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Outline

A powerful approach in computational social choice is to use automated

reasoning tools (notably SAT solvers) to obtain (axiomatic) results.

But to date there are only very few papers in this area, because it’s hard to

get started with this kind of research. Plan: to help you get started yourself.

• Session 1 (now)

– introduction to the axiomatic method in social choice theory

– (manual) proof of the classical Gibbard-Satterthwaite Theorem

• Session 2 (this afternoon)

– automated reasoning approaches to social choice theory

– in-depth discussion of proof of G-S Theorem using a SAT solver

• Session 3 (next Tuesday afternoon)

– (optional) presentations of recent literature by participants

– (optional) discussion of solutions to programming exercises

– (optional) discussion of possible directions for future research
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Session 1: The Axiomatic Method
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Plan for Session 1

After a brief introduction to the theory of voting , we will review the

axiomatic method to analyse what makes for a good voting rule.

Our focus will be on the analysis of strategic behaviour of voters.

We will discuss the following seminal results in social choice theory:

• Arrow’s Theorem (1951)

• Gibbard-Satterthwaite Theorem (1973/1975)

• Duggan-Schwartz Theorem (2000)

Much of this material is covered in my expository paper cited below.

Later we’ll see an alternative proof of the G-S Thm via SAT solving.

U. Endriss. Logic and Social Choice Theory. In A. Gupta and J. van Benthem

(eds.), Logic and Philosophy Today, College Publications, 2011.
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Three Voting Rules

Suppose n voters choose from a set of m alternatives by stating their

preferences in the form of linear orders over the alternatives.

Here are three voting rules (there are many more):

• Plurality : elect the alternative ranked first most often

(i.e., each voter assigns 1 point to an alternative of her choice,

and the alternative receiving the most points wins)

• Plurality with runoff : run a plurality election and retain the two

front-runners; then run a majority contest between them

• Borda: each voter gives m−1 points to the alternative she ranks

first, m−2 to the alternative she ranks second, etc.; and the

alternative with the most points wins
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Example: Choosing a Beverage for Lunch

Consider this election, with nine voters having to choose from three

alternatives (namely what beverage to order for a common lunch):

2 Germans: Beer � Wine � Milk

3 Frenchmen: Wine � Beer � Milk

4 Dutchmen: Milk � Beer � Wine

Which beverage wins the election for

• the plurality rule?

• plurality with runoff?

• the Borda rule?
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The Model

Fix a finite set A = {a, b, c, . . .} of alternatives, with |A| = m.

Let L(A) denote the set of all strict linear orders � on A. We use

elements of L(A) to model (true) preferences and (declared) ballots.

Each member i of a finite set N = {1, . . . , n} of voters supplies us

with a ballot �i, giving rise to a profile � = (�1, . . . ,�n) ∈ L(A)n

(sometimes denoted R = (R1, . . . , Rn) ∈ L(A)n).

Notation: Write NR
x�y = {i ∈ N | (x, y) ∈ Ri} for the set of voters

who rank alternative x above alternative y in profile R.

A (resolute) voting rule (or social choice function) for N and A selects

one winner for every such profile:

F : L(A)n → A

Remark: Most natural voting rules are irresolute and have to be paired

with a tie-breaking rule to always select a unique election winner.
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The Axiomatic Method

Discussion: How do you choose the right voting rule?

One popular approach is to resort to the axiomatic method:

formulate basic normative principles (“axioms”) a voting rule

should satisfy and then see what those axioms entail . . .
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Axiom: The Pareto Principle

A resolute voting rule F is called (weakly) Paretian if, whenever all

voters rank alternative x above alternative y, then y cannot win:

NR
x�y = N implies F (R) 6= y

Discussion: Is this indeed a desirable property of a voting rule?
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Axiom: Independence of Irrelevant Alternatives

If alternative x wins and y does not, then x is socially preferred to y.

If both x and y lose, then we cannot say.

Whether x is socially preferred to y should depend only on the relative

rankings of x and y in the profile (not on other, irrelevant, alternatives).

These considerations motivate our next axiom:

F is called independent if, for any two profiles R,R′ ∈ L(A)n

and any two distinct alternatives x, y ∈ A, it is the case that

NR
x�y = NR′

x�y and F (R) = x imply F (R′) 6= y.

Thus, if x prevents y from winning in R and the relative rankings of x

and y remain the same, then x also prevents y from winning in R′.

Discussion: Is this indeed a desirable property of a voting rule?

Ulle Endriss 10



Automated Reasoning for Social Choice Theory LAMSADE, October 2019

Arrow’s Impossibility Theorem

The seminal result in SCT, here adapted from social welfare functions

to social choice functions (i.e., to resolute voting rules):

Theorem 1 (Arrow, 1951) Any resolute SCF for > 3 alternatives

that is Paretian and independent must be a dictatorship.

Terminology: F is a dictatorship if there exists an i ∈ N such that

F (R) = top(Ri) for every profile R. Voter i is the dictator.

Remarks:

• You should be surprised by this and refuse to believe it (for now).

• Not true for m = 2 alternatives. (Why? )

• Common misunderstanding: dictatorship 6= “local dictatorship”

• Impossibility reading: independence + Pareto + nondictatoriality

• Characterisation reading: dictatorship = independence + Pareto

K.J. Arrow. Social Choice and Individual Values. John Wiley and Sons, 2nd

edition, 1963. First edition published in 1951.
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Proof Plan

For full details consult my expository paper cited below.

Let F be a SCF for > 3 alternatives that is Paretian and independent.

Call a coalition C ⊆ N decisive for (x, y) if C ⊆ NR
x�y ⇒ y 6= F (R).

We proceed as follows:

• Pareto condition = N is decisive for all pairs of alternatives

• C with |C| > 2 decisive for all pairs ⇒ some C ′⊂C as well

• By induction: there’s a decisive coalition of size 1 (= dictator).

Remark: Observe that this only works for finite sets of voters. (Why? )

The step in the middle of the list is known as the Contraction Lemma.

To prove it, we first require another lemma . . .

U. Endriss. Logic and Social Choice Theory. In A. Gupta and J. van Benthem

(eds.), Logic and Philosophy Today, College Publications, 2011.
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Contagion Lemma

Recall: C ⊆ N decisive for (x, y) if C ⊆ NR
x�y ⇒ y 6= F (R)

Call C ⊆ N weakly decisive for (x, y) if C =NR
x�y ⇒ y 6= F (R).

Claim: C weakly decisive for (x, y) ⇒ C decisive for all pairs (x′, y′).

Proof: Suppose x, y, x′, y′ are all distinct (other cases: similar).

Consider a profile where individuals express these preferences:

• Members of C: x′ � x � y � y′

• Others: x′ � x, y � y′, and y � x (note: x′-vs.-y′ not specified)

• All rank x, y, x′, y′ above all other alternatives.

From C being weakly decisive for (x, y): y must lose.

From Pareto: x must lose (to x′) and y′ must lose (to y).

Thus, x′ must win (and y′ must lose). By independence, y′ will still

lose when everyone changes their non-x′-vs.-y′ rankings.

Thus, for every profile R with C ⊆ NR
x′�y′ we get y′ 6= F (R). X
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Contraction Lemma

Claim: If C ⊆ N with |C| > 2 is a coalition that is decisive on all pairs of

alternatives, then so is some nonempty coalition C′ ⊂ C.

Proof: Take any nonempty C1, C2 with C = C1 ∪ C2 and C1 ∩ C2 = ∅.

Recall that there are > 3 alternatives. Consider this profile:

• Members of C1: x � y � z � rest

• Members of C2: y � z � x � rest

• Others: z � x � y � rest

As C = C1 ∪ C2 is decisive, z cannot win (it loses to y). Two cases:

(1) The winner is x: Exactly C1 ranks x � z ⇒ By independence, in any

profile where exactly C1 ranks x � z, z will lose (to x) ⇒ C1 is weakly

decisive on (x, z). So by Contagion Lemma: C1 is decisive on all pairs.

(2) The winner is y, i.e., x loses (to y). Exactly C2 ranks y � x ⇒ · · · ⇒
C2 is decisive on all pairs.

Hence, one of C1 and C2 will always be decisive. X
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Example

Recall that under the plurality rule the candidate ranked first most

often wins the election.

Assume the preferences of the people in, say, Florida are as follows:

49%: Bush � Gore � Nader

20%: Gore � Nader � Bush

20%: Gore � Bush � Nader

11%: Nader � Gore � Bush

So even if nobody is cheating, Bush will win this election.

I It would have been in the interest of the Nader supporters to

manipulate, i.e., to misrepresent their preferences.

Is there a better voting rule that avoids this problem?
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Truthfulness, Manipulation, Strategyproofness

We now distinguish the ballot a voter reports from her true preference.

Both are elements of L(A). If they coincide, then the voter is truthful .

F is strategyproof (or immune to manipulation) if for no individual

i ∈ N there exist a profile R (including the “truthful preference” Ri

of i) and a linear order R′i (representing the “untruthful” ballot of i)

such that F (R′i,R−i) is ranked above F (R) according to Ri.

In other words: under a strategyproof voting rule no voter will ever

have an incentive to misrepresent her preferences.

Discussion:

• Why do we want voting rules to be strategyproof? (Or why not?)

• What do you think about the “full information” assumption?

Notation: (R′i,R−i) is the profile obtained by replacing Ri in R by R′i.
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The Gibbard-Satterthwaite Theorem

Gibbard (1973) and Satterthwaite (1975) independently proved:

Theorem 2 (Gibbard-Satterthwaite) Any resolute SCF for > 3

alternatives that is surjective and strategyproof is a dictatorship.

Axiom: F is surjective if for every alternative x ∈ A there is a profile

R such that F (R) = x. So no x is excluded from winning a priori.

Remarks:

• a surprising result + not applicable in case of two alternatives

• The opposite direction is clear: dictatorial ⇒ strategyproof

• Random procedures don’t count (but might be “strategyproof”).

Exercise: Show that surjectivity is required for this theorem to hold.

A. Gibbard. Manipulation of Voting Schemes: A General Result. Econometrica,

1973.

M.A. Satterthwaite. Strategy-proofness and Arrow’s Conditions. Journal of Eco-

nomic Theory, 1975.
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Proof Plan

We will show that the axioms featuring in the Gibbard-Satterthwaite

Theorem entail the axioms featuring in Arrow’s Theorem:

• strategyproofness ⇒ independence

• strategyproofness + surjectivity ⇒ Pareto Principle

The claim then follows from Arrow’s Theorem.

Again, for full details consult my expository paper cited below.

U. Endriss. Logic and Social Choice Theory. In A. Gupta and J. van Benthem

(eds.), Logic and Philosophy Today, College Publications, 2011.
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Lemma: Deriving Independence

Recall: F is independent if, for x 6= y, we have that NR
x�y = NR′

x�y
and F (R) = x together imply F (R′) 6= y.

Claim: If F is strategyproof, then F is also independent.

Proof: Suppose F is strategyproof.

For the sake of contradiction, assume F is not independent, i.e., can

find x 6= y and R 6= R′ s.t. NR
x�y = NR′

x�y and F (R)=x yet F (R′)=y.

W.l.o.g., assume that R and R′ differ on just a single voter i (if voters

switch one by one, there must be a first violation of independence).

But then, if R′ is the truthful profile, voter i has an incentive to

manipulate and move to profile R. Contradiction! X
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Lemma: Deriving the Pareto Principle

Recall: F is Paretian if NR
x�y = N implies F (R) 6= y.

Claim: If F is strategyproof and surjective, then F is also Paretian.

Proof: Suppose F is strategyproof and surjective.

Take any two alternatives x and y.

From surjectivity: x will win for some profile R.

Starting in R, have everyone move x to the top (if not there already).

Due to strategyproofness, after every such move, x still wins, as

otherwise the voter who just moved x to the top would have an

incentive to manipulate in that new profile.

From independence: y does not win for any profile where all voters

continue to rank x � y. X
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Circumventing the Gibbard-Satterthwaite Theorem

So it is impossible to design reasonable voting rules that cannot be

manipulated by a strategic voter.

But there are approaches to circumventing this impossibility:

• domain restrictions, such as single-peakedness

• computational barriers to manipulation

• informational barriers to manipulation

D. Black. On the Rationale of Group Decision-Making. The Journal of Political

Economy, 1948.

V. Conitzer and T. Walsh. Barriers to Manipulation in Voting. In F. Brandt et al.

(eds.), Handbook of Computational Social Choice. Cambridge Univ. Press, 2016.

A. Reijngoud and U. Endriss. Voter Response to Iterated Poll Information.

AAMAS-2012.
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Irresolute Voting Rules

The Gibbard-Satterthwaite Theorem only applies to resolute rules.

But every “natural” voting rule will sometimes result in a tie.

Arguably, we really should be analysing irresolute voting rules:

F : L(A)n → 2A \ {∅}
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Manipulability w.r.t. Psychological Assumptions

To analyse manipulability when we might get a set of winners, we need

to make assumptions on how voters rank sets of alternatives, e.g.:

• A voter is an optimist if she prefers X over Y whenever she

prefers her favourite x ∈ X over her favourite y ∈ Y .

• A voter is a pessimist if she prefers X over Y whenever she

prefers her least preferred x ∈ X over her least preferred y ∈ Y .

Now we can speak about manipulability by certain types of voters:

• F is called immune to manipulation by optimistic voters if

no optimistic voter can ever benefit from voting untruthfully.

• F is called immune to manipulation by pessimistic voters if

no pessimistic voter can ever benefit from voting untruthfully.
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Axiom: Nonimposition

Let F be an irresolute voting rule/SCF F : L(A)n → 2A \ {∅}.

I F is nonimposed if for every alternative x there exists a profile R

under which x is the unique winner: F (R) = {x}.

For comparison, surjectivity means that for every element in the range

of F there is an input producing that element. Thus:

resolute ⇒ (nonimposed = surjective)
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Dictatorships for Irresolute Rules

Let F be an irresolute voting rule/SCF F : L(A)n → 2A \ {∅}.

There are two natural notions of dictatorship for such rules:

• Voter i ∈ N is called a (strong) dictator if F (R) = {top(Ri)} for

every profile R ∈ L(A)n.

• Voter i ∈ N is called a weak dictator if top(Ri) ∈ F (R) for every

profile R ∈ L(A)n. (Such a voter is also called a nominator .)

F is called weakly dictatorial if it has a weak dictator. Otherwise F is

called strongly nondictatorial .
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The Duggan-Schwartz Theorem

There are several extensions of the Gibbard-Satterthwaite Theorem for

irresolute voting rules. The Duggan-Schwartz Theorem is usually

regarded as the strongest of these results.

Our statement of the theorem follows Taylor (2002):

Theorem 3 (Duggan and Schwartz, 2000) Any voting rule for > 3

alternatives that is nonimposed and immune to manipulation by both

optimistic and pessimistic voters is weakly dictatorial.

Proof: Omitted.

Note that the Gibbard-Satterthwaite Theorem is a direct corollary.

J. Duggan and T. Schwartz. Strategic Manipulation w/o Resoluteness or Shared

Beliefs: Gibbard-Satterthwaite Generalized. Social Choice and Welfare, 2000.

A.D. Taylor. The Manipulability of Voting Systems. The American Mathematical

Monthly, 2002.
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Summary

This has been an introduction to the axiomatic method in SCT, and

voting theory in particular. We focused on strategic manipulation:

• Gibbard-Satterthwaite: only dictatorships are strategyproof

amongst the resolute and surjective voting rules

• Duggan-Schwartz: dropping the resoluteness requirement does

not provide a clear way out of this impossibility

Recall that we first proved Arrow’s Theorem and then used it as a

lemma to prove the Gibbard-Satterthwaite Theorem.

Next: Automating the proofs for results such as these . . .
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Session 2: SAT Solving for Social Choice Theory
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Plan for Session 2

Obtaining axiomatic results in SCT is hard: eliminating various minor

errors from the original proof of Arrow’s Theorem took several years;

the Gibbard-Satterthwaite Theorem was conjectured at least a decade

before it was proved correct; getting new results is really challenging.

Can automated reasoning , as studied in AI, help? Yes!

We will focus on one such approach (case study: G-S Theorem):

• encode a social choice scenario into propositional logic

• reason about this encoding with the help of a SAT solver

Consult Geist and Peters (2017) for an introduction to this approach.

But first: general remarks on logic and automated reasoning for SCT

C. Geist and D. Peters. Computer-Aided Methods for Social Choice Theory. In

U. Endriss (ed.), Trends in Computational Social Choice. AI Access, 2017.
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Logic for Social Choice Theory

It can be insightful to model SCT problems in logic (Pauly, 2008):

• One research direction is to explore how far we can get using a

standard logic , such as classical FOL. Do we need second-order

constructs to capture IIA? (Grandi and Endriss, 2013)

• Another direction is to design tailor-made logics specifically for

SCT (for instance, a modal logic). Can we cast the proof of

Arrow’s Theorem in natural deduction? (Ciná and Endriss, 2016)

M. Pauly. On the Role of Language in Social Choice Theory. Synthese, 2008.

U. Grandi and U. Endriss. First-Order Logic Formalisation of Impossibility Theo-

rems in Preference Aggregation. Journal of Philosophical Logic, 2013.

G. Ciná and U. Endriss. Proving Classical Theorems of Social Choice Theory in

Modal Logic. Journal of Autonomous Agents and Multiagent Systems, 2016.
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Automated Reasoning Approaches

Logic has long been used to help verify the correctness of hardware

and software. Can we use this methodology also here? Yes!

• Automated verification of a (known) proof of Arrow’s Theorem in

the HOL proof assistant Isabelle (Nipkow, 2009).

• Automated proof of Arrow’s Theorem for 3 alternatives and

2 voters using a SAT solver (Tang and Lin, 2009).

• Use of model checking to verify correctness of implementations

(e.g., in Java) of voting rules (Beckert et al., 2017).

We will now focus on the second approach above.

T. Nipkow. Social Choice Theory in HOL. J. Automated Reasoning, 2009.

P. Tang and F. Lin. Computer-aided Proofs of Arrow’s and other Impossibility

Theorems. Artificial Intelligence, 2009.

B. Beckert, T. Bormer, R. Goré, M. Kirsten, and C. Schürmann. An Introduction

to Voting Rule Verification. In Trends in COMSOC. AI Access, 2017.
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Case Study: The Gibbard-Satterthwaite Theorem

Recall this central theorem of social choice theory:

Theorem 4 (Gibbard-Satterthwaite) There exists no resolute SCF

for > 3 alternatives that is surjective, strategyproof, and nondictatorial.

Remark: The theorem is trivially true for n = 1 voter. (Why? )

We will now discuss an alternative proof:

• We use a SAT solver to automatically prove that the theorem

holds for the smallest nontrivial case (with n = 2 and m = 3).

• Using purely theoretical means, we prove that this entails the

theorem for all larger values of n and m (as long as n is finite).

A. Gibbard. Manipul. of Voting Schemes: A General Result. Econometrica, 1973.

M.A. Satterthwaite. Strategy-proofness and Arrow’s Conditions. Journal of Eco-

nomic Theory, 1975.
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Approach

We will use Lingeling , a SAT solver developed by the formal methods

group at Johannes Kepler University Linz (fmv.jku.at/lingeling/).

Lingeling can check whether a given formula in CNF is satisfiable.

The formula must be represented as a list of lists of integers,

corresponding to a conjunction of disjunctions of literals.

Positive (negative) numbers represent positive (negative) literals.

Example: [[1,-2,3], [-1,4]] represents (p ∨ ¬q ∨ r) ∧ (¬p ∨ s).

We will use a Python script (Python3) to generate a propositional

formula ϕGS that is satisfiable iff there exists a resolute SCF for n = 2

voters and m = 3 alternatives that is surjective, SP, and nondictatorial.

Using Lingeling, we will show that ϕGS is not satisfiable.

To access Lingeling from Python we will use the library pylgl, which

provides a function solve (pypi.org/project/pylgl/).

Example: solve([[1], [-1,2], [-2]]) will result in ’UNSAT’. X
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Basics: Voters, Alternatives, Profiles

We first fix n (number of voters) and m (number of alternatives):

n = 2

m = 3

Voters and alternatives are referred to by number (starting from 0).
Functions to retrieve the lists of all voters and all alternatives:

def allVoters():

return range(n)

def allAlternatives():

return range(m)

There are (m!)n different profiles. We refer to them by number as well.
Function to retrieve the list of all profiles:

from math import factorial

def allProfiles():

return range(factorial(m) ** n)
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Working with Permutations

We will model preferences as permutations of the set of alternatives.

The most complicated piece of code we need is a function to return

the nth permutation of a given list L (with n ∈ {0, . . . , |L|!− 1}):

def nthPerm(num, mylist):

length = len(mylist)

if length > 1:

pos = num // factorial(length-1)

restnum = num - pos * factorial(length-1)

restlist = mylist[:pos] + mylist[pos+1:]

return [mylist[pos]] + nthPerm(restnum, restlist)

else:

return [mylist[0]]

This works as intended:

>>> nthPerm(1, [0,1,2]) >>> nthPerm(5, [0,1,2])

[0, 2, 1] [2, 1, 0]
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Extracting Preferences

Also preferences are referred to by number (between 0 and m!− 1).

Function to return the preference of voter i in profile R:

def preference(i, r):

fact = factorial(m)

return ( r % (fact ** (i+1)) ) // (fact ** i)

Think of profile numbers as m!-ary numbers (digits = preferences).

Example: For n = 5 and m = 3, to extract the preference of voter 1 in

profile number 99, note that 99 = 0 · 64 +0 · 63 +2 · 62 +4 · 61 +3 · 60.

So her preference order is the 4th permutation of [0,1,2].
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Interpreting Preferences

Putting together our functions for extracting (numbers representing)

preferences from a given (number representing a) profile and for

handling permutations, it is now straightforward to provide a function

to check whether voter i prefers alternative x to y in profile R:

def prefers(i, x, y, r):

mylist = nthPerm(preference(i,r), list(allAlternatives()))

return mylist.index(x) < mylist.index(y)

Function to check whether x is voter i’s top alternative in profile R:

def top(i, x, r):

mylist = nthPerm(preference(i,r), list(allAlternatives()))

return mylist.index(x) == 0
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Restricting the Range of Quantification

When formulating axioms, we sometimes need to quantify over all

alternatives that satisfy a certain (boolean) condition:

def alternatives(condition):

return [x for x in allAlternatives() if condition(x)]

Example: You can now generate the list of all alternatives that meet

the condition of being different from 1 (condition = λx.(x 6= 1)).

>>> alternatives(lambda x : x!=1)

[0, 2]

And the corresponding functions for voters and profiles:

def voters(condition):

return [i for i in allVoters() if condition(i)]

def profiles(condition):

return [r for r in allProfiles() if condition(r)]
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Literals

We can specify any (possibly irresolute) SCF F : L(A)n → 2A \ {∅} by

saying whether or not x ∈ F (R) for every profile R and alternative x.

So create a propositional variable pR,x for every profile R ∈ L(A)n

and every alternative x ∈ A, with the intended meaning that:

pR,x is true iff x ∈ F (R)

Exercise: How many variables for n = 2 voters and m = 3 alternatives?

Need to decide which number to use to represent pR,x. Good option:

def posLiteral(r, x):

return r * m + x + 1

Recall: r ∈ {0, . . . , (m!)n−1}
and x ∈ {0, . . . ,m−1}

And negative literals are represented by negative numbers:

def negLiteral(r, x):

return (-1) * posLiteral(r, x)
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Modelling Social Choice Functions

Every assignment of truth values to our 108 variables pR,x corresponds

to a function F : L(A)n → 2A (in case n = 2 and |A| = 3).

But: a (possibly irresolute) SCF is a function F : L(A)n → 2A \ {∅}.

Fix this by restricting attention to models of this formula:

ϕat-least-one =
∧

R∈L(A)n

( ∨
x∈A

pR,x

)

The following function will generate this formula:

def cnfAtLeastOne():

cnf = []

for r in allProfiles():

cnf.append([posLiteral(r,x) for x in allAlternatives()])

return cnf
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At Least One Winning Alternative

Let’s give it a try:

>>> cnfAtLeastOne()

[[1, 2, 3], [4, 5, 6], [7, 8, 9], [10, 11, 12], [13, 14, 15],

[16, 17, 18], [19, 20, 21], [22, 23, 24], [25, 26, 27], [28,

29, 30], [31, 32, 33], [34, 35, 36], [37, 38, 39], [40, 41,

42], [43, 44, 45], [46, 47, 48], [49, 50, 51], [52, 53, 54],

[55, 56, 57], [58, 59, 60], [61, 62, 63], [64, 65, 66], [67,

68, 69], [70, 71, 72], [73, 74, 75], [76, 77, 78], [79, 80,

81], [82, 83, 84], [85, 86, 87], [88, 89, 90], [91, 92, 93],

[94, 95, 96], [97, 98, 99], [100, 101, 102], [103, 104, 105],

[106, 107, 108]]

Nice: we really get (3!)2 = 36 clauses of 3 positive literals each.
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Resoluteness

We now write similar functions for each one of our axioms.

F is resolute if for all profiles R and all alternatives x and y it is the

case that x 6∈ F (R) or y 6∈ F (R). So: at most one winner per profile.

Note: Can restrict quantification to x < y (when taken as numbers).

ϕresolute =
∧

R∈L(A)n

∧
x∈A

 ∧
y∈A

s.t. x<y

¬pR,x ∨ ¬pR,y




def cnfResolute():

cnf = []

for r in allProfiles():

for x in allAlternatives():

for y in alternatives(lambda y : x < y):

cnf.append([negLiteral(r,x), negLiteral(r,y)])

return cnf
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Surjectivity

Surjectivity is most naturally expressed as a conjunction of disjunctions

of conjunctions (how? ). Could translate to CNF, but this is easier:

If F is already known to be resolute, then F is surjective if for all

alternatives x there exists a profile R such that x ∈ F (R).

ϕsurjective =
∧
x∈A

 ∨
R∈L(A)n

pR,x


So: every alternative is amongst the winners in at least one profile.

def cnfSurjective():

cnf = []

for x in allAlternatives():

cnf.append([posLiteral(r,x) for r in allProfiles()])

return cnf
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Preparation for Modelling Strategyproofness

To model strategyproofness we need to be able to model that two

profiles are so-called i-variants (for some agent i ∈ N):

R =−i R
′ iff Rj = R′j for all agents j ∈ N \ {i}

Recall: preference(j,r) returns the preference of voter j in profile r

Now our implementation is straightforward:

def iVariants(i, r1, r2):

return all(preference(j,r1) ==

preference(j,r2) for j in voters(lambda j : j!=i))
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Strategyproofness

Resolute F is strategyproof if for all voters i, all (truthful) profiles

R1, all of its i-variants R2, all alternatives x, and all alternatives y

dispreferred to x by i in R1 we have: F (R1) = y implies F (R2) 6= x.

ϕSP =
∧
i∈N

 ∧
R1∈L(A)n

 ∧
R2∈L(A)n

s.t. R1=−iR2

∧
x∈A

 ∧
y∈A

s.t. i∈NR1
x�y

¬pR1,y ∨ ¬pR2,x






def cnfStrategyProof():

cnf = []

for i in allVoters():

for r1 in allProfiles():

for r2 in profiles(lambda r2 : iVariants(i,r1,r2)):

for x in allAlternatives():

for y in alternatives(lambda y : prefers(i,x,y,r1)):

cnf.append([negLiteral(r1,y), negLiteral(r2,x)])

return cnf
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Nondictatorship

Resolute F is nondictatorial if for all voters i there exists a profile R

such that F (R) 6= x for alternative x = topi(R).

ϕnondictatorial =
∧
i∈N

 ∨
R∈L(A)n

 ∨
x∈A

s.t. x=topi(R)

¬pR,x


 this works as

x = topi(R)
for just one x

def cnfNondictatorial():

cnf = []

for i in allVoters():

clause = []

for r in allProfiles():

for x in alternatives(lambda x : top(i,x,r)):

clause.append(negLiteral(r,x))

cnf.append(clause)

return cnf
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Proving the (Special Case of the) Theorem

Putting it all together:

>>> cnf = ( cnfAtLeastOne() + cnfResolute() + cnfSurjective()

... + cnfStrategyProof() + cnfNondictatorial() )

This is a conjunction of 1445 clauses (using 108 variables, as we saw):

>>> len(cnf)

1445

We make Lingeling available like this:

from pylgl import solve

And now the moment of truth has come:

>>> solve(cnf)

’UNSAT’

Done! So the G-S Theorem really holds for n = 2 and m = 3. Nice. X
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Discussion: Confidence in Computer Proofs?

Some will object to this approach. Can we trust this kind of proof?

Your computer-generated proof using a SAT solver is valid only if:

• your encoding of your question into propositional logic is correct

• the implementation of the SAT solver is correct

• the environment the solver is running in works to specification

Fortunately, there are some pretty good counterarguments:

• Correctness of (leading) SAT solvers not an issue: was scrutinised

by many more people than most manual proofs in the literature.

So, if the part you implement yourself is short and clean (if it can

be printed in a paper submitted for publication), then you are ok.

• Due to standardised input/output format for SAT solvers, you can

verify the correctness of your proof using third-party tools.

• Sometimes you can automatically extract a human-readable proof.
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Completing the Proof of the G-S Theorem

We now have a proof of the Gibbard-Satterthwaite Theorem for the

special case of n = 2 voters and m = 3 alternatives. Next we show:

• impossible for n>2 and m=3 ⇒ impossible for n+1 and m=3

• impossible for n>2 and m=3 ⇒ impossible for n and any m>3

Observe how this entails an impossibility result for all n > 2 and m > 3.

Next: Proofs of (the contrapositives of) the above two lemmas.

Remark: Recall that we had seen in the first session that any resolute

SCF that is both surjective and strategyproof must also be Paretian.

We will use this fact for the proofs of both lemmas.
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First Lemma

Lemma 5 If there exists a resolute SCF for n+ 1 > 2 voters and three

alternatives that is surjective, strategyproof, and nondictatorial, then there

also exists such a SCF for n voters and three alternatives.

Proof: Let A = {a, b, c} and N = {1, . . . , n}. Now take any resolute SCF

F : L(A)n+1 → A that is surjective, SP, and nondictatorial.

For every i ∈ N , define Fi : L(A)n → A via Fi(R) = F (R, Ri). And check:

• All Fi are surjective: Immediate from F being Paretian. X

• All Fi are SP: First, no j 6= i can manipulate, given that F is SP.

Now suppose voter i can manipulate in R using R′i. Thus, i prefers

F (R−i, R
′
i, R
′
i) to F (R−i, Ri, Ri). But then i also must prefer

F (R−i, R
′
i, R
′
i) to F (R−i, R

′
i, Ri) or F (R−i, R

′
i, Ri) to F (R−i, Ri, Ri).

So F is manipulable in both cases. Contradiction. X

• At least one Fi is nondictatorial : If all Fi are dictatorial, F must elect

the top-choice of voter n+1 whenever at least one other voter submits

the same ballot. But any such F is manipulable. Contradiction. X
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Second Lemma

Lemma 6 If there exists a resolute SCF for n voters and m > 3 alternatives

that is surjective, strategyproof, and nondictatorial, then there also exists

such a SCF for n voters and three alternatives.

Proof: Let m > 3 and let A = {a,b,c,a4, . . . ,am}. Take any resolute SCF

F : L(A)n → A that is surjective, SP, and nondictatorial.

For any R ∈ L({a,b,c}), let R+ = R(1)�R(2)�R(3)�a4�· · ·�am.

Now define a SCF F a,b,c : L({a,b,c})n → {a,b,c} for three alternatives:

F a,b,c(R1, . . . , Rn) = F (R+
1 , . . . , R

+
n )

F a,b,c is well-defined (really maps to {a,b,c}) and surjective, because F is

Paretian. F a,b,c also is immediately seen to be SP.

Done if If F a,b,c is nondictatorial. If not, consider all F x,y,z for x, y, z ∈ A.

Done if one of them is nondictatorial. If all are dictatorial, get contradiction:

As SP implies independence, if F a,b,c has dictator i, i is “local dictator” for

{a, b, c} under F . So F has some local dictator for every triple. But these

local dictators cannot be distinct voters, so F in fact must be dictatorial. X
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Critique of the Approach

A possible objection to this approach is that proving the lemmas can

be quite difficult, almost as difficult as proving the theorem itself.

This is a valid concern. But:

• A successful proof for a special case with small n and m provides

strong evidence for (though no formal proof of) a general result.

Indeed: The G-S Theorem is surprising. Our lemmas are not at all!

Can use this as a heuristic to decide what to investigate further.

• Sometimes it may be possible to prove a general lemma: as long

as the axioms involved meet certain conditions, every impossibility

established for a small scenario will generalise to all larger ones.
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Refinements of the Approach (1)

The approach was originally developed by Tang and Lin (2009) who

used it to reprove Arrow’s Theorem and related impossibility results.

Since then there have been several refinements of the basic approach:

• General reduction lemma that applies to all axioms meeting

certain syntactic restrictions. Allows for automated discovery

(not just verification) of results (Geist and Endriss, 2011).

Trivia: This allowed us to prove 84 impossibility theorems in a

space of 20 axioms (by trying all subsets).

P. Tang and F. Lin. Computer-aided Proofs of Arrow’s and other Impossibility

Theorems. Artificial Intelligence, 2009.

C. Geist and U. Endriss. Automated Search for Impossibility Theorems in Social

Choice Theory: Ranking Sets of Objects. Journal of AI Research, 2011.
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Refinements of the Approach (2)

Further developments have taken place very recently:

• More sophisticated encodings into SAT (Brandt and Geist, 2016).

• Extraction of minimally unsatisfiable sets to enable construction of

human-readable proofs (Brandt and Geist, 2016).

• Extension to SMT solving (satisfiability modulo theories). Used to

obtain results for probabilistic social choice (Brandl et al., 2018).

F. Brandt and C. Geist. Finding Strategyproof Social Choice Functions via SAT

Solving. Journal of Artificial Intelligence Research, 2016.

F. Brandl, F. Brandt, M. Eberl, and C. Geist. Proving the Incompatibility of

Efficiency and Strategyproofness via SMT Solving. Journal of the ACM, 2018.
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Summary

This has been an introduction to the application of tools from logic

and automated reasoning to the study of social choice.

Our focus has been on a hands-on example: proving the “base case”

of the Gibbard-Satterthwaite Theorem with a SAT solver.

An approach with lots of potential (but steep learning curve!).

Related work discussed only very briefly:

• logical modelling of social choice scenarios using a variety of logics

• verification of known proofs using interactive theorem provers

• formal verification of implementations of voting rules

For a discussion of the relevance of the SAT solving approach to SCT

for Economics, consult Chatterjee and Sen (2014).

S. Chatterjee and A. Sen. Automated Reasoning in Social Choice Theory: Some

Remarks. Mathematics in Computer Science, 2014.
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Exercises

I encourage you to attempt these exercises (details on course website):

• Use our program to obtain descriptions of all resolute voting rules

for n = 2 and m = 3 that are strategyproof.

• Prove the Duggan-Schwartz Theorem (generalising the G-S Thm

to irresolute rules) for n = 2 and m = 3 via SAT solving.

http://www.illc.uva.nl/~ulle/teaching/paris-2019/
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