Strategic Manipulability without Resoluteness or Shared Beliefs: Gibbard-Satterthwaite Generalized

Christian Geist

Project: Modern Classics in Social Choice Theory

Institute for Logic, Language and Computation

26 June 2009

UNIVERSITEIT VAN AMSTERDAM

The Generalisation of the GS-Theorem Allows Ties without Shared Beliefs

Recall the Gibbard-Satterthwaite Theorem:

Theorem (Gibbard-Satterthwaite, 1973, 1975)

If there are at least three alternatives to vote for, then there is **no surjective** and **strategy-proof** voting procedure (mapping strict preferences for each individual to single winners among the alternatives), which is **not dictatorial**.

- Three conditions are inconsistent:
 - Surjectivity (citizens' sovereignty)
 - Strategy-proofness (non-manipulability)
 - Non-dictatorship
- Actually another condition:
 - Resoluteness (single winners)
- Some authors generalized allowing ties, but
 - Shared beliefs (lottery is chosen together with winning set) or
 - Further restrictive assumptions on choice function or underlying social preference (neutrality, anonymity, acyclicity...)
- DUGGAN and SCHWARTZ relaxed non-manipulability in a more general way than before
 - No shared beliefs about resolution of ties
 - Manipulability: only if an individual can profit regardless of the lottery
 - Need some remaining very weak resoluteness

0+11			
Outline			

- **I** The Authors: JOHN DUGGAN, THOMAS SCHWARTZ
- Setting, Definitions and Conditions
 - Citizens' sovereignty, non-dictatorship and residual resoluteness
- Non-manipulability
 - ¬M-Lemma and its proof
 - More intuitive definition
- Impossibility Theorem
 - Proof outline
- Relaxations of the conditions
- Discussion

DUGGAN, J.; SCHWARTZ, T.: *Strategic Manipulability without Resoluteness or Shared Beliefs: Gibbard-Satterthwaite Generalized*, Social Choice and Welfare, Vol. 17, 2000, pp. 85-93.

The Authors

John Duggan

- Professor at the University of Rochester, New York
 - Department of Political Science
 - Department of Economics
 - Director of the W. Allen Institute of Political Economy
- Editor of "Social Choice and Welfare" (from 2001 on)
- B.A. in Philosophy (1987)

Thomas Schwartz

- Professor at University of California, Los Angeles
 - Department of Political Science
- Social Choice Theory and Mathematical Political Science
- Writing book about Ronald Regan's international strategy during the Cold War

Setting, Notation and Basic Definitions

Notation

- A set of alternatives A
 - \blacksquare Elements denoted by $x,\ y,\ z$
 - \blacksquare Countable subsets denoted by $X,\ Y$
- A finite set of *individuals* $I = \{1, \ldots, n\}$
 - \blacksquare Elements denoted by $i,\ j$
- The set \mathcal{P} of all strict linear orders on A (preference orderings P)
 - asymmetric, transitive, connected
- An *individual preference ordering* $P_i \in \mathcal{P}$ for each individual i, giving as the full picture a *(preference) profile* $\mathbf{P} = \langle P_1, P_2, \dots, P_n \rangle \in \mathcal{P}^n$
- An *i-variant* of a profile P is another P' with $P_j = P'_j$ for all $j \neq i$
- An *X*-lottery is a function $\lambda : X \to (0,1]$ with $\sum_{x \in X} \lambda(x) = 1$
- A representative of an individual preference ordering P_i in X is any function $u: X \to \mathbb{R}$ such that $u(x) > u(y) \iff xP_iy$

Definition

A set choice function $C : \mathcal{P}^n \to \mathsf{Pow}(A) \setminus \emptyset$ is a function, which assigns a non-empty countable winning set $C(\mathbf{P}) \subseteq A$ to any profile $\mathbf{P} = \langle P_1, P_2, \dots, P_n \rangle$.

Four Conditions

Definition (Citizen's Sovereignty (CS))

A set choice function has the property of *Citizen's Sovereignty* if for all $x \in A$ there is a profile P that has a winning set C(P) that includes x.

$$\forall x \,\exists \boldsymbol{P} \left[x \in C(\boldsymbol{P}) \right]$$

Definition (Non-dictatorship (¬D))

A set choice function is *non-dictatorial* if there is no individual *i* such that, for all alternatives x and profiles P, if $x = top(P_i)$, then $C(P) = \{x\}$.

$$\neg \exists i \forall x, \mathbf{P} [x = top(P_i) \rightarrow C(\mathbf{P}) = \{x\}]$$

Definition (Residual Resoluteness (RR))

A set choice function has *residual resoluteness* if $C(\mathbf{P})$ is a singleton in the case that all $P_{j\neq i}$ are the same, with x first and y second, and P_i is either the same as them or else the same but with y first and x second.

Four Conditions (continued)

Definition (Non-manipulability $(\neg M)$)

A set choice function is called *non-manipulable* if there are no *i*-variant profiles P, P' such that for all C(P)-lotteries λ and C(P')-lotteries λ' , some representative u of P_i in $C(P) \cup C(P')$ exists with $\sum_{x \in C(P')} \lambda'(x)u(x) > \sum_{x \in C(P)} \lambda(x)u(x)$.

$$\neg \exists \boldsymbol{P}, \boldsymbol{P}' \left[\forall \lambda, \lambda' \exists u \left(\sum_{x \in C(\boldsymbol{P}')} \lambda'(x) u(x) > \sum_{x \in C(\boldsymbol{P})} \lambda(x) u(x) \right) \right]$$

Lemma (¬M-Lemma)

If \mathbf{P}' is an *i*-variant of \mathbf{P} and $x \in C(\mathbf{P}')$, then 1 there is $y \in C(\mathbf{P})$ with y = x or xP'_iy , and 2 there is $y \in C(\mathbf{P})$ with y = x or yP_ix . $\forall \mathbf{P}', \mathbf{P} \forall x \in C(\mathbf{P}') \exists y \in C(\mathbf{P}) [x \ge'_i y]$ $\forall \mathbf{P}', \mathbf{P} \forall x \in C(\mathbf{P}') \exists y \in C(\mathbf{P}) [y \ge_i x]$

(1)

(2)

Proof of $\neg M$ -Lemma

$$\neg \mathbf{M}: \qquad \neg \exists \mathbf{P}, \mathbf{P}' \left[\forall \lambda, \lambda' \exists u \left(\sum_{x \in C(\mathbf{P})} \lambda(x)u(x) > \sum_{x \in C(\mathbf{P}')} \lambda'(x)u(x) \right) \right]$$

$$\Rightarrow \mathbf{M}\text{-Lemma:} \qquad \forall \mathbf{P}', \mathbf{P} \,\forall x \in C(\mathbf{P}') \underbrace{ [\exists y \in C(\mathbf{P}) \, (x \geq_i' y)}_{(1)} \land \underbrace{\exists y \in C(\mathbf{P}) \, (y \geq_i x)}_{(2)}]$$

Proof (of \neg **M**-Lemma).

Pick P, P' *i*-variants, $x \in C(P')$. Suppose (1) false, then $y >'_i x$ for all $y \in C(P)$. Now let λ, λ' be a C(P)- and C(P')-lottery, respectively, and define representative $u^* : C(P) \cup C(P') \to \mathbb{R}$ of P'_i : Set $u^*(x) := 1$ and define $u^*(z) := \frac{1}{d+1}$ for alternatives z ranked d steps lower in P'_i ; and similarly $u^*(z) := 2 - \frac{1}{d+1}$ for alternatives z ranked d steps higher in P'_i . Then (since $0 < u^* < 2$) we have guaranteed convergence of $0 \le \sum_{y \in C(P)} \lambda(y)u^*(y) \le 2$ and $0 \le \sum_{z \in C(P') \setminus \{x\}} \lambda'(z)u^*(z) \le 2$. Hence, can define new representative $u : C(P) \cup C(P') \to \mathbb{R}$ of P'_i by setting

$$u(z) = \begin{cases} \min\left(u^{*}(x), \frac{\sum_{y \in C(P)} \lambda(y)u^{*}(y) - \sum_{z \in C(P') \setminus \{x\}} \lambda'(z)u^{*}(z) - 1}{\lambda'(x)}\right) & \text{if } z = x \\ u^{*}(z) - (u^{*}(x) - u(x)) & \text{if } xP'_{i}z \\ u^{*}(z) & \text{else.} \end{cases}$$

Strategic Manipulability without Resoluteness or Shared Beliefs: Gibbard-Satterthwaite Generalized

Proof of ¬M-Lemma (continued)

$$\begin{split} \neg \mathbf{M} &: \quad \neg \exists \boldsymbol{P}, \boldsymbol{P}' \left[\forall \lambda, \lambda' \exists u \left(\sum_{x \in C(\boldsymbol{P})} \lambda(x) u(x) > \sum_{x \in C(\boldsymbol{P}')} \lambda'(x) u(x) \right) \right] \\ \neg \mathbf{M} \text{-Lemma:} \quad \forall \boldsymbol{P}', \boldsymbol{P} \,\forall x \in C(\boldsymbol{P}') \underbrace{ \exists y \in C(\boldsymbol{P}) (x \geq_i' y)}_{(1)} \land \underbrace{ \exists y \in C(\boldsymbol{P}) (y \geq_i x)]}_{(2)} \\ u(z) &= \begin{cases} \min \left(u^*(x), \frac{\sum_{y \in C(\boldsymbol{P})} \lambda(y) u^*(y) - \sum_{z \in C(\boldsymbol{P}') \setminus \{x\}} \lambda'(z) u^*(z) - 1}{\lambda'(x)} \right) & \text{if } z = x \\ u^*(z) - (u^*(x) - u(x)) & \text{if } x P_i' z \\ u^*(z) & \text{else.} \end{cases} \end{split}$$

Proof (of \neg M-Lemma) continued.

From first line of case distinction we get

$$\sum_{y \in C(\boldsymbol{P})} \lambda(y) u^*(y) - \sum_{z \in C(\boldsymbol{P}') \setminus \{x\}} \lambda'(z) u^*(z) > u(x) \lambda'(x)$$

and hence

$$\sum_{y \in C(\boldsymbol{P})} \lambda(y)u(y) > \sum_{z \in C(\boldsymbol{P}') \setminus \{x\}} \lambda'(z)u(z) + u(x)\lambda'(x) = \sum_{z \in C(\boldsymbol{P}')} \lambda'(z)u(z).$$

Contradiction to $\neg M$. (Proof for (2) is analogous.)

¬M-Lemma Yields New Intuitive Understanding of ¬M-condition

$$\neg \mathbf{M}\text{-Lemma:} \qquad \forall \mathbf{P}', \mathbf{P} \ \forall x \in C(\mathbf{P}')[\underbrace{\exists y \in C(\mathbf{P}) \ (x \ge_i' y)}_{(1)} \land \underbrace{\exists y \in C(\mathbf{P}) \ (y \ge_i x)}_{(2)}]$$
$$\iff \qquad \neg \exists \mathbf{P}', \mathbf{P} \ \exists x \in C(\mathbf{P}')[\forall y \in C(\mathbf{P}) \ (x <_i' y) \lor \forall y \in C(\mathbf{P}) \ (y <_i x)]$$

Definition

- A set choice function C is *manipulable by a pessimist* if there are *i*-variant profiles P, P' and an $x \in C(P')$ among the winners of the "truthful" profile P'such that all winners $C(\mathbf{P})$ of the "manipulated" profile \mathbf{P} are ranked higher than x by the "truthful" ordering P'_{i} .
- 2 A set choice function C is *manipulable by an optimist* if there are *i*-variant profiles P, P' and an $x \in C(P')$ among the winners of the "manipulated" profile P' such that all winners C(P) of the "truthful" profile P are ranked lower than \boldsymbol{x} by by the "truthful" ordering P_i .
- A set choice function C is *non-manipulable** if it is neither manipulable by a pessimist nor by an optimist. ($\iff \neg M$ -Lemma)

Remark

Under the assumption of countable choice sets, $\neg M$ -Lemma is equivalent to $\neg M$.

The Impossibility Theorem and its Proof

Theorem (Duggan, Schwarz (2000))

If $|A| \geq 3$ then there is no set choice function that can simultaneously satisfy Conditions $\neg M$, CS, $\neg D$ and RR.

Definition

- $X \subseteq A$ is called a *top set* in a profile **P** if xP_iy for all $x \in X$, $i \in I$ and $y \notin X$.
- A profile P' is an *xy-twin* of another profile P if $xP'_iy \leftrightarrow xP_iy$ for all $i \in I$.

Proof.

 \blacksquare Define a "social preference" function $F:\mathcal{P}^n\to A^2$ from a set choice function C by

 $xF(\boldsymbol{P})y\iff (x\neq y)\wedge (\forall \boldsymbol{P}' \; xy\text{-twin of } \boldsymbol{P} \; \text{with top set} \; \{x,y\})[C(\boldsymbol{P}')=\{x\}]$

• Under the assumption of $\neg M$, CS, $\neg D$ and RR show properties of F, which are known to be inconsistent

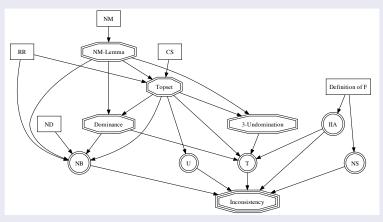
The Impossibility Theorem and its Proof (continued)

Proof.

Define a "social preference" function $F:\mathcal{P}^n \to A^2$ from a set choice function by

$$xF(\boldsymbol{P})y \iff (x\neq y) \land (\forall \boldsymbol{P}' \; xy \text{-twin of } \boldsymbol{P} \; \text{with top set} \; \{x,y\})[C(\boldsymbol{P}') = \{x\}]$$

• Under the assumption of $\neg M$, CS, $\neg D$ and RR show properties of F, which are known to be inconsistent



Relaxation of \mathbf{RR}

Definition (Residual Resoluteness (RR))

A set choice function has residual resoluteness if $C(\mathbf{P})$ is a singleton in the case that all $P_{j\neq i}$ are the same, with x first and y second, and P_i is either the same as them or else the same but with y first and x second.

• Avoid **RR** by strengthening **CS** to **CS**+, and \neg **D** to \neg **D**+:

Definition

- **CS**+: For all alternatives $x \in A$, some profile **P** has $C(P) = \{x\}$.
 - Compare CS: $\forall x \exists P \ [x \in C(P)]$
- ¬D+: No individual *i* is such that, for all alternatives *x* and profiles *P*, $x = top(P_i)$ implies $x \in C(X)$.

• Compare $\neg \mathbf{D}: \neg \exists i \forall x, \mathbf{P} [x = top(P_i) \rightarrow C(\mathbf{P}) = \{x\}]$

- Strengthening only one of them is not enough (\rightarrow dual dictators)
- Both (strengthened) conditions carry implicit resoluteness
 - CS+: Each outcome can be chosen as a singleton
 - □ ¬D+: Bans procedures that pick all alternatives ranked first by someone (→ example from GIBBARD)
- Weakening RR?
 - Two-member choice sets (→ dual dictators)
 - Only to case when everyone agrees (→ dual dictators)

Relaxations

Relaxation of \mathbf{CS} , $\neg \mathbf{D}$

Definition (Citizen's Sovereignty (CS))

A set choice function has the property of *Citizen's Sovereignty* if for all $x \in A$ there is a profile P that has a winning set C(P) that includes x.

 $\forall x \exists \boldsymbol{P} [x \in C(\boldsymbol{P})]$

- **CS** implies that any alternative is feasible
- Can avoid this by defining profiles on a larger set $B \supseteq A$ instead
- Then C can depend on infeasible alternatives, too
 - e.g. indicating strengths of preferences
- $\blacksquare \ \neg \mathbf{M}$ is defined to consider feasible alternatives only
 - $\blacksquare \ \mathcal{C}(\boldsymbol{P}) \text{-lotteries, representative of } P_i \text{ on } \mathcal{C}(\boldsymbol{P}) \cup \mathcal{C}(\boldsymbol{P}')$

Definition (Non-dictatorship $(\neg D)$)

A set choice function is *non-dictatorial* if there is no individual i such that, for all alternatives x and profiles P, if $x = top(P_i)$, then $C(P) = \{x\}$.

$$\neg \exists i \forall x, \mathbf{P} \left[x = top(P_i) \rightarrow C(\mathbf{P}) = \{x\} \right]$$

(Almost) only matters for resolute choice functions
∃P[|C(P)| > 1 ∧ ∀i∃x(x = top(P_i))] ⇒ ¬D

Relaxation of $\neg \mathbf{M}$

Definition (Non-manipulability $(\neg M)$)

A set choice function is called *non-manipulable* if there are no *i*-variant profiles P, P' such that for all C(P)-lotteries λ and C(P')-lotteries λ' , some representative u of P_i in $C(P) \cup C(P')$ exists with $\sum_{x \in C(P')} \lambda'(x)u(x) > \sum_{x \in C(P)} \lambda(x)u(x)$.

$$\neg \exists \boldsymbol{P}, \boldsymbol{P'} \left[\forall \lambda, \lambda' \exists u \left(\sum_{x \in C(\boldsymbol{P'})} \lambda'(x) u(x) > \sum_{x \in C(\boldsymbol{P})} \lambda(x) u(x) \right) \right.$$

Strengthen $\forall \lambda \forall \lambda' \exists u$ to $\exists u \forall \lambda \forall \lambda'$ or $\forall \lambda \forall \lambda' \forall u$

- \blacksquare Weakens $\neg \mathbf{M} \rightarrow$ strengthens theorem
- Counterexample: pick, if exists, Condorcet, else all
- Relaxation of support set
 - Condition taylor-made for proof and weak
 - Usefulness? (→ discussion)
- Shift to ¬M-Lemma (non-manipulability*) instead of ¬M-condition
 - Allows uncountable choice sets
 - Equivalent if we assume countable choice sets
- Allow "contracting" manipulations
 - Proof breaks down
 - Potentially stronger version allows "contracting" manipulations only if following manipulations are not even profitable with respect to the original "honest" ordering

Conclusion

- Generalisation of GS-Theorem allowing ties
 - More general than before
 - No shared beliefs about resolution of ties
 - Manipulability: only if an individual can profit regardless of the lottery
 - Need some remaining very weak resoluteness
 - Proof via result on "social preference" functions

Conditions:

- Non-manipulability (¬M)
 - ¬M-Lemma, its proof and intuition (optimist, pessimist), better taken as definition?
 - Infinitely many alternatives (convergence, Riemann Rearrangement Theorem, practical relevance?)
 - Relaxation of support set useful?
- Citizen's Sovereignty (CS)
 - any alternative feasible
 - relaxable
- Non-dictatorship (¬D)
 - Nearly irrelevant for non-resolute set choice functions
 - Mistake in paper
- Residual Resoluteness (RR)
 - Avoidable at cost
 - But replacement has implicit resoluteness

