Time and the continuum

Michiel van Lambalgen Riccardo Pinosio
Aims of talk

- Time has phenomenological, developmental/cognitive, physical, philosophical, cultural . . .
- There is an intimate connection between time and personal identity (Hume, Kant, . . .)
- Time as a source of mathematical ideas (Brouwer: 'the basal intuition of mathematics', namely 'the intuition of the bare two-oneness: 'the falling apart of moments of life into qualititively different parts, to be reunited only while remaining separated by time'.)
- Can one devise a mathematical theory of the continuum that captures the phenomenology of time?

Motivation: Kant's *Critique of Pure Reason*
Aims of talk

- time has phenomenological, developmental/cognitive, physical, philosophical, cultural ...
Aims of talk

▸ time has phenomenological, developmental/cognitive, physical, philosophical, cultural . . .

▸ there is an intimate connection between time and personal identity (Hume, Kant, . . .)
Aims of talk

- time has phenomenological, developmental/cognitive, physical, philosophical, cultural . . .
- there is an intimate connection between time and personal identity (Hume, Kant, . . .)
- time as a source of mathematical ideas (Brouwer: ‘the basal intuition of mathematics’, namely ‘the intuition of the bare two-oneness: ‘the falling apart of moments of life into qualititively different parts, to be reunited only while remaining separated by time.’)
Aims of talk

- Time has phenomenological, developmental/cognitive, physical, philosophical, cultural . . .
- There is an intimate connection between time and personal identity (Hume, Kant, . . .)
- Time as a source of mathematical ideas (Brouwer: ‘the basal intuition of mathematics’, namely ‘the intuition of the bare two-oneness: ‘the falling apart of moments of life into qualititively different parts, to be reunited only while remaining separated by time.’)
- Can one devise a mathematical theory of the continuum that captures the phenomenology of time?
Aims of talk

- time has phenomenological, developmental/cognitive, physical, philosophical, cultural . . .
- there is an intimate connection between time and personal identity (Hume, Kant, . . .)
- time as a source of mathematical ideas (Brouwer: ‘the basal intuition of mathematics’, namely ‘the intuition of the bare two-oneness: ‘the falling apart of moments of life into qualititively different parts, to be reunited only while remaining separated by time.’)
- can one devise a mathematical theory of the continuum that captures the phenomenology of time?
- motivation: Kant’s *Critique of pure reason*
Aims of talk

- time has phenomenological, developmental/cognitive, physical, philosophical, cultural ...
- there is an intimate connection between time and personal identity (Hume, Kant, ...)
- time as a source of mathematical ideas (Brouwer: ‘the basal intuition of mathematics’, namely ‘the intuition of the bare two-oneness: ‘the falling apart of moments of life into qualititively different parts, to be reunited only while remaining separated by time.’)
- can one devise a mathematical theory of the continuum that captures the phenomenology of time?
- motivation: Kant’s *Critique of pure reason*
- focus on notion of dimensionless point/instant
Naive view of temporal continuum
Naive view of temporal continuum

- formalised as one-dimensional linear order \mathbb{R}
Naive view of temporal continuum

- formalised as one-dimensional linear order \mathbb{R}
- algebraic structure given by properties of $+, \times, <$; and solvability of equations of odd degree
Naive view of temporal continuum

- formalised as one-dimensional linear order \mathbb{R}
- algebraic structure given by properties of $+, \times, <$; and solvability of equations of odd degree
- topological structure: separable, complete, dense-in-itself linear order,
Naive view of temporal continuum

- formalised as one-dimensional linear order \mathbb{R}
- algebraic structure given by properties of $+ , \times , <$; and solvability of equations of odd degree
- topological structure: separable, complete, dense-in-itself linear order,
- therefore connected (cannot be exhaustively split into disjoint open sets), but for any x, $\mathbb{R} - \{x\}$ consists of disjoint continua (one-dimensionality)
Naive view of temporal continuum

- formalised as one-dimensional linear order \mathbb{R}
- algebraic structure given by properties of $+, \times, <$; and solvability of equations of odd degree
- topological structure: separable, complete, dense-in-itself linear order,
- therefore connected (cannot be exhaustively split into disjoint open sets), but for any x, $\mathbb{R} - \{x\}$ consists of disjoint continua (one-dimensionality)
- a translation invariant metric on \mathbb{R} represents duration
Naive view of temporal continuum

- formalised as one-dimensional linear order \mathbb{R}
- algebraic structure given by properties of $+, \times, <$; and solvability of equations of odd degree
- topological structure: separable, complete, dense-in-itself linear order,
- therefore connected (cannot be exhaustively split into disjoint open sets), but for any x, $\mathbb{R} - \{x\}$ consists of disjoint continua (one-dimensionality)
- a translation invariant metric on \mathbb{R} represents duration
- what more could one wish for?
Are these properties somehow determined by (cognitive, physical, . . .) time? or do they go way beyond?
Are these properties somehow determined by (cognitive, physical, . . .) time? or do they go way beyond?

- physically: motion is continuously differentiable map from (dimensionless) instants to (dimensionless) positions, but . . .
Are these properties somehow determined by (cognitive, physical, ...) time? or do they go way beyond?

- physically: motion is continuously differentiable map from (dimensionless) instants to (dimensionless) positions, but ...

- “In any case, it seems to me that the alternative continuum-discontinuum is a genuine alternative; i.e. there is no compromise here. In [a discontinuum] theory there cannot be space and time, only numbers[...]. It will be especially difficult to elicit something like a spatio-temporal quasi-order from such a schema. I can not picture to myself how the axiomatic framework of such a physics could look[...]. But I hold it as altogether possible that developments will lead there[...].”
Time in philosophy

There is some sense – easier to feel than to state – in which time is an unimportant and superficial characteristic of reality. Past and future must be acknowledged to be as real as the present, and a certain emancipation from the slavery of time is essential to philosophic thought. (Bertrand Russell)

Russell considers the flow of time to be unreal. Sometimes time itself is considered to be unreal, because contradictory
Time in philosophy

There is some sense – easier to feel than to state – in which time is an unimportant and superficial characteristic of reality. Past and future must be acknowledged to be as real as the present, and a certain emancipation from the slavery of time is essential to philosophic thought. (Bertrand Russell)

Russell considers the flow of time to be unreal. Sometimes time itself is considered to be unreal, because contradictory
Aristotle on skepticism w.r.t. time

Next for discussion after the subjects mentioned is Time. The best plan will be to begin by working out the difficulties connected with it, making use of the current arguments. First, does it belong to the class of things that exist or to that of things that do not exist? Then secondly, what is its nature?
To start, then: the following considerations would make one suspect that it either does not exist at all or barely, and in an obscure way. One part of it has been and is not, while the other is going to be and is not yet. Yet time—both infinite time and any time you like to take—is made up of these. One would naturally suppose that what is made up of things which do not exist could have no share in reality. Further, if a divisible thing is to exist, it is necessary that, when it exists, all or some of its parts must exist. But of time some parts have been, while others have to be, and no part of it is though it is divisible. For what is 'now' is not a part: a part is a measure of the whole, which must be made up of parts. Time, on the other hand, is not held to be made up of 'nows'.
Saint Agustine

If any fraction of time be conceived that cannot now be divided even into the most minute momentary point, this alone is what we may call time present. But this flies so rapidly from future to past that it cannot be extended by any delay. For if it is extended, it is then divided into past and future. But the present has no extension whatever.
we have no sense for empty time: no internal clock which is consciously accessible

the present is intimately related to consciousness, which is not a discrete ‘string of beads’ of successive ‘nows’

consciousness is the ‘specious present’, which is responsible for e.g. judgment of difference of events

apart from the ‘specious present’, there is no time \textit{intuition}, only symbolization
The ‘specious present’

[The practically cognized present [i.e. the specious present] is no knife-edge, but a saddle-back, with a certain breadth of its own on which we sit perched, and from which we look in two directions of time. The unit of composition of our perception of time is a \textit{duration}, with a bow and a stern, as it were – a rearward- and a forward-looking end. It is only as parts of this \textit{duration-block} that the relation of \textit{succession} of one end to the other is perceived. We do not first feel one end and then feel the other after it, and from the perception of the succession infer an interval of time between, but we seem to feel the interval of time as a whole, with its two ends embedded in it. The experience is from the outset a synthetic datum, not a simple one; and to sensible perception its elements are inseparable, although attention looking back may easily decompose the experience, and distinguish its beginning from its end. (William James, Principles of Psychology, p. 574)
The specious present: neurobiology

- ‘slow’ processing cycle: 3s (Pöppel)
- example: Necker cube
- example CUBACUBACUBACUBA . . .
- within each window of 3s, percepts are bound together (in working memory, by neural synchrony?)
- after 3s the brain asks: ‘what’s new?’
- some percepts are then transferred to long term memory; no discontinuity
- duration estimates for durations less than 3s are much more accurate than for those greater than 3s
Zeno’s ‘Arrow’ paradox (as reformulated by C.S. Peirce)
Zeno’s ‘Arrow’ paradox (as reformulated by C.S. Peirce)

- **Major premise** No body in a place no larger than itself is moving.
Zeno’s ‘Arrow’ paradox (as reformulated by C.S. Peirce)

- **Major premise** No body in a place no larger than itself is moving.
- **Minor premise** Every body is a body in a place no larger than itself.
Zeno’s ‘Arrow’ paradox (as reformulated by C.S. Peirce)

- **Major premise** No body in a place no larger than itself is moving.

- **Minor premise** Every body is a body in a place no larger than itself.

- **Conclusion** No body is moving.
Zeno’s ‘Arrow’ paradox (as reformulated by C.S. Peirce)

- **Major premise** No body in a place no larger than itself is moving.
- **Minor premise** Every body is a body in a place no larger than itself.
- **Conclusion** No body is moving.
- Peirce: minor premise is only true in the sense of mathematical limit; hence *during no time a body moves no distance.*
Zeno’s ‘Arrow’ paradox (as reformulated by C.S. Peirce)

- **Major premise** No body in a place no larger than itself is moving.
- **Minor premise** Every body is a body in a place no larger than itself.
- **Conclusion** No body is moving.
- Peirce: minor premise is only true in the sense of mathematical limit; hence *during no time a body moves no distance*.
- Peirce’s point is that physically, both an instant and a spatial location could be extended without having parts; and that the limits do not have physical significance.
Zeno’s ‘Arrow’ paradox (as reformulated by C.S. Peirce)

- **Major premise** No body in a place no larger than itself is moving.
- **Minor premise** Every body is a body in a place no larger than itself.
- **Conclusion** No body is moving.
- Peirce: minor premise is only true in the sense of mathematical limit; hence *during no time a body moves no distance*.
- Peirce’s point is that physically, both an instant and a spatial location could be extended without having parts; and that the limits do not have phsyical significance
- How to model this mathematically?
Proximity and continuity

Proximity and continuiy

Michiel van Lambalgen, Riccardo Pinosio

Proximity and continuity

Proximity and continuum
Proximity and continuity

- provisionally, we’ll take an instant to be small part of time; likewise a location is a small part of space; following Kant, we’ll talk about ‘filled’ instants and locations
Proximity and continuity

- provisionally, we’ll take an instant to be small part of time; likewise a location is a small part of space; following Kant, we’ll talk about ‘filled’ instants and locations

- we introduce a proximity relation O for filled instants and as well as for locations, where $O(a, b)$ means menas that a, b are close, e.g. in the sense of small symmetric difference
Proximity and continuity

- provisionally, we’ll take an instant to be small part of time; likewise a location is a small part of space; following Kant, we’ll talk about ‘filled’ instants and locations

- we introduce a proximity relation O for filled instants and as well as for locations, where $O(a, b)$ means menas that a, b are close, e.g. in the sense of small symmetric difference

- O is non-transitive, but reflexive and symmetric, plus ...
Proximity and continuity

- provisionally, we’ll take an instant to be small part of time; likewise a location is a small part of space; following Kant, we’ll talk about ‘filled’ instants and locations
- we introduce a proximity relation O for filled instants and as well as for locations, where $O(a, b)$ means menas that a, b are close, e.g. in the sense of small symmetric difference
- O is non-transitive, but reflexive and symmetric, plus ...
- motions are functions from filled instants to filled locations which preserve the proximity relation O
Proximity and continuity

- provisionally, we’ll take an instant to be small part of time; likewise a location is a small part of space; following Kant, we’ll talk about ‘filled’ instants and locations

- we introduce a proximity relation O for filled instants and as well as for locations, where $O(a, b)$ means menas that a, b are close, e.g. in the sense of small symmetric difference

- O is non-transitive, but reflexive and symmetric, plus ...

- motions are functions from filled instants to filled locations which preserve the proximity relation O

- motions in this sense need not give rise to point mappings
Whitrow’s version of Zeno’s ‘Achilles’ paradox

Imagine a ball projected vertically upwards from a horizontal floor with an initial velocity v_0 against uniform gravity, downward acceleration g. The bounce on the floor has a restitution coefficient e. Assume the bounce is instantaneous.

- Time t until the first bounce is $2v_0/g$ (NB upward velocity $v = v_0 - gt$).

- Time elapsed when the ball comes to rest on the floor:
 $$t = 2v_0/g \left(1 + e + e^2 + e^3 + \ldots \right) = 2v_0/g \left(1 - \frac{e}{1+e} \right).$$

For example, if $e = 3/4$ and $v_0 = 1/2g$, then $t = 4$ s. But if time is infinitely divisible, there will be infinitely many instantaneous bounces, which are real events!
Whitrow’s version of Zeno’s ‘Achilles’ paradox

- imagine ball projected vertically upwards from horizontal floor
Whitrow’s version of Zeno’s ‘Achilles’ paradox

- imagine ball projected vertically upwards from horizontal floor
- initial velocity v_0 against uniform gravity, downward acceleration is g
Whitrow’s version of Zeno’s ‘Achilles’ paradox

- imagine ball projected vertically upwards from horizontal floor
- initial velocity v_0 against uniform gravity, downward acceleration is g
- bounce on the floor has restitution coefficient e

Examples:

If $e = \frac{3}{4}$ and $v_0 = \frac{1}{2}g$, then $t = 4\text{ s}$. But if time is infinitely divisible, there will be infinitely many instantaneous bounces, which are real events!
Whitrow’s version of Zeno’s ‘Achilles’ paradox

- imagine ball projected vertically upwards from horizontal floor
- initial velocity v_0 against uniform gravity, downward acceleration is g
- bounce on the floor has restitution coefficient e
- assume bounce is instantaneous
Whitrow’s version of Zeno’s ‘Achilles’ paradox

- imagine ball projected vertically upwards from horizontal floor
- initial velocity \(v_0 \) against uniform gravity, downward acceleration is \(g \)
- bounce on the floor has restitution coefficient \(e \)
- assume bounce is instantaneous
- time \(t \) until first bounce is \(\frac{2v_0}{g} \) (NB upward velocity \(v = v_0 - gt \))
Whitrow’s version of Zeno’s ‘Achilles’ paradox

- imagine ball projected vertically upwards from horizontal floor
- initial velocity v_0 against uniform gravity, downward acceleration is g
- bounce on the floor has restitution coefficient e
- assume bounce is instantaneous
- time t until first bounce is $\frac{2v_0}{g}$ (NB upward velocity $v = v_0 - gt$)
- time elapsed when ball comes to rest on the floor:
Whitrow’s version of Zeno’s ‘Achilles’ paradox

- imagine ball projected vertically upwards from horizontal floor
- initial velocity v_0 against uniform gravity, downward acceleration is g
- bounce on the floor has restitution coefficient e
- assume bounce is instantaneous
- time t until first bounce is $\frac{2v_0}{g}$ (NB upward velocity $v = v_0 - gt$)
- time elapsed when ball comes to rest on the floor:

 $$t = \frac{2v_0}{g} \left(1 + e + e^2 + e^3 + \ldots \right) = \frac{2v_0}{g} \left(\frac{1}{1 - e} \right).$$

E.g. if $e = \frac{3}{4}$, and $v_0 = \frac{1}{2}g$, then $t = 4s$: but if time is infinitely divisible, there will be infinitely many instantaneous bounces, which are real events!
Changing topology and connectivity of the continuum

- Suppose we have linearly ordered events \(e_1, e_2, \ldots \) which are all conceived of as part of a single encompassing event \(w \).
- Formally: for all \(i \), \(e_i \preceq w \) for reflexive transitive \(\preceq \); we say that a set of events is open when \(w \) is not in the set; this is equivalent to saying that the closed sets are \(\preceq \) upwards closed.
- Thus the space of events \(W \) is connected since disjoint non-empty open sets do not contain \(w \); it is even ultraconnected, meaning that the intersection of any two closed sets is non-empty (since it contains \(w \)).
- \(R \) is not ultraconnected!
Changing topology and connectivity of the continuum

- suppose we have linearly ordered events e_1, e_2, \ldots which are all conceived of as part of a single encompassing event w
Changing topology and connectivity of the continuum

- suppose we have linearly ordered events e_1, e_2, \ldots which are all conceived of as part of a single encompassing event w
- formally: for all i, $e_i \preceq w$ for reflexive transitive \preceq; we say that a set of events is open when w is not in the set; this is equivalent to saying that the closed sets are \preceq upwards closed
suppose we have linearly ordered events e_1, e_2, \ldots which are all conceived of as part of a single encompassing event w

formally: for all i, $e_i \preceq w$ for reflexive transitive \preceq; we say that a set of events is open when w is not in the set; this is equivalent to saying that the closed sets are \preceq upwards closed

the space of events W is connected since disjoint non-empty open sets do not contain w; it is even ultraconnected, meaning that the intersection of any two closed sets is non-empty (since it contains w)
Changing topology and connectivity of the continuum

- suppose we have linearly ordered events e_1, e_2, \ldots which are all conceived of as part of a single encompassing event w
- formally: for all i, $e_i \preceq w$ for reflexive transitive \preceq; we say that a set of events is *open* when w is not in the set; this is equivalent to saying that the closed sets are \preceq upwards closed
- the space of events W is *connected* since disjoint non-empty open sets do not contain w; it is even *ultraconnected*, meaning that the intersection of any two closed sets is non-empty (since it contains w)
- \mathbb{R} is not ultraconnected!
Changing topology and connectivity of the continuum
Changing topology and connectivity of the continuum

- Let \(x, y \in W \); a path from \(x \) to \(y \) is a continuous function \(p : [0, 1] \rightarrow W \) such that \(p(0) = x, p(1) = y \)
Changing topology and connectivity of the continuum

- Let $x, y \in \mathcal{W}$; a path from x to y is a continuous function $p : [0, 1] \rightarrow \mathcal{W}$ such that $p(0) = x, p(1) = y$

- \mathcal{W} is also *path connected*, meaning that there is a path P linking any two elements of \mathcal{W} (this involves shrinking $[0, 1]$ and composing paths obtained in the previous step)
Changing topology and connectivity of the continuum

Let $x, y \in \mathcal{W}$; a path from x to y is a continuous function $p : [0, 1] \rightarrow \mathcal{W}$ such that $p(0) = x, p(1) = y$

- \mathcal{W} is also path connected, meaning that there is a path P linking any two elements of \mathcal{W} (this involves shrinking $[0, 1]$ and composing paths obtained in the previous step)

- since \mathcal{W} is ultraconnected, it is pseudocompact: every continuous $g : \mathcal{W} \rightarrow \mathbb{R}$ is bounded
we want to show that events in $W - \{ w \}$ correspond to disjoint open intervals on $[0, 1]$; since for $e \neq w$, $\{ e \}$ is open and the path is continuous, the path maps an open interval to e, hence e cannot be interpreted as a point. Thus bounces are not instantaneous, as a consequence of the presence of w; without w the space would be disconnected, and the e would be representable as extensionless points.

Let e be a bounce event immediately preceding e', and suppose e is the nth bounce event. g takes value n on the closed interval between e and e', and is a suitable linear function with range $[n-1, n]$ over e.

g is continuous and bounded, therefore there are only finitely many bounces. The role of w is to ensure that e is open, not closed, and hence extended.
we want to show that events in $W - \{w\}$ correspond to disjoint open intervals on $[0, 1]$; since for $e \neq w$, $\{e\}$ is open and the path is continuous, the path maps an open interval to e, hence e cannot be interpreted as a point.
Changing topology and connectivity of the continuum: application to the bouncing ball

- we want to show that events in \(\mathcal{W} - \{ w \} \) correspond to disjoint open intervals on \([0, 1]\); since for \(e \neq w \), \(\{ e \} \) is open and the path is continuous, the path maps an open interval to \(e \), hence \(e \) cannot be interpreted as a point

- thus bounces are not instantaneous, as a consequence of the presence of \(w \); without \(w \) the space would be disconnected, and the \(e \) would be representable as extensionless points
Changing topology and connectivity of the continuum: application to the bouncing ball

- we want to show that events in $W \setminus \{w\}$ correspond to disjoint open intervals on $[0, 1]$; since for $e \neq w$, $\{e\}$ is open and the path is continuous, the path maps an open interval to e, hence e cannot be interpreted as a point.

- thus bounces are not instantaneous, as a consequence of the presence of w; without w the space would be disconnected, and the e would be representable as extensionless points.

- let e be a bounce event immediately preceding e', and suppose e is the n^{th} bounce event. g takes value n on the closed interval between e and e', and is a suitable linear function with range $[n - 1, n]$ over e.
Changing topology and connectivity of the continuum: application to the bouncing ball

- we want to show that events in $W - \{w\}$ correspond to disjoint open intervals on $[0, 1]$; since for $e \neq w$, $\{e\}$ is open and the path is continuous, the path maps an open interval to e, hence e cannot be interpreted as a point
- thus bounces are not instantaneous, as a consequence of the presence of w; without w the space would be disconnected, and the e would be representable as extensionless points
- let e be a bounce event immediately preceding e', and suppose e is the n^{th} bounce event. g takes value n on the closed interval between e and e', and is a suitable linear function with range $[n - 1, n]$ over e
- g is continuous and bounded, therefore there are only finitely many bounces
Changing topology and connectivity of the continuum: application to the bouncing ball

- we want to show that events in \(W - \{ w \} \) correspond to disjoint open intervals on \([0, 1]\); since for \(e \neq w \), \(\{ e \} \) is open and the path is continuous, the path maps an open interval to \(e \), hence \(e \) cannot be interpreted as a point

- thus bounces are not instantaneous, as a consequence of the presence of \(w \); without \(w \) the space would be disconnected, and the \(e \) would be representable as extensionless points

- let \(e \) be a bounce event immediately preceding \(e' \), and suppose \(e \) is the \(n^{th} \) bounce event. \(g \) takes value \(n \) on the closed interval between \(e \) and \(e' \), and is a suitable linear function with range \([n - 1, n]\) over \(e \)

- \(g \) is continuous and bounded, therefore there are only finitely many bounces

- the role of \(w \) is to ensure that \(e \) is open, not closed, and hence extended
Past, present, future

‘Again, the ’now’ which seems to bound the past and the future-does it always remain one and the same or is it always other and other? It is hard to say. ’ (Aristotle)
Past, present, future

‘Again, the ’now’ which seems to bound the past and the future-does it always remain one and the same or is it always other and other? It is hard to say.’ (Aristotle)

- suppose we are given a linear order \(\leq \) on \(W - \{w\} \)
Past, present, future

‘Again, the ’now’ which seems to bound the past and the future-does it always remain one and the same or is it always other and other? It is hard to say. ’ (Aristotle)

- suppose we are given a linear order \(\leq \) on \(W - \{w\} \)
- a *Past* is a downwards closed subset of \(W - \{w\} \), a *Future* is an upwards closed subset of \(W - \{w\} \)
Past, present, future

‘Again, the ’now’ which seems to bound the past and the future-does it always remain one and the same or is it always other and other? It is hard to say.’ (Aristotle)

- suppose we are given a linear order \(\leq \) on \(W - \{w\} \)
- a *Past* is a downwards closed subset of \(W - \{w\} \), a *Future* is an upwards closed subset of \(W - \{w\} \)
- \(w \) is an element of neither, so let’s put *Present* = \(\{w\} \) – ‘The instant in time can be filled, but in such a way that no time-series is indicated’ (Kant)
Past, present, future

‘Again, the ’now’ which seems to bound the past and the future-does it always remain one and the same or is it always other and other? It is hard to say.’ (Aristotle)

▷ suppose we are given a linear order \leq on $W - \{w\}$

▷ a Past is a downwards closed subset of $W - \{w\}$, a Future is an upwards closed subset of $W - \{w\}$

▷ w is an element of neither, so let’s put $\text{Present} = \{w\}$ – ‘The instant in time can be filled, but in such a way that no time-series is indicated’ (Kant)

▷ we formulate some axioms and obtain
Past, present, future

‘Again, the ’now’ which seems to bound the past and the future—does it always remain one and the same or is it always other and other? It is hard to say.’ (Aristotle)

- Suppose we are given a linear order \leq on $W - \{w\}$
- A Past is a downwards closed subset of $W - \{w\}$, a Future is an upwards closed subset of $W - \{w\}$
- w is an element of neither, so let’s put Present $= \{w\}$
 - ‘The instant in time can be filled, but in such a way that no time-series is indicated’ (Kant)
- We formulate some axioms and obtain
- The inclusion relation \subseteq on the Pasts induces a linear order on the triples $(Past, Present, Future)$—this is our temporal continuum
Past, present, future

‘Again, the ’now’ which seems to bound the past and the future-does it always remain one and the same or is it always other and other? It is hard to say.’ (Aristotle)

▶ suppose we are given a linear order \leq on $W - \{w\}$

▶ a Past is a downwards closed subset of $W - \{w\}$, a Future is an upwards closed subset of $W - \{w\}$

▶ w is an element of neither, so let’s put Present $= \{w\}$ – ‘The instant in time can be filled, but in such a way that no time-series is indicated’ (Kant)

▶ we formulate some axioms and obtain

▶ the inclusion relation \subseteq on the Pasts induces a linear order on the triples (Past, Present, Future) – this is our temporal continuum

▶ it is impossible to remove a point from this continuum, since nothing would remain
Refl 4425 Spatium est quantum, sed non compositum. For space does not arise through the positing of its parts, but the parts are only possible through space; likewise with time. The parts may well be considered abstrahendo a caeteris, but cannot be conceived removendo caetera; they can therefore be distinguished, but not separated, and the divisio non est realis, sed logica. Since the divisibility of matter seems to come down to the space that it occupies, and it is as divisible as this space, the question arises whether the divisibility of matter is not as merely logical as that of space.
The three modi of time are persistence, succession and simultaneity [...] Only through that which persists does existence in different parts of the temporal series acquire a magnitude, which one calls duration. For in mere sequence alone existence is always disappearing and beginning, and never has the least magnitude. Without that which persists there is therefore no temporal relation. (A177/B219)