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Allan Gibbard

I Allan Gibbard (1942 - )

I University Professor of Philosophy at University of
Michigan

“My field of specialization is ethical theory”

“My current research centers on claims
that the concept of meaning is a normative
concept”
(www-personal.umich.edu/∼gibbard/)
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Situation in 1973

Conjectured: all voting schemes are manipulable.

I Dummet & Farquharson: Stability in voting (1961)

“it seems unlikely that there is any voting
procedure in which it can never be
advantageous for any voter to vote
“strategically”, i.e., non-sincerely.” (D.&
F. 1961, p.34 in: Gibbard 1973, p.588)

I They prove a similar result but only for “majority
games”, not for all voting schemes
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Situation at the time

I Vickrey: Utility, strategy and social decision rules
(1960):

I IIA & positive association imply non-manipulability
I conjectured: non-manipulability implies IIA & PA.

Gibbard confirms Vickrey
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Definitions - ordering

An ordering of Z is two-place relation P such that for all
x , y , z ∈ Z :

I ¬(xPy ∧ yPx) (totality)
(logically equivalent to yRx ∨ xRy)

I xPz → (xPy ∨ yPz) (transitivity)
(logically equivalent to (zRy ∧ yRx)→ zRx)
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Definitions - voting scheme

I n voters

I Z set of alternatives

I Pi orderings of Z for each voter i

A voting scheme is a function that assigns a member of
Z to each possible preference n-tuple (P1,P2, ...,Pn)
for a given number n and set Z .
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Definitions - manipulation

One manipulates the voting scheme if

“by misrepresenting his preferences, he secures
an outcome he prefers to the “honest”
outcome” (Gibbard 1973, p.587)

Note that manipulation only has a meaning if we know
the “honest” preferences too.
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The main result

The main result

“Any non-dictatorial voting scheme with at
least 3 possible outcomes is subject to
individual manipulation” (Gibbard 1973, p. 587)
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Definitions - Game form

“A game form is any scheme which makes an
outcome depend on individual actions of some
specified sort, which I shall call strategies” (Gibbard
1973, p.587)

Formally:

I X a set of possible outcomes

I n number of players

I Si for each player i , a set of strategies for i .

A game form is a function

g : S1 × S2 × ...× Sn → X

that takes each possible strategy n-tuple 〈s1, ..., sn〉 with
si ∈ Si ∀i to an outcome x ∈ X .
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Voting scheme vs. Game form

I Every non-chance procedure by which individual
choices of contingency plans for action determine an
outcome is characterized by a game form

I Voting scheme is a special case of game form

I A game form does not specify what an ‘honest’
strategy would be, so there is no such thing as
manipulability
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Voting scheme vs. Game form

I Manipulability is a property of a game form plus n
functions σk (k ≤ n) that take each possible
preference ordering to a strategy s ∈ Sk . For each
individual k and preference ordering P, σk(P) is the
strategy for k which honestly represents P.

I Now we have

v(P1, ...,Pn) = g(σ1(P1), ..., σn(Pn))
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Definitions - dominant strategy

“A strategy is dominant if whatever anyone else
does, it achieves his goals at least as well as would
any alternative strategy” (Gibbard 1973, p.587)

Formally:

I let s = 〈s1, ..., sn〉 be a strategy n-tuple

I let sk/t = 〈s1, ..., sk−1, t, sk+1, ..., sn〉 (replace kth
strategy by t)

A strategy t is P-dominant for k if for every strategy
n-tuple s, g(sk/t)Rg(s).
A game form is straightforward if for every individual k
and preference ordering P, there is a strategy P-dominant
for k.
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Definitions - dictatorship

I A player k is a dictator for a game form g if for
every outcome x there is a strategy s(x) for k such
that g(s) = x whenever sk = s(x).

I A game form g is dictatorial if there is a dictator for
g .
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The result for game forms

The result for game forms:
Every straightforward game form with at least three
possible outcomes is dictatorial.
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The result for game forms

The result for game forms:
Every straightforward game form with at least three
possible outcomes is dictatorial.

Corollary:
Every voting scheme with at least three outcomes is
either dictatorial or manipulable.
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Proof of theorem

The result for game forms:
Every straightforward game form with at least three
possible outcomes is dictatorial.

Proof:

I Let g be a straightforward game form with at least 3
outcomes

I For each i , let σi be such that for every P, σi (P) is
P-dominant for i

I Let σ(P) = 〈σ1(P1), ..., σn(Pn)〉
I Let v = g ◦ σ
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Proof of theorem

I Fix some strict ordering Q. Let Z ⊆ X
I For each i , define Pi ∗ Z such that for all x , y ∈ X

I If x ∈ Z and y ∈ Z then x(Pi ∗ Z )y iff either zPiy
or both xIiy and xQy

I If x ∈ Z and y /∈ Z then x(Pi ∗ Z )y
I If x /∈ Z and y /∈ Z then x(Pi ∗ Z )y iff xQy

I Let P ∗ Z = 〈P1 ∗ Z , ...,Pn ∗ Z 〉
I define xPy to be

x 6= y ∧ x = v(P ∗ {x , y})

I Show f (P) = P is a social welfare function,
satisfying all of Arrow’s conditions except
non-dicatorship

I the dictator for f is a dictator for v = g ◦ σ
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Implications

I Any voting scheme we use will be manipulable,
unless trivial.

I Manipulability does not mean that in reality people
are always in a position to manipulate.
It means that it’s not guaranteed that they can’t.

I But reasons not to:
I ignorance
I integrity
I stupidity

But “the ‘ignorance’ and ‘stupidity’ required here are
just the ordinary conditions of human existence”
(Simon 2002, p. 112)
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More on the subject

I This result concerns non-chance procedures. Mixed
decision schemes can be non-manipulable. See
example and Gibbard’s Manipulation of schemes that
mix voting with chance, 1977

I Correspondence Arrow’s social welfare function and
non-manipulable voting scheme.
Satterthwaite:

I Gibbard does not consider voting schemes with
restricted outcomes. Can easily be fixed.

I Gibbard does not establish uniqueness of underlying
social welfare function. Easy to prove.

I Gibbard does not prove non-negative responsiveness
(NNR) for the swf. Can be done.
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Discussion

I Compare Gibbard’s and Satterthwaite’s versions of
Arrow’s conditions:

I Gibbard (p. 586): Scope; Unanimity; Pairwise
Determination (equiv. to IIA); Non-dictatorship

I Satterthwaite (p. 204): Non-dictatorship (ND);
Independence of Irrelevant Alternatives (IIA);
Citizen’s Sovereignty (CS); Non-negative
Responsiveness (NNR)

I Game forms take three steps: personal agenda ⇒
strategy ⇒ outcome
Why not use this for voting schemes too: preferences
⇒ ballot ⇒ social choice
(note: remember Gibbard’s example with the club
voting for alcoholic parties)
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