Tutorial 1

Question 1. Suppose a newspaper announces the following competition:

Every reader may send in a (rational) number between 0 and 100. The winner is the player whose number is closest to $\frac{2}{3}$ times the arithmetic mean of all submissions (in case of a tie the prize money is split equally amongst those with the best guesses).

- (a) Describe some strategies that people might use to decide what number to send in.
- (b) Does this game have a Nash equilibrium? If yes, what is it?
- (c) What changes about Nash equilibria if players can only choose integers?
- (d) What changes if players can only choose integers and the mean is being multiplied by $\frac{9}{10}$ rather than $\frac{2}{3}$?

Question 2. Recall the definitions of *Pareto optimality* and *(utilitarian) social welfare* given in the lecture and answer the following questions:

- (a) Is it possible that a Pareto optimal agreement does not have maximal social welfare? If yes, give an example; if no, explain why not.
- (b) Is it possible that an agreement that maximises social welfare is not Pareto optimal? If yes, give an example; if no, explain why not.

u_A/u_B	B defects	B cooperates
A defects	0/0	8/1
A cooperates	1/8	5/5

Question 3. Consider the following instance of the Game of Chicken:

- (a) There are two Nash equilibria with pure strategies for this game. What are they?
- (b) These pure equilibrium strategies are not very attractive in practice. Explain why.
- (c) There is also a Nash equilibrium with mixed strategies, where each agent either defects or cooperates with a certain probability. Compute this mixed Nash equilibrium (that is, compute the probabilities).

Hint: Start by putting yourself in the position of agent A and let p be the probability that A will defect. It is in the interest of A to choose p such that neither of the two pure strategies available to B would definitely be the better choice. What value of p should A choose?