method?

Logic of reasoning about model change can be complex: sabotage modal logic is undecidable.

Gamification in general

General program: theory of epistemizing and gamifying algorithms. Links to general game theory.

Many current contacts between logic, computer science, and game theory. Still larger Facebook:

How vs. what again: what are natural levels of fine-structure: when are two games equivalent?

Aside: practical ‘gamification’: who invented the term? Theory of this phenomenon wide open.

Foundational discussions, the three pillars of computation once more

Turing Test: what we need to understand is not ‘computability’, but behavior. And the real

challenge is understanding behavior in diverse mixed societies of computers and humans.

Church Thesis: from unique ‘what’ to diversity of ‘how’. Process equivalences for agent views.

Computation as large family of different styles of behavior. Need base analysis of social behavior.

A ‘new Turing’: social behavior, suitably conceived, as a universal model for computation?

Universal machine for agency as extended computation: does it exist at all, could it be Games?

References

JvB, 2008, ‘Computation as Conversation’, in B. Cooper et al., eds., New Paradigms, Changing Conceptions

of What is Computable, Springer Science, New York, 35–58. 2011, Logical Dynamics of Information and

Interaction, Cambridge University Press, Cambridge. 2014, Logic in Games, The MIT Press, Cambridge

Mass. [With Pieter Adriaans], 2008, Handbook of the Philosophy of Information, Elsevier, Amsterdam.

