Allan Gibbard - *Manipulation of voting schemes: a general result* (1973)

Charlotte Vlek

June 23, 2009
Allan Gibbard (1942 -)

University Professor of Philosophy at University of Michigan

“My field of specialization is ethical theory”

“My current research centers on claims that the concept of meaning is a normative concept”

(www-personal.umich.edu/~gibbard/)
Situation in 1973

Conjectured: all voting schemes are manipulable.

 "it seems unlikely that there is any voting procedure in which it can never be advantageous for any voter to vote "strategically", i.e., non-sincerely." (D.& F. 1961, p.34 in: Gibbard 1973, p.588)

- They prove a similar result but only for “majority games”, not for all voting schemes
Situation at the time

- Vickrey: *Utility, strategy and social decision rules* (1960):
 - IIA & positive association imply non-manipulability
 - conjectured: non-manipulability implies IIA & PA.

Gibbard confirms Vickrey
An **ordering** of Z is two-place relation P such that for all $x, y, z \in Z$:

- $\neg (xPy \land yPx)$ (totality)
 (logically equivalent to $yRx \lor xRy$)

- $xPz \rightarrow (xPy \lor yPz)$ (transitivity)
 (logically equivalent to $(zRy \land yRx) \rightarrow zRx$)
Definitions - voting scheme

- n voters
- Z set of alternatives
- P_i orderings of Z for each voter i

A **voting scheme** is a function that assigns a member of Z to each possible **preference n-tuple** $(P_1, P_2, ..., P_n)$ for a given number n and set Z.
One **manipulates** the voting scheme if

"by misrepresenting his preferences, he secures an outcome he prefers to the "honest" outcome" (Gibbard 1973, p.587)

Note that manipulation only has a meaning if we know the "honest" preferences too.
The main result

“Any non-dictatorial voting scheme with at least 3 possible outcomes is subject to individual manipulation” (Gibbard 1973, p. 587)
“A game form is any scheme which makes an outcome depend on individual actions of some specified sort, which I shall call strategies” (Gibbard 1973, p.587)

Formally:

- X a set of possible outcomes
- n number of players
- S_i for each player i, a set of strategies for i.

A game form is a function

$$g : S_1 \times S_2 \times \ldots \times S_n \rightarrow X$$

that takes each possible strategy n-tuple $\langle s_1, \ldots, s_n \rangle$ with $s_i \in S_i \ \forall i$ to an outcome $x \in X$.
Voting scheme vs. Game form

- Every non-chance procedure by which individual choices of contingency plans for action determine an outcome is characterized by a game form
- Voting scheme is a special case of game form
- A game form does not specify what an ‘honest’ strategy would be, so there is no such thing as manipulability
Manipulability is a property of a game form plus n functions σ_k ($k \leq n$) that take each possible preference ordering to a strategy $s \in S_k$. For each individual k and preference ordering P, $\sigma_k(P)$ is the strategy for k which honestly represents P.

Now we have

$$v(P_1, \ldots, P_n) = g(\sigma_1(P_1), \ldots, \sigma_n(P_n))$$
Definitions - dominant strategy

“A strategy is dominant if whatever anyone else does, it achieves his goals at least as well as would any alternative strategy” (Gibbard 1973, p.587)

Formally:

- let $s = \langle s_1, ..., s_n \rangle$ be a strategy n-tuple
- let $sk/t = \langle s_1, ..., s_{k-1}, t, s_{k+1}, ..., s_n \rangle$ (replace kth strategy by t)

A strategy t is P-dominant for k if for every strategy n-tuple s, $g(sk/t)Rg(s)$.

A game form is straightforward if for every individual k and preference ordering P, there is a strategy P-dominant for k.
A player k is a **dictator** for a game form g if for every outcome x there is a strategy $s(x)$ for k such that $g(s) = x$ whenever $s_k = s(x)$.

A game form g is dictatorial if there is a dictator for g.

Definitions - dictatorship
The result for game forms:
Every straightforward game form with at least three possible outcomes is dictatorial.
The result for game forms:

Every straightforward game form with at least three possible outcomes is dictatorial.

Corollary:

Every voting scheme with at least three outcomes is either dictatorial or manipulable.
Proof of theorem

The result for game forms:
Every straightforward game form with at least three possible outcomes is dictatorial.

Proof:
- Let g be a straightforward game form with at least 3 outcomes
- For each i, let σ_i be such that for every P, $\sigma_i(P)$ is P-dominant for i
- Let $\sigma(P) = <\sigma_1(P_1), \ldots, \sigma_n(P_n)>$
- Let $\nu = g \circ \sigma$
Proof of theorem

- Fix some strict ordering Q. Let $Z \subseteq X$
- For each i, define $P_i * Z$ such that for all $x, y \in X$
 - If $x \in Z$ and $y \in Z$ then $x(P_i * Z)y$ iff either $zP_i y$ or both $xI_i y$ and xQy
 - If $x \in Z$ and $y \notin Z$ then $x(P_i * Z)y$
 - If $x \notin Z$ and $y \notin Z$ then $x(P_i * Z)y$ iff xQy
- Let $P * Z = \langle P_1 * Z, ..., P_n * Z \rangle$
- define xPy to be
 \[x \neq y \land x = v(P * \{x, y\}) \]
- Show $f(P) = P$ is a social welfare function, satisfying all of Arrow's conditions except non-dictatorship
- the dictator for f is a dictator for $v = g \circ \sigma$
Implications

- Any voting scheme we use will be manipulable, unless trivial.
- Manipulability does *not* mean that in reality people are always in a position to manipulate. It means that it’s not guaranteed that they can’t.
- But reasons not to:
 - ignorance
 - integrity
 - stupidity

But “the ‘ignorance’ and ‘stupidity’ required here are just the ordinary conditions of human existence” (Simon 2002, p. 112)
More on the subject

- This result concerns *non-chance procedures*. Mixed decision schemes can be non-manipulable. See example and Gibbard’s *Manipulation of schemes that mix voting with chance*, 1977

- Correspondence Arrow’s social welfare function and non-manipulable voting scheme. Satterthwaite:
 - Gibbard does not consider voting schemes with restricted outcomes. Can easily be fixed.
 - Gibbard does not establish uniqueness of underlying social welfare function. Easy to prove.
 - Gibbard does not prove non-negative responsiveness (NNR) for the swf. Can be done.
Discussion

Compare Gibbard’s and Satterthwaite’s versions of Arrow’s conditions:

- **Gibbard** (p. 586): Scope; Unanimity; Pairwise Determination (equiv. to IIA); Non-dictatorship
- **Satterthwaite** (p. 204): Non-dictatorship (ND); Independence of Irrelevant Alternatives (IIA); Citizen’s Sovereignty (CS); Non-negative Responsiveness (NNR)

Game forms take three steps: personal agenda \Rightarrow strategy \Rightarrow outcome
Why not use this for voting schemes too: preferences \Rightarrow ballot \Rightarrow social choice
(note: remember Gibbard’s example with the club voting for alcoholic parties)

