Preface

These lecture notes introduce the declarative programming language Prolog. The emphasis is on learning how to program, rather than on the theory of logic programming. Nevertheless, a short chapter on the logic foundations of Prolog is included as well.

All examples have been tested using SWI-Prolog (www.swi-prolog.org) and can be expected to work equally well with most other Prolog systems. These notes have originally been developed for a course I taught at King’s College London in 1999 and 2000.

Amsterdam, August 2005

The present version corrects a number of minor errors in the text, most of which have been pointed out to me by students following a number of courses I have given at the University of Amsterdam since 2005.

Amsterdam, September 2014

For this latest version of the lecture notes, I have added 15 new exercises. This includes somewhat more complex exercises, several of which can easily be turned into small programming projects, on topics such as working with unary numbers, simple databases, robot navigation, verifying Goldbach’s conjecture in number theory for small instances, competing in the game show Countdown, text-based graph plotting, computing prime factorisations of integers, translating logic formulas into various normal forms, and analysing the voting power of countries in the European Union.

Amsterdam, August 2015
Contents

1 The Basics
1.1 Getting Started: An Example 1
1.2 Prolog Syntax ... 4
1.2.1 Terms .. 4
1.2.2 Clauses, Programs and Queries 5
1.2.3 Some Built-in Predicates 6
1.3 Answering Queries .. 8
1.3.1 Matching ... 8
1.3.2 Goal Execution 10
1.4 A Matter of Style ... 11
1.5 Exercises .. 12

2 List Manipulation
2.1 Notation .. 15
2.2 Head and Tail ... 15
2.3 Some Built-in Predicates for List Manipulation 18
2.4 Exercises .. 19

3 Arithmetic Expressions
3.1 The is-Operator for Arithmetic Evaluation 23
3.2 Predefined Arithmetic Functions and Relations 24
3.3 Exercises .. 25

4 Operators
4.1 Precedence and Associativity 37
4.2 Declaring Operators with op/3 40
4.3 Exercises .. 41

5 Backtracking, Cuts and Negation
5.1 Backtracking and Cuts 47
5.1.1 Backtracking Revisited 47
5.1.2 Problems with Backtracking 48
5.1.3 Introducing Cuts 49
Chapter 1

The Basics

Prolog (programming in logic) is one of the most widely used programming languages in artificial intelligence research. As opposed to imperative languages such as C or Java (the latter of which also happens to be object-oriented) it is a declarative programming language. That means, when implementing the solution to a problem, instead of specifying how to achieve a certain goal in a certain situation, we specify what the situation (rules and facts) and the goal (query) are and let the Prolog interpreter derive the solution for us. Prolog is very useful in some problem areas, such as artificial intelligence, natural language processing, databases, . . . , but pretty useless in others, such as graphics or numerical algorithms.

By following this course, you will learn how to use Prolog as a programming language to solve practical problems in computer science and artificial intelligence. You will also learn how the Prolog interpreter actually works. The latter will include an introduction to the logical foundations of the Prolog language.

These notes cover the most important Prolog concepts you need to know about, but it is certainly worthwhile to also have a look at the literature. The following three are well-known titles, but you may also consult any other textbook on Prolog.

1.1 Getting Started: An Example

In the introduction it has been said that Prolog is a declarative (or descriptive) language. Programming in Prolog means describing the world. Using such programs means asking Prolog questions about the previously described world. The simplest way of describing the world is by stating facts, like this one:
bigger(elephant, horse).

This states, quite intuitively, the fact that an elephant is bigger than a horse. (Whether the world described by a Prolog program has anything to do with our real world is, of course, entirely up to the programmer.) Let’s add a few more facts to our little program:

bigger(elephant, horse).
bigger(horse, donkey).
bigger(donkey, dog).
bigger(donkey, monkey).

This is a syntactically correct program, and after having compiled it we can ask the Prolog system questions (or queries in proper Prolog-jargon) about it. Here’s an example:

?- bigger(donkey, dog).
Yes

The query bigger(donkey, dog) (i.e., the question “Is a donkey bigger than a dog?”) succeeds, because the fact bigger(donkey, dog) has previously been communicated to the Prolog system. Now, is a monkey bigger than an elephant?

?- bigger(monkey, elephant).
No

No, it’s not. We get exactly the answer we expected: the corresponding query, namely bigger(monkey, elephant) fails. But what happens when we ask the other way round?

?- bigger(elephant, monkey).
No

According to this elephants are not bigger than monkeys. This is clearly wrong as far as our real world is concerned, but if you check our little program again, you will find that it says nothing about the relationship between elephants and monkeys. Still, we know that if elephants are bigger than horses, which in turn are bigger than donkeys, which in turn are bigger than monkeys, then elephants also have to be bigger than monkeys. In mathematical terms: the bigger-relation is transitive. But this has also not been defined in our program. The correct interpretation of the negative answer Prolog has given is the following: from the information communicated to the system it cannot be proved that an elephant is bigger than a monkey.

If, however, we would like to get a positive reply for a query like bigger(elephant, monkey), we have to provide a more accurate description of the world. One way of doing this would be to add the remaining facts, such as bigger(elephant, monkey), to our program. For our little example this would mean adding another 5 facts. Clearly too much work and probably not too clever anyway.

The far better solution would be to define a new relation, which we will call is_bigger, as the transitive closure (don’t worry if you don’t know what that means)
of bigger. Animal X is bigger than animal Y either if this has been stated as a fact or if there is an animal Z for which it has been stated as a fact that animal X is bigger than animal Z and it can be shown that animal Z is bigger than animal Y. In Prolog such statements are called rules and are implemented like this:

```prolog
is_bigger(X, Y) :- bigger(X, Y).
is_bigger(X, Y) :- bigger(X, Z), is_bigger(Z, Y).
```

In these rules :- means something like “if” and the comma between the two terms `bigger(X, Z)` and `is_bigger(Z, Y)` stands for “and”. X, Y, and Z are variables, which in Prolog is indicated by using capital letters.

You can think of the the bigger-facts as data someone has collected by browsing through the local zoo and comparing pairs of animals. The implementation of `is_bigger`, on the other hand, could have been provided by a knowledge engineer who may not know anything at all about animals, but understands the general concept of something being bigger than something else and thereby has the ability to formulate general rules regarding this relation. If from now on we use `is_bigger` instead of `bigger` in our queries, the program will work as intended:

```prolog
?- is_bigger(elephant, monkey).
```

Prolog still cannot find the fact `bigger(elephant, monkey)` in its database, so it tries to use the second rule instead. This is done by matching the query with the head of the rule, which is `is_bigger(X, Y)`. When doing so the two variables get instantiated: X = elephant and Y = monkey. The rule says that in order to prove the goal `is_bigger(X, Y)` (with the variable instantiations that’s equivalent to `is_bigger(elephant, monkey)`) Prolog has to prove the two subgoals `bigger(X, Z)` and `is_bigger(Z, Y)`, again with the same variable instantiations. This process is repeated recursively until the facts that make up the chain between elephant and monkey are found and the query finally succeeds. How this goal execution as well as term matching and variable instantiation really work will be examined in more detail in Section 1.3.

Of course, we can do slightly more exiting stuff than just asking yes/no-questions. Suppose we want to know, what animals are bigger than a donkey? The corresponding query would be:

```prolog
?- is_bigger(X, donkey).
```

Again, X is a variable. We could also have chosen any other name for it, as long as it starts with a capital letter. The Prolog interpreter replies as follows:

```prolog
?- is_bigger(X, donkey).
X = horse
```

Horses are bigger than donkeys. The query has succeeded, but in order to allow it to succeed Prolog had to instantiate the variable X with the value horse. If this makes us
happy already, we can press Return now and that’s it. In case we want to find out if there are more animals that are bigger than the donkey, we can press the semicolon key, which will cause Prolog to search for alternative solutions to our query. If we do this once, we get the next solution \(X = \text{elephant} \): elephants are also bigger than donkeys. Pressing semicolon again will return a \texttt{No}, because there are no more solutions:

\[
\texttt{?- is_bigger(X, donkey).} \\
\texttt{X = horse ;} \\
\texttt{X = elephant ;} \\
\texttt{No}
\]

There are many more ways of querying the Prolog system about the contents of its database. As a final example we ask whether there is an animal \(X \) that is both smaller than a donkey \textit{and} bigger than a monkey:

\[
\texttt{?- is_bigger(donkey, X), is_bigger(X, monkey).} \\
\texttt{No}
\]

The (correct) answer is \texttt{No}. Even though the two single queries \texttt{is_bigger(donkey, X)} and \texttt{is_bigger(X, monkey)} would both succeed when submitted on their own, their conjunction (represented by the comma) does not.

This section has been intended to give you a first impression of Prolog programming. The next section provides a more systematic overview of the basic syntax.

There are a number of Prolog systems around that you can use. How to start a Prolog session may differ slightly from one system to the next, but it should not be too difficult to find out by consulting the user manual of your system. The examples in these notes have all been generated using SWI-Prolog (in its 1999 incarnation, with only a few minor adjustments made later on).\footnote{One difference between “classical” Prolog and more recent versions of SWI-Prolog is that the latter reports \texttt{true} rather than \texttt{Yes} when a query succeeds and \texttt{false} rather than \texttt{No} when a query fails. There also a a few other very minor differences in how modern SWI-Prolog responds to queries. If you are interested in the finer subtleties of this matter, search the Internet for “Prolog toplevel”.}

1.2 Prolog Syntax

This section describes the most basic features of the Prolog programming language.

1.2.1 Terms

The central data structure in Prolog is that of a \textit{term}. There are terms of four kinds: \textit{atoms}, \textit{numbers}, \textit{variables}, and \textit{compound terms}. Atoms and numbers are sometimes grouped together and called \textit{atomic terms}.
Atoms. Atoms are usually strings made up of lower- and uppercase letters, digits, and the underscore, *starting with a lowercase letter*. The following are all valid Prolog atoms:

```
elephant, b, abcXYZ, x_123, another_pint_for_me_please
```

On top of that also any series of arbitrary characters enclosed in single quotes denotes an atom.

```
'This is also a Prolog atom.'
```

Finally, strings made up solely of special characters like `+ - * = < > : &` (check the manual of your Prolog system for the exact set of these characters) are also atoms. Examples:

```
+, ::, <------>, ***
```

Numbers. All Prolog implementations have an integer type: a sequence of digits, optionally preceded by a `-` (minus). Some also support floats. Check the manual for details.

Variables. Variables are strings of letters, digits, and the underscore, *starting with a capital letter or an underscore*. Examples:

```
X, Elephant, _4711, X_1_2, MyVariable, _
```

The last one of the above examples (the single underscore) constitutes a special case. It is called the *anonymous variable* and is used when the value of a variable is of no particular interest. Multiple occurrences of the anonymous variable in one expression are assumed to be distinct, i.e., their values don’t necessarily have to be the same. More on this later.

Compound terms. Compound terms are made up of a *functor* (a Prolog atom) and a number of *arguments* (Prolog terms, i.e., atoms, numbers, variables, or other compound terms) enclosed in parentheses and separated by commas. The following are some examples for compound terms:

```
is_bigger(horse, X), f(g(X, _), 7), 'My Functor'(dog)
```

It’s important not to put any blank characters between the functor and the opening parentheses, or Prolog won’t understand what you’re trying to say. In other places, however, spaces can be very helpful for making programs more readable.

The sets of compound terms and atoms together form the set of Prolog *predicates*. A term that doesn’t contain any variables is called a *ground term*.

1.2.2 Clauses, Programs and Queries

In the introductory example we have already seen how Prolog programs are made up of *facts* and *rules*. Facts and rules are also called *clauses*.
Facts. A fact is a predicate followed by a full stop. Examples:

\[
\text{bigger(whale, _).}
\]
\[
\text{life_is_beautiful.}
\]

The intuitive meaning of a fact is that we define a certain instance of a relation as being true.

Rules. A rule consists of a head (a predicate) and a body. (a sequence of predicates separated by commas). Head and body are separated by the sign \(:- \) and, like every Prolog expression, a rule has to be terminated by a full stop. Examples:

\[
\text{is_smaller(X, Y) :- is_bigger(Y, X).}
\]
\[
\text{aunt(Aunt, Child) :-}
\]
\[
\text{sister(Aunt, Parent),}
\]
\[
\text{parent(Parent, Child).}
\]

The intuitive meaning of a rule is that the goal expressed by its head is true, if we (or rather the Prolog system) can show that all of the expressions (subgoals) in the rule's body are true.

Programs. A Prolog program is a sequence of clauses.

Queries. After compilation a Prolog program is run by submitting queries to the interpreter. A query has the same structure as the body of a rule, i.e., it is a sequence of predicates separated by commas and terminated by a full stop. They can be entered at the Prolog prompt, which in most implementations looks something like this: \(?- \). When writing about queries we often include the \(?- \). Examples:

\[
? - \text{is_bigger(elephant, donkey).}
\]
\[
? - \text{small(X), green(X), slimy(X).}
\]

Intuitively, when submitting a query like the last example, we ask Prolog whether all its predicates are provably true, or in other words whether there is an \(X \) such that \(\text{small(X)} \), \(\text{green(X)} \), and \(\text{slimy(X)} \) are all true.

1.2.3 Some Built-in Predicates

What we have seen so far is already enough to write simple programs by defining predicates in terms of facts and rules, but Prolog also provides a range of useful built-in predicates. Some of them will be introduced in this section; all of them should be explained in the user manual of your Prolog system.

Built-ins can be used in a similar way as user-defined predicates. The important difference between the two is that a built-in predicate is not allowed to appear as the principal functor in a fact or the head of a rule. This must be so, because using them in such a position would effectively mean changing their definition.
Equality. Maybe the most important built-in predicate is \(= \) (equality). Instead of writing expressions such as \(= (X, Y) \), we usually write more conveniently \(X = Y \). Such a goal succeeds, if the terms \(X \) and \(Y \) can be matched. This will be made more precise in Section 1.3.

Guaranteed success and certain failure. Sometimes it can be useful to have predicates that are known to either fail or succeed in any case. The predicates \(\text{fail} \) and \(\text{true} \) serve exactly this purpose. Some Prolog systems also provide the predicate \(\text{false} \), with exactly the same functionality as \(\text{fail} \).

Consulting program files. Program files can be compiled using the predicate \(\text{consult}/1 \).\(^2\) The argument has to be a Prolog atom denoting the program file you want to compile. For example, to compile the file \(\text{big-animals.pl} \) submit the following query to Prolog:

\[
? - \text{consult('big-animals.pl').}
\]

If the compilation is successful, Prolog will reply with \(\text{Yes} \). Otherwise a list of errors will be displayed.

Output. If besides Prolog’s replies to queries you wish your program to have further output you can use the \(\text{write}/1 \) predicate. The argument can be any valid Prolog term. In the case of a variable its value will get printed to the screen. Execution of the predicate \(\text{nl}/0 \) causes the system to skip a line. Here are two examples:

\[
? - \text{write('Hello World!'), nl.}
\]

\[
\text{Hello World!}
\]

\[
\text{Yes}
\]

\[
? - X = \text{elephant}, \text{write(X), nl.}
\]

\[
\text{elephant}
\]

\[
X = \text{elephant}
\]

\[
\text{Yes}
\]

In the second example, first the variable \(X \) is bound to the atom \(\text{elephant} \) and then the value of \(X \), i.e., \(\text{elephant} \), is written on the screen using the \(\text{write}/1 \) predicate. After skipping to a new line, Prolog reports the variable binding(s), i.e., \(X = \text{elephant} \).

Checking the type of a Prolog term. There are a number of built-in predicates available that can be used to check the type of a given Prolog term. Here are some examples:

\(^2\) The \(/1\) is used to indicate that this predicate takes one argument.
?- atom(elephant).
 Yes

?- atom(Elephant).
 No

?- X = f(mouse), compound(X).
 X = f(mouse)
 Yes

The last query succeeds, because the variable X is bound to the compound term $f(mouse)$ at the time the subgoal `compound(X)` is being executed.

Help. Most Prolog systems also provide a help function in the shape of a predicate, usually called `help/1`. Applied to a term (like the name of a built-in predicate) the system will display a short description, if available. Example:

?- help(atom).
atom(+Term)

Succeeds if Term is bound to an atom.

1.3 Answering Queries

We have mentioned the issue of term matching before in these notes. This concept is crucial to the way Prolog replies to queries, so we present it before describing what actually happens when a query is processed (or more generally speaking: when a goal is executed).

1.3.1 Matching

Two terms are said to *match* if they are either identical or if they can be made identical by means of variable instantiation. Instantiating a variable means assigning it a fixed value. Two free variables also match, because they could be instantiated with the same ground term.

It is important to note that the same variable has to be instantiated with the same value throughout an expression. The only exception to this rule is the anonymous variable `_`, which is considered to be unique whenever it occurs.

We give some examples. The terms `is_bigger(X, dog)` and `is_bigger(elephant, dog)` match, because the variable X can be instantiated with the atom `elephant`. We could test this in the Prolog interpreter by submitting the corresponding query to which Prolog would react by listing the appropriate variable instantiations:

?- is_bigger(X, dog) = is_bigger(elephant, dog).
X = elephant
Yes

The following is an example for a query that doesn’t succeed, because X cannot match with 1 and 2 at the same time.

?- p(X, 2, 2) = p(1, Y, X).
No

If, however, instead of X we use the anonymous variable _, matching is possible, because every occurrence of _ represents a distinct variable. During matching Y is instantiated with 2:

?- p(_, 2, 2) = p(1, Y, _).
Y = 2
Yes

Another example for matching:

?- f(a, g(X, Y)) = f(X, Z), Z = g(W, h(X)).
X = a
Y = h(a)
Z = g(a, h(a))
W = a
Yes

So far so good. But what happens, if matching is possible even though no specific variable instantiation has to be enforced (like in all previous examples)? Consider the following query:

?- X = my_functor(Y).
X = my_functor(_G177)
Y = _G177
Yes

In this example matching succeeds, because X could be a compound term with the functor my_functor and a non-specified single argument. Y could be any valid Prolog term, but it has to be the same term as the argument inside X. In Prolog’s output this is denoted through the use of the variable _G177. This variable has been generated by Prolog during execution time. Its particular name, _G177 in this case, may be different every time the query is submitted.

In fact, what the output for the above example will look like exactly will depend on the Prolog system you use. For instance, some systems will avoid introducing a new variable (here _G177) and instead simply report the variable binding as X = my_functor(Y).
1.3.2 Goal Execution

Submitting a query means asking Prolog to try to prove that the statement(s) implied by the query can be made true provided the right variable instantiations are made. The search for such a proof is usually referred to as goal execution. Each predicate in the query constitutes a (sub)goal, which Prolog tries to satisfy one after the other. If variables are shared between several subgoals their instantiations have to be the same throughout the entire expression.

If a goal matches with the head of a rule, the respective variable instantiations are made inside the rule’s body, which then becomes the new goal to be satisfied. If the body consists of several predicates the goal is again split into subgoals to be executed in turn. In other words, the head of a rule is considered provably true, if the conjunction of all its body-predicates are provably true. If a goal matches with a fact in our program, the proof for that goal is complete and the variable instantiations made during matching are communicated back to the surface. Note that the order in which facts and rules appear in our program is important here. Prolog will always try to match its current goal with the first possible fact or rule-head it can find.

If the principal functor of a goal is a built-in predicate the associated action is executed whilst the goal is being satisfied. For example, as far as goal execution is concerned the predicate

\[
\text{write('Hello World!')}\]

will simply succeed, but at the same time it will also print the words Hello World! on the screen.

As mentioned before, the built-in predicate true will always succeed (without any further side-effects), whereas fail will always fail.

Sometimes there is more than one way of satisfying the current goal. Prolog chooses the first possibility (as determined by the order of clauses in a program), but the fact that there are alternatives is recorded. If at some point Prolog fails to prove a certain subgoal, the system can go back and try an alternative way of executing the previous goal. This process is known as backtracking.

We shall exemplify the process of goal execution by means of the following famous argument:

\[
\text{All men are mortal.} \\
\text{Socrates is a man.} \\
\text{Hence, Socrates is mortal.}
\]

In Prolog terms, the first statement represents a rule: \(X \) is mortal, if \(X \) is a man (for all \(X \)). The second one constitutes a fact: Socrates is a man. This can be implemented in Prolog as follows:

\[
\text{mortal} (X) : - \text{man} (X). \\
\text{man} (\text{socrates}).
\]
Note that \(X \) is a variable, whereas \texttt{socrates} is an atom. The conclusion of the argument, “Socrates is mortal”, can be expressed through the predicate \texttt{mortal(socrates)}. After having consulted the above program we can submit this predicate to Prolog as a query, which will cause the following reaction:

\[
?\text{- mortal(socrates)}.
\]

Yes

Prolog agrees with our own logical reasoning. Which is nice. But how did it come to its conclusion? Let’s follow the goal execution step by step.

1. The query \texttt{mortal(socrates)} is made the initial goal.

2. Scanning through the clauses of our program, Prolog tries to match \texttt{mortal(socrates)} with the first possible fact or head of rule. It finds \texttt{mortal(X)}, the head of the first (and only) rule. When matching the two terms the instantiation \(X = \texttt{socrates} \) needs to be made.

3. The variable instantiation is extended to the body of the rule, i.e., \texttt{man(X)} becomes \texttt{man(socrates)}.

4. The newly instantiated body becomes our new goal: \texttt{man(socrates)}.

5. Prolog executes the new goal by again trying to match it with a rule-head or a fact. Obviously, the goal \texttt{man(socrates)} matches the fact \texttt{man(socrates)}, because they are identical. This means the current goal succeeds.

6. This, again, means that also the initial goal succeeds.

1.4 A Matter of Style

One of the major advantages of Prolog is that it allows for writing very short and compact programs solving not only comparatively difficult problems, but also being readable and (again: comparatively) easy to understand.

Of course, this can only work, if the programmer (you!) pays some attention to his or her programming style. As with every programming language, comments do help. In Prolog comments are enclosed between the two signs \texttt{/*} and \texttt{/}}, like this:

\[
/* \text{This is a comment.} */
\]

Comments that only run over a single line can also be started with the percentage sign \texttt{\%}. This is usually used within a clause.

\[
aunt(X, Z) :-
 sister(X, Y), \% \text{A comment on this subgoal.}
 parent(Y, Z).
\]
Besides the use of comments a good layout can improve the readability of your programs significantly. The following are some basic rules most people seem to agree on:

1. Separate clauses by one or more blank lines.

2. Write only one predicate per line and use indentation:

   ```prolog
   blond(X) :-
      father(Father, X),
      blond(Father),
      mother(Mother, X),
      blond(Mother).
   ```

 (Very short clauses may also be written in a single line.)

3. Insert a space after every comma inside a compound term:

   ```prolog
   born(mary, yorkshire, '01/01/1995')
   ```

4. Write short clauses with bodies consisting of only a few goals. If necessary, split into shorter sub-clauses.

5. Choose meaningful names for your variables and atoms.

1.5 Exercises

Exercise 1.1. Try to answer the following questions first “by hand” and then verify your answers using a Prolog interpreter.

1. Which of the following are valid Prolog atoms?
 - f, loves(john, mary), Mary, _c1, 'Hello', this_is_it
2. Which of the following are valid names for Prolog variables?
 - a, A, Paul, 'Hello', a_123, _, _abc, x2
3. What would a Prolog interpreter reply given the following query?
   ```prolog
   ?- f(a, b) = f(X, Y).
   ```
4. Would the following query succeed?
   ```prolog
   ?- loves(mary, john) = loves(John, Mary).
   ```
5. Assume a program consisting only of the fact
   ```prolog
   a(B, B).
   ```
 has been consulted by Prolog. How will the system react to the following query?
   ```prolog
   ?- a(1, X), a(X, Y), a(Y, Z), a(Z, 100).
   ```
 Why?
Exercise 1.2. Read the section on matching again and try to understand what's happening when you submit the following queries to Prolog.

(a) ?- myFunctor(1, 2) = X, X = myFunctor(Y, Y).
(b) ?- f(a, _, c, d) = f(a, X, Y, _).
(c) ?- write('One '), X = write('Two ')

Exercise 1.3. Draw the family tree corresponding to the following Prolog program:

female(mary).
female(sandra).
female(juliet).
female(lisa).
male(peter).
male(paul).
male(dick).
male(bob).
male(harry).
parent(bob, lisa).
parent(bob, paul).
parent(bob, mary).
parent(juliet, lisa).
parent(juliet, paul).
parent(juliet, mary).
parent(peter, harry).
parent(lisa, harry).
parent(mary, dick).
parent(mary, sandra).

After having copied the given program, define new predicates (in terms of rules using male/1, female/1 and parent/2) for the following family relations:

(a) father
(b) sister
(c) grandmother
(d) cousin

You may want to use the operator \=, which is the opposite of =. A goal like X \= Y succeeds, if the two terms X and Y cannot be matched.

Example: X is the brother of Y, if they have a parent Z in common and if X is male and if X and Y don't represent the same person. In Prolog this can be expressed through the following rule:
brother(X, Y) :-
 parent(Z, X),
 parent(Z, Y),
 male(X),
 X \= Y.

Exercise 1.4. Recall our big animal program consisting of four facts and two rules. Change the order of the two subgoals of the second rule. What happens when you execute the following query, asking for all possible alternative solutions using the semicolon key? Briefly explain why this happens.

?- is_bigger(A, donkey).

Advice: Try to predict what will happen before trying it on the computer.

Exercise 1.5. Most people will probably find all of this rather daunting at first. Read the chapter again in a few weeks’ time when you will have gained some programming experience in Prolog and enjoy the feeling of enlightenment. The part on the syntax of the Prolog language and the stuff on matching and goal execution are particularly important.
Chapter 2

List Manipulation

This chapter introduces a special notation for lists, one of the most important data structures in Prolog, and provides some examples for how to work with them.

2.1 Notation

Lists are contained in square brackets with the elements being separated by commas. Here’s an example:

\[\text{[elephant, horse, donkey, dog]} \]

This is the list of the four atoms \texttt{elephant}, \texttt{horse}, \texttt{donkey}, and \texttt{dog}. Elements of lists could be any valid Prolog terms, i.e., atoms, numbers, variables, or compound terms. This includes also other lists. The empty list is written as \texttt{[]}. The following is another example for a (slightly more complex) list:

\[\text{[elephant, [], X, parent(X, tom), [a, b, c], f(22)]} \]

Internal representation. Internally, lists are represented as compound terms using the functor \texttt{.} (dot). The empty list \texttt{[]} is an atom and elements are added one by one. The list \texttt{[a,b,c]}, for example, corresponds to the following term:

\[.(a, .(b, .(c, []))) \]

2.2 Head and Tail

The first element of a list is called its \textit{head} and the remaining list is called the \textit{tail}. An empty list doesn’t have a head. A list just containing a single element has a head (namely that particular single element) and its tail is the empty list.

A variant of the list notation allows for convenient addressing of both head and tail of a list. This is done by using the separator \texttt{|} (bar). If it is put just before the last term inside a list, it means that that last term denotes another list. The entire list is
then constructed by appending this sub-list to the list represented by the sequence of elements before the bar. If there is exactly one element before the bar, it is the head and the term after the bar is the list’s tail. In the next example, 1 is the head of the list and [2, 3, 4, 5] is the tail, which has been computed by Prolog simply by matching the list of numbers with the head/tail-pattern.

?- [1, 2, 3, 4, 5] = [Head | Tail].
Head = 1
Tail = [2, 3, 4, 5]
Yes

Note that Head and Tail are just names for variables. We could have used X and Y or whatever instead with the same result. Note also that the tail of a list (more generally speaking: the thing after |) is always a list itself. Possibly the empty list, but definitely a list. The head, however, is an element of a list. It could be a list as well, but not necessarily (as you can see from the previous example—1 is not a list). The same applies to all other elements listed before the bar in a list.

This notation also allows us to retrieve the, say, second element of a given list. In the following example we use the anonymous variable for the head and also for the list after the bar, because we are only interested in the second element.

?- [quod, licet, jovi, non, licet, bovi] = [_, X | _].
X = licet
Yes

The head/tail-pattern can be used to implement predicates over lists in a very compact and elegant way. We exemplify this by presenting an implementation of a predicate that can be used to concatenate two lists.¹ We call it `concat_lists/3`. When called with the first two elements being instantiated to lists, the third argument should be matched with the concatenation of those two lists, in other words we would like to get the following behaviour:

?- concat_lists([1, 2, 3], [d, e, f, g], X).
X = [1, 2, 3, d, e, f, g]
Yes

The general approach to such a problem is a recursive one. We start with a base case and then write a clause to reduce a complex problem to a simpler one until the base case is reached. For our particular problem, a suitable base case would be when one of the two input-lists (for example the first one) is the empty list. In that case the result (the third argument) is simply identical with the second list. This can be expressed through the following fact:

¹Note that most Prolog systems already provide such a predicate, usually called `append/3` (see Section 2.3). So you do not actually have to implement this yourself.
concat_lists([], List, List).

In all other cases (i.e., in all cases where a query with \texttt{concat_lists} as the main functor doesn't match with this fact) the first list has at least one element. Hence, it can be written as a head/tail-pattern: \([\text{Elem} \mid \text{List1}]\). If the second list is associated with the variable \texttt{List2}, then we know that the head of the result should be \texttt{Elem} and the tail should be the concatenation of \texttt{List1} and \texttt{List2}. Note how this simplifies our initial problem: We take away the head of the first list and try to concatenate it with the (unchanged) second list. If we repeat this process recursively, we will eventually end up with an empty first list, which is exactly the base case that can be handled by the previously implemented fact. Turning this simplification algorithm into a Prolog rule is straightforward:

\[
\text{concat_lists}([\text{Elem} \mid \text{List1}], \text{List2}, [\text{Elem} \mid \text{List3}]) :\rightleftharpoons \\
\text{concat_lists}(ext{List1}, \text{List2}, \text{List3}).
\]

And that's it! The predicate \texttt{concat_lists/3} can now be used for concatenating two given lists as specified. But it is actually much more flexible than that. If we call it with variables in the first two arguments and instantiate the third one with a list, \texttt{concat_lists/3} can be used to decompose that list. If you use the semicolon key to get all alternative solutions to your query, Prolog will print out all possibilities how the given list could be obtained from concatenating two lists.

\[?- \text{concat_lists}(X, Y, [a, b, c, d]).\]

\[
X = [] \\
Y = [a, b, c, d] ;
\]

\[
X = [a] \\
Y = [b, c, d] ;
\]

\[
X = [a, b] \\
Y = [c, d] ;
\]

\[
X = [a, b, c] \\
Y = [d] ;
\]

\[
X = [a, b, c, d] \\
Y = [] ;
\]

\text{No}

Recall that the \textit{No} at the end means that there are no further alternative solutions.
2.3 Some Built-in Predicates for List Manipulation

Prolog comes with a range of predefined predicates for manipulating lists. Some of the most important ones are presented here. Note that they could all easily be implemented by exploiting the head/tail-pattern.

length/2: The second argument is matched with the length of the list in the first argument. Example:

```
?- length([elephant, [], [1, 2, 3, 4]], Length).
Length = 3
Yes
```

It is also possible to use length/2 with an uninstantiated first argument. This will generate a list of free variables of the specified length:

```
?- length(List, 3).
List = [_G248, _G251, _G254]
Yes
```

The names of those variables may well be different every time you call this query, because they are generated by Prolog during execution time.

member/2: The goal member(Elem, List) will succeed, if the term Elem can be matched with one of the members of the list List. Example:

```
?- member(dog, [elephant, horse, donkey, dog, monkey]).
Yes
```

append/3: Concatenate two lists. This built-in works exactly like the predicate concat_lists/3 presented in Section 2.2.

last/2: This predicate succeeds, if its second argument matches the last element of the list given as the first argument of last/2.

reverse/2: This predicate can be used to reverse the order of elements in a list. The first argument has to be a (fully instantiated) list and the second one will be matched with the reversed list. Example:

```
?- reverse([1, 2, 3, 4, 5], X).
X = [5, 4, 3, 2, 1]
Yes
```

select/3: Given a list in the second argument and an element of that list in the first, this predicate will match the third argument with the remainder of that list. Example:

```
?- select(bird, [mouse, bird, jellyfish, zebra], X).
X = [mouse, jellyfish, zebra]
Yes
```
2.4 Exercises

Exercise 2.1. Write a Prolog predicate `analyse_list/1` that takes a list as its argument and prints out the list’s head and tail on the screen. If the given list is empty, the predicate should put out a message reporting this fact. If the argument term isn’t a list at all, the predicate should just fail. Examples:

```prolog
?- analyse_list([dog, cat, horse, cow]).
This is the head of your list: dog
This is the tail of your list: [cat, horse, cow]
Yes

?- analyse_list([]).
This is an empty list.
Yes

?- analyse_list(sigmund_freud).
No
```

Exercise 2.2. Write a Prolog predicate `membership/2` that works like the built-in predicate `member/2` (without using `member/2`).

Hint: This exercise, like many others, can and should be solved using a recursive approach and the head/tail-pattern for lists.

Exercise 2.3. Implement a Prolog predicate `remove_duplicates/2` that removes all duplicate elements from a list given in the first argument and returns the result in the second argument position. Example:

```prolog
?- remove_duplicates([a, b, a, c, d, d], List).
List = [b, a, c, d]
Yes
```

Exercise 2.4. Write a Prolog predicate `reverse_list/2` that works like the built-in predicate `reverse/2` (without using `reverse/2`). Example:

```prolog
?- reverse_list([tiger, lion, elephant, monkey], List).
List = [monkey, elephant, lion, tiger]
Yes
```

Exercise 2.5. Consider the following Prolog program:

```prolog
whoami([]).
```
whoami([_, _ | Rest]) :-
 whoami(Rest).

Under what circumstances will a goal of the form \texttt{whoami(X)} succeed?

Exercise 2.6. The objective of this exercise is to implement a predicate for returning the last element of a list in two different ways.

(a) Write a predicate \texttt{last1/2} that works like the built-in predicate \texttt{last/2} using a recursion and the head/tail-pattern for lists.

(b) Define a similar predicate \texttt{last2/2} solely in terms of \texttt{append/3}, without using a recursion.

Exercise 2.7. Write a predicate \texttt{replace/4} to replace all occurrences of a given element (second argument) by another given element (third argument) in a given list (first argument). Example:

?\texttt{- replace([1, 2, 3, 4, 3, 5, 6, 3], 3, x, List).}
List = [1, 2, x, 4, x, 5, 6, x]
Yes

Exercise 2.8. Prolog lists without duplicates can be interpreted as sets. Write a program that given such a list computes the corresponding power set. Recall that the power set of a set S is the set of all subsets of S. This includes the empty set as well as the set S itself.

Define a predicate \texttt{power/2} such that, if the first argument is instantiated with a list, the corresponding power set (i.e., a list of lists) is returned in the second position. Example:

?\texttt{- power([a, b, c], P).}
P = [[a, b, c], [a, b], [a, c], [a], [b, c], [b], [c], []]
Yes

Note: The order of the sub-lists in your result doesn’t matter.

Exercise 2.9. Write a predicate \texttt{longer/2} that takes two lists as arguments and succeeds if the second is longer (has more elements) than the first. Implement your solution using only the tools and techniques introduced so far (in particular, do not make use of any arithmetic expressions, i.e., do not make use of any of the material to be covered in the next chapter). Examples:

?\texttt{- longer([dog, cat, snake], [giraffe, elephant, lion, tiger]).}
Yes

?\texttt{- longer([1, 2, 3, 4, 5], []).}
No
Exercise 2.10. This exercise is about numbers. You are used to representing, say, the number twelve using the decimal system, in which it is written as ‘12’. But you could also use the unary system, in which it can be written as ‘11111111111’. In the next chapter we will see how to work with numbers in the usual decimal system, but you actually already know everything you need to know to work with numbers in the unary system. Your task will be to implement some basic arithmetical operations for working with unary numbers. We will represent unary numbers as lists of x’s of the appropriate length. Thus, five would be [x,x,x,x,x], twelve would be [x,x,x,x,x,x,x,x,x,x,x,x], and zero would be []. In the sequel, all numbers are understood to be such non-negative integers given in unary notation.

(a) The successor of a number is the number we obtain if we add one to it. Thus, for example, the successor of five is six. Write a predicate called successor/2 that will return, in the second argument position, the successor of the number provided in the first argument position. Examples:

?- successor([x, x, x], Result).
Result = [x, x, x, x]
Yes

?- successor([], Result).
Result = [x]
Yes

(b) Implement a predicate plus/3 to compute the sum of two given numbers. Example:

?- plus([x, x], [x, x, x, x], Result).
Result = [x, x, x, x, x, x]
Yes

(c) Implement a predicate times/3 to multiply two given numbers. Examples:

?- times([x, x], [x, x, x, x], Result).
Result = [x, x, x, x, x, x, x]
Yes

?- times([x, x], [x, x, x, x, x, x], Result), write(Result).
Result = [x, x, x]
Yes

Note that in the last example, the result (a list of fifteen x’s) is too long for Prolog to print, so we force printing using the write-command at the end of our query. Make sure your predicate works correctly also when one of the numbers is zero.

Hint: You don’t need to use any “normal” numbers in your program and you should not use any arithmetical operations provided by Prolog (to be covered in the next chapter).
Chapter 3

Arithmetic Expressions

If you’ve tried to use numbers in Prolog before, you might have encountered some unexpected behaviour of the system. The first part of this section clarifies this phenomenon. After that an overview of the arithmetic operators available in Prolog is given.

3.1 The is-Operator for Arithmetic Evaluation

Simple arithmetic operators such as + or * are, as you know, valid Prolog atoms. Therefore, also expressions like +(3, 5) are valid Prolog terms. More conveniently, they can also be written as infix operators, like in 3 + 5.

Without specifically telling Prolog that we are interested in the arithmetic properties of such a term, these expressions are treated purely syntactically, i.e., they are not being evaluated. That means using = won’t work the way you might have expected:

?- 3 + 5 = 8.
No

The terms 3 + 5 and 8 do not match—the former is a compound term, whereas the latter is a number. To check whether the sum of 3 and 5 is indeed 8, we first have to tell Prolog to arithmetically evaluate the term 3 + 5. This is done by using the built-in operator is. We can use it to assign the value of an arithmetic expression to a variable. After that it is possible to match that variable with another number. Let’s rewrite our previous example accordingly:

?- X is 3 + 5, X = 8.
X = 8
Yes

We could check the correctness of this addition also directly, by putting 8 instead of the variable on the lefthand side of the is-operator:

?- 8 is 3 + 5.
Yes
But note that it doesn’t work the other way round!

?- 3 + 5 is 8.
No

This is because \texttt{is} only causes the argument \textit{to its right} to be evaluated and then tries to match the result with the lefthand argument. The arithmetic evaluation of \texttt{8} yields again \texttt{8}, which doesn’t match the (non-evaluated) Prolog term \texttt{3 + 5}.

To summarise, the \texttt{is}-operator is defined as follows: It takes two arguments, of which the second has to be a valid arithmetic expression with all variables instantiated. The first argument has to be either a number or a variable representing a number. A call succeeds if the result of the arithmetic evaluation of the second argument matches with the first one (or in case of the first one being a number, if they are identical).

Note that (in SWI-Prolog) the result of an arithmetic calculation will be a float (rather than an integer) whenever one of the input parameters is a float. This means, for example, that the goal \texttt{1 is 0.5 + 0.5} would not succeed, because \texttt{0.5 + 0.5} evaluates to the float \texttt{1.0}, not the integer \texttt{1}. However, other Prolog systems may do this differently.

In general, it is better to use the operator \texttt{=:=} (which will be introduced in Section 3.2) instead whenever the left argument has been instantiated to a number already. That is, do not use \texttt{is/2} to compare the values of two arithmetic expressions; only use it to evaluate arithmetic expressions, i.e., only use it with a variable on the lefthand side.

3.2 Predefined Arithmetic Functions and Relations

The arithmetic operators available in Prolog can be divided into \textit{functions} and \textit{relations}. Some of them are presented here; for an extensive list consult your Prolog reference manual.

Functions. Addition or multiplication are examples for arithmetic functions. In Prolog all these functions are written in the natural way. The following term shows some examples:

\[
2 + (-3.2 * X - \max(17, X)) / 2 ** 5
\]

The \texttt{max/2}-expression evaluates to the largest of its two arguments and \texttt{2 ** 5} stands for “2 to the 5th power” (\texttt{2}^5). Other functions available include \texttt{min/2} (minimum), \texttt{abs/1} (absolute value), \texttt{sqrt/1} (square root), and \texttt{sin/1} (sinus).\footnote{Like \texttt{max/2}, these are all written as functions, not as operators.} The operator \texttt{\textbackslash \textbackslash} is used for integer division. To obtain the remainder of an integer division (modulo) use the \texttt{mod}-operator. Precedence of operators is the same as you know it from mathematics, i.e., \texttt{2 * 3 + 4} is equivalent to \texttt{(2 * 3) + 4} etc.

You can use \texttt{round/1} to round a float number to the next integer and \texttt{float/1} to convert integers to floats.

All these functions can be used on the righthand side of the \texttt{is}-operator.
Relations. Arithmetic relations are used to compare two evaluated arithmetic expressions. The goal \(X > Y \), for example, will succeed if expression \(X \) evaluates to a greater number than expression \(Y \). Note that the is-operator is not needed here. The arguments are evaluated whenever an arithmetic relation is used.

Besides \(> \) the operators \(< \) (less than), \(<= \) (less than or equal), \(>= \) (greater than or equal), \(\neq \) (non-equal), and \(=:= \) (arithmetically equal) are available. The differentiation of \(=:= \) and \(= \) is crucial. The former compares two evaluated arithmetic expressions, whereas the later performs logical pattern matching.

\[
?\text{-} 2 ** 3 =:= 3 + 5.
Yes
?\text{-} 2 ** 3 = 3 + 5.
No
\]

Note that, unlike is, arithmetic equality \(=:= \) also works if one of its arguments evaluates to an integer and the other one to the corresponding float.

3.3 Exercises

Exercise 3.1. Write a Prolog predicate \texttt{distance/3} to calculate the distance between two points in the 2-dimensional plane. Points are given as pairs of coordinates. Examples:

\[
?\text{-} \texttt{distance}((0,0), (3,4), X).
X = 5.0
Yes
?\text{-} \texttt{distance}((-2.5,1), (3.5,-4), X).
X = 7.810249675906654
Yes
\]

Exercise 3.2. Write a Prolog program to print out a square of \(n \times n \) given characters on the screen. Call your predicate \texttt{square/2}. The first argument should be a (positive) integer, the second argument the character (any Prolog term) to be printed. Example:

\[
?\text{-} \texttt{square}(5, ' * ').
* * * * *
* * * * *
* * * * *
* * * * *
* * * * *
Yes
\]
Exercise 3.3. Write a Prolog predicate `fibonacci/2` to compute the \(n \)th Fibonacci number. The Fibonacci sequence is defined as follows:

\[
F_0 = 1 \\
F_1 = 1 \\
F_n = F_{n-1} + F_{n-2} \quad \text{for} \quad n \geq 2
\]

Examples:

?- fibonacci(1, X).
X = 1
Yes

?- fibonacci(2, X).
X = 2
Yes

?- fibonacci(5, X).
X = 8
Yes

While some authors define the sequence slightly differently (with \(F_0 = 0 \)), your implementation should conform to the definition given above.

Exercise 3.4. This exercise assumes you have already solved the previous one. In fact, it is not too difficult to translate the mathematical definition of the Fibonacci sequence into a working Prolog predicate for computing the \(n \)th Fibonacci number. However, the most straightforward implementation is not very efficient at all and will run out of memory for larger numbers (try it!). Examples:

?- fibonacci(5, X).
X = 8
Yes

?- fibonacci(20, X).
X = 10946
Yes

?- fibonacci(50, X).
ERROR: Out of local stack

Briefly explain what the source of this problem is. Then write a Prolog predicate `fastfibo/2` that can compute any of the first 100 Fibonacci numbers in under 100th of a second. Examples:
?- fastfibo(50, X).
X = 20365011074
Yes

?- fastfibo(100, X).
X = 573147844013817084101
Yes

What is the 42nd Fibonacci number?

Exercise 3.5. Write a Prolog predicate `element_at/3` that, given a list and a natural number \(n \), will return the \(n \)th element of that list. Examples:

?- element_at([tiger, dog, teddy_bear, horse, cow], 3, X).
X = teddy_bear
Yes

?- element_at([a, b, c, d], 27, X).
No

Exercise 3.6. Write a Prolog predicate `mean/2` to compute the arithmetic mean of a given list of numbers. Example:

?- mean([1, 2, 3, 4], X).
X = 2.5
Yes

Exercise 3.7. Write a Prolog predicate `minimum/2` to find the smallest number within a given list of numbers. Example:

?- minimum([4, 6, 8, 3, 5, 7], Result).
Result = 3
Yes

What does your predicate do when given the empty list as input? Is that the correct answer? Why?

Exercise 3.8. Write a predicate `range/3` to generate all integers between a given lower and a given upper bound. The lower bound should be given as the first argument, the upper bound as the second. The result should be a list of integers, which is returned in the third argument position. If the upper bound specified is lower than the given lower bound, the empty list should be returned. Examples:
?- range(3, 11, X).
X = [3, 4, 5, 6, 7, 8, 9, 10, 11]
Yes

?- range(7, 4, X).
X = []
Yes

Exercise 3.9. This exercise demonstrates how to implement a simple database in Prolog. Copy the following list of eight facts (the data) into a program file:

- born(jan, date(20,3,1977)).
- born(jeroen, date(2,2,1992)).
- born(joris, date(17,3,1995)).
- born(jelle, date(1,1,2004)).
- born(jesus, date(24,12,0)).
- born(joop, date(30,4,1989)).
- born(jannecke, date(17,3,1993)).
- born(jaap, date(16,11,1995)).

That is, we are representing dates as terms of the form date(Day, Month, Year).

(a) Write a predicate year/2 to retrieve all people born in a given year (through repeated backtracking). Example:

?- year(1995, Person).
Person = joris ;
Person = jaap ;
No

(b) Implement a predicate before/2 that, when given two date-expressions, will succeed if the first expression represents a date before the date represented by the second expression (you may assume that the user will only ask for well-formed dates, e.g., not for the 31st of April, and so forth). Example:

?- before(date(31,1,1990), date(7,7,1990)).
Yes

(c) Implement a predicate older/2 that succeeds in case the person given first is (strictly) older than the person given second. Example:

?- older(jannecke, X).
X = joris ;
X = jelle ;
X = jaap ;
No

You should get 28 solutions for the query older(X, Y). Explain why.
Exercise 3.10. Imagine you have built a robot that can execute three different commands: turn right (by 90 degrees), turn left (by 90 degrees), and move forward (by 1 metre). Suppose you place your robot on a grid at position (0,0), facing north. Your ultimate task is to write a Prolog predicate `status/3` that will return the robot’s position and orientation after having executed a given list of commands. For example, if your robot first moves forward twice, then turns right, and then moves three more times, then it will be at position (3,2), facing east. Examples:

```
?- status([move, move, right, move, move, move], Position, Orientation).
Position = (3,2)
Orientation = east
Yes

?- status([], Position, Orientation).
Position = (0,0)
Orientation = north
Yes

?- status([left, left, move], Position, Orientation).
Position = (0,-1)
Orientation = south
Yes
```

Start by writing a predicate `execute/5` for executing a single command: it should take the current position, the current orientation, and a single command (one of the atoms right, left, move) as input in the first three argument positions, and return the new position and orientation in the last two argument positions. Note that positions are pairs of the form (X,Y), with X and Y representing integers, while the orientation has to be one of the four atoms north, south, west, east.

Then implement a predicate `status/5` that takes as input the current position, the current orientation, and the list of commands still to be executed, and that returns the final position and final orientation. That is, this predicate is like the predicate `status/3` you are ultimately supposed to implement, except that it also includes the current position and orientation as input. Finally, implement the predicate `status/3` as specified above.

Exercise 3.11. Polynomials can be represented as lists of pairs of coefficients and exponents. For example the polynomial

\[4x^5 + 2x^3 - x + 27\]

can be represented as the following Prolog list:

```
[(4,5), (2,3), (-1,1), (27,0)]
```
Write a Prolog predicate `poly_sum/3` for adding two polynomials using that representation. Try to find a solution that is independent of the ordering of pairs inside the two given lists. Likewise, your output doesn’t have to be ordered. Examples:

```prolog
?- poly_sum([(5,3), (1,2)], [(1,3)], Sum).
Sum = [(6,3), (1,2)]
Yes

?- poly_sum([(2,2), (3,1), (5,0)], [(5,3), (1,1), (10,0)], X).
X = [(4,1), (15,0), (2,2), (5,3)]
Yes
```

Hints: Before you even start thinking about how to do this in Prolog, recall how the sum of two polynomials is actually computed. A rather simple solution is possible using the built-in predicate `select/3`. Note that the list representation of the sum of two polynomials that don’t share any exponents is simply the concatenation of the two lists representing the arguments.

Exercise 3.12. Recall that the set of prime numbers is \{2, 3, 5, 7, 11, 13, 17, \ldots\}, i.e., the set of numbers with exactly two divisors each (namely 1 and the number itself). Write a Prolog predicate `prime/1` to check whether given number is prime. Examples:

```
prime(17). prime(18).
Yes No
```

Exercise 3.13. In 1742, in a letter to the famous mathematician Leonhard Euler, Christian Goldbach conjectured that every even integer greater than 2 can be expressed as the sum of two prime numbers. In his own words (quote taken from Wikipedia, consulted on 3 August 2015):

> "Dass ... ein jeder numerus par eine summa duorum primorum sey, halte ich für ein ganz gewisses theorema, ungeachtet ich dasselbe nicht demonstriren kann."

To this date, nobody has been able to prove the truth of this statement for all integers, although it has been verified for very many of them with the help of computers.

Write a predicate called `goldbach/2` that, when given an even integer greater than 2 in the first argument position, will return an expression of the form \(A + B\), such that both \(A\) and \(B\) are prime numbers and their sum is equal to the input number. Examples:

```
?- goldbach(30, Solution).
Solution = 7+23
Yes

?- goldbach(17420000, Solution).
Solution = 109+17419891
Yes
```

Start by implementing a predicate `prime/1` to test whether a given number is prime. Then think about what you need to do to find two prime numbers that add up to a
given number \(N \). First you need to choose the first number \(A \), which can be any number between 2 and \(N/2 \) (think about why these are the correct bounds!). Then you need to check whether \(A \) really is prime. Then you need to compute \(B \) as the difference of \(N \) and \(A \), and finally you also need to check whether \(B \) is prime. You may find the built-in predicate \texttt{between/3} useful.

Exercise 3.14. One of the major news stories involving AI in recent years has been about \textit{IBM Watson}, a computer program that successfully competed in the American television game show \textit{Jeopardy!} in 2011, beating the very best human contestants. Another famous television game show is the British \textit{Countdown} (also known as \textit{Cijfers en Letters} in the Netherlands and as \textit{Des Chiffres et des Lettres} in France, where it had been broadcast first). The purpose of this exercise is to see whether we can win this one for AI as well. We will focus on the \textit{letters} game of the \textit{Countdown} show. In this game, we are given nine letters of the alphabet (possibly including some repetitions). The goal then is to construct the longest possible word from these letters. Your score is the length of your word (provided it is a valid word of the English language).

Your ultimate task is to write a Prolog predicate \texttt{topsolution/3} to play this game. When given a list of nine letters in the first argument position, it should return as good a solution as possible, consisting of a word of the English language that can be constructed from those letters, in the second argument position and the length of that word (i.e., the score) in the third argument position. Example:

\[
\text{?- topsolution([g,i,g,c,n,o,a,s,t], Word, Score).}
\]

\[
\text{Word = agnostic,}
\]

\[
\text{Score = 8}
\]

\[
\text{Yes}
\]

Start by downloading the file \texttt{words.pl} from \url{http://tinyurl.com/prolog-words} and put it in the same directory as your program file. This is a list of a little over 350,000 of the most common words of the English language, from \texttt{a} to \texttt{zyzzyva}, presented as a sequence of facts, such as “\texttt{word(agnostic).}”, etc. Include the line “\texttt{:- consult(words).}” in your program to make these facts available to you. Then proceed as follows.

First, search your Prolog reference manual for a built-in predicate for decomposing an atom into a list of characters. Use it to implement a predicate \texttt{word_letters/2} for converting a word (i.e., a Prolog atom) into a list of letters. Example:

\[
\text{?- word_letters(hello, X).}
\]

\[
\text{X = [h, e, l, l, o]}
\]

\[
\text{Yes}
\]

As an aside, note that you can use this predicate to find words with 45 letters:

\[
\text{?- word(Word), word_letters(Word, Letters), length(Letters, 45).}
\]

\[
\text{Word = pneumonoultramicroscopicsilicovolcanoconiosis,}
\]
Letters = [p, n, e, u, m, o, n, o, u] ...

Yes

Second, write a predicate cover/2 that, given two lists, checks whether the second list “covers” the first. That is, it checks whether every item that occurs k times in the first list also occurs at least k times in the second. Examples:

?- cover([a,e,i,o], [m,o,n,k,e,y,b,r,a,i,n]).
Yes

?- cover([e,e,l], [h,e,l,l,o]).
No

Third, write a predicate solution/3 that, when given a list of letters as the first argument and a desired score as the third argument, returns a word covered by that list that would provide the given score (i.e., the length of which is equal to the desired score). Example:

?- solution([g,i,g,c,n,o,a,s,t], Word, 3).
Word = act
Yes

Finally, implement topsolution/3. Document your program by showing how it performs for at least three different lists of letters. One of them should be [y,c,a,l,b,e,o,s,x]. This was one of the lists used in the edition of Countdown aired in Britain on 18 December 2002, when Julian Fell achieved the best overall score in the history of the show. He found the word cables, earning him a score of 6. Can your program beat the champion?

Exercise 3.15. The purpose of this exercise is to develop a system for plotting text-based graphical representations of simple functions (and, more generally, of relations). We assume that we are given a predicate point/3, with point(D,X,Y) succeeding if and only if we want to draw a point at position (X,Y) on a grid of size $D \times D$. For example, the function $f(x) = x$ is represented as follows (in this case, D is irrelevant, so we use the anonymous variable):

point(_, X, Y) :- X =:= Y.

Your ultimate task is to implement a predicate plot/1, taking as its only argument the dimension D of the graph, that will plot the relation represented by the predicate point/3 currently compiled as part of your program. Examples:

?- plot(4).
* *
* *
* *
Yes

?- plot(6).
* *
* *
* *
Yes
You will have to draw *’s and empty spaces as you go along, from position \((1,D)\) (upper lefthand corner) down to \((D,1)\) (lower righthand corner).

Start by implementing a predicate `next/3` that, given the dimension \(D\) and the current position \((X,Y)\), generates the next position. Keep in mind that you have to follow the \(y\)-axis in reverse order. Examples:

?- next(10, (8,3), Pos).
Pos = (9,3)
Yes

?- next(10, (9,3), Pos).
Pos = (10,3)
Yes

?- next(10, (10,3), Pos).
Pos = (1,2)
Yes

Now implement a predicate `plot/2` that takes as arguments a dimension \(D\) and a position \((X,Y)\) and that (a) draws a * in case `point(D,X,Y)` succeeds (and an empty space otherwise), and that (b) recursively calls itself with the same dimension and the next position (using `next/3`). Make sure you define an appropriate base case to ensure the recursion terminates once your picture is complete. Finally, you can easily implement your main predicate `plot/1` by using `plot/2`.

Below are some further examples. We can instruct Prolog to draw a circle by asking it to mark all points with distance at most \(D/2\) from the centre of the grid:

\[
\text{point}(D, X, Y) :- (X-D/2)^2 + (Y-D/2)^2 =< (D/2)^2.
\]

Now, once you have replaced the original definition of `point/3` with the one above, Prolog should react to your queries as follows:

?- plot(13).

```
* * * * *
 * * * * *
  * * * * *
   * * * * *
    * * * *
     * * *
      * *
       *
```
Yes
Here are three more examples for the output we get for different definitions of \texttt{point/3}:

\begin{verbatim}
point(D, X, Y) :- X + Y > D.
point(_, X, Y) :- X >= Y.
point(_, _, _).
\end{verbatim}

\begin{verbatim}
?- plot(5).
* * * * *
* * * *
* *
*
Yes

?- plot(5).
* * * * *
* * * *
* * *
* *
* *
Yes

?- plot(5).
* * * * *
* * * *
* * *
* *
* *
* *
* *
Yes
\end{verbatim}

Exercise 3.16. Your task for this exercise will be to develop a Prolog predicate called \texttt{roman2arabic/2} to translate from Roman to the usual Arabic numerals. Examples:

\begin{verbatim}
?- roman2arabic('XXI', Number).
Number = 21
Yes

?- roman2arabic('MCMXCIX', Number).
Number = 1999
Yes
\end{verbatim}

Before you start thinking about how to implement this, remind yourself how Roman numerals work exactly, using appropriate online resources (such as Wikipedia).

The key idea we will use to approach this problem is to work with an intermediate representation consisting of lists of numbers corresponding to the symbols used for Roman numerals. For example, the number XXI will be represented as the list \([10, 10, 1]\): each number corresponds to one of the symbols, and the sum of the numbers is 21, the Arabic equivalent of XXI. In fact, because Roman numerals make use of the so-called *subtractive notation* (writing, for instance, IX rather than VIIII for 9), it will get a little more complicated than this. For example, rather than representing XIX as \([10, 1, 10]\), the sum of which would be 21 rather than the 19 we need, we will represent XIX as \([10, 9]\). That is, sometimes two Roman symbols are represented by a single number in the list (e.g., the I and X together are represented by the 9). Follow these steps to implement \texttt{roman2arabic/2}:

(a) Implement a predicate \texttt{symbol/2} to retrieve for each symbol used in the Roman system the corresponding numerical value. You should cover I, V, X, L, C, D, and M. Example:

\begin{verbatim}
?- symbol('X', Value).
Value = 10
Yes
\end{verbatim}

(b) Now implement a predicate \texttt{symbols2numbers/2} to translate a given list of symbols to the corresponding list of its numerical values. Your initial version of the predicate should ignore the complication of the subtractive notation and simply translate each symbol separately. Examples:
?- symbols2numbers([M, M, X, V], Values).
Values = [1000, 1000, 10, 5]
Yes

?- symbols2numbers([X, L, I, I], Values).
Values = [10, 50, 1, 1]
Yes

Once this is working, add a further rule to your implementation to handle the subtractive notation. For the last example above, you should now get the following output (because XL represents the number 40, not the two numbers 10 and 50):

?- symbols2numbers([X, L, I, I], Values).
Values = [40, 1, 1]
Yes

To achieve this, as you go through the input list, you need to always first scan the two initial symbols in the list. Whenever the first of these two symbols has a value that is less than the value of the second symbol, you know that you have encountered an instance of the subtractive notation and you can calculate the corresponding single number.

(c) Now write a predicate sum/2 to compute the sum of a list of numbers provided in the first argument position. Example:

?- sum([1, 2, 3, 4, 5], Sum).
Sum = 15
Yes

(d) Now put everything together to implement roman2arabic/2. You will need to be able to break up an atom such as ‘XXI’ into a list of characters (e.g., ['X', 'X', 'I']). Check the reference manual of your Prolog system for how to do that.
Chapter 4

Operators

In the chapter on arithmetic expressions we have already seen some operators. Several of the predicates associated with arithmetic operations are also predefined operators. This chapter explains how to define your own operators, which can then be used instead of normal predicates.

4.1 Precedence and Associativity

Precedence. From mathematics and also from propositional logic you know that the precedence of an operator determines how an expression is supposed to be interpreted. For example, \(\land \) binds stronger than \(\lor \), which is why the formula \(P \lor Q \land R \) is interpreted as \(P \lor (Q \land R) \), and not the other way round.

In Prolog every operator is associated with an integer number (in SWI-Prolog between 0 and 1200) denoting its precedence. The lower the precedence number, the stronger the operator is binding. The arithmetic operator \(\times \), for example, has a precedence of 400, \(+ \) has a precedence of 500. This is why, when evaluating the term \(2 + 3 \times 5 \), Prolog will first compute the product of 3 and 5 and then add it to 2.

The precedence of a term is defined as 0, unless its principal functor is an operator, in which case the precedence is the precedence of this operator. Examples:

- The precedence of \(3 + 5 \) is 500.
- The precedence of \(3 \times 3 + 5 \times 5 \) is also 500.
- The precedence of \(\text{sqrt}(3 + 5) \) is 0.
- The precedence of \(\text{elephant} \) is 0.
- The precedence of \((3 + 5) \) is 0.
- The precedence of \(3 \times +(5, 6) \) is 400.
Associativity. Another important concept with respect to operators is their associativity. You probably know that there are *infix* operators (like +), *prefix* operators (like \(\neg\) in logic), and sometimes even *postfix* operators (like the factorial operator ! in mathematics). In Prolog the associativity of an operator is also part of its definition.

But giving precedence and indicating whether it’s supposed to be infix, prefix, or postfix is not enough to fully specify an operator. Take the example of subtraction. This is an infix operator and in SWI-Prolog it is defined with precedence 500. Is this really all we need to know to understand Prolog’s behaviour when answering the following query?

\[
?\:- \text{X is } 10 - 5 - 2.
\]

\[
\text{X = 3}
\]

```
Yes
```

Why didn’t it compute \(5 - 2 = 3\) and then \(10 - 3 = 7\) and return \(X = 7\) as the result? Well, it obviously did the right thing by first evaluating the left difference \(10 - 5\) before finally subtracting 2. But this must also be part of the operator’s definition. The operator - is actually defined as an infix operator, for which the righthand argument has to be a term of strictly lower precedence than 500 (the precedence of - itself), whereas the lefthand argument only needs to be of lower or equal precedence. Given this rule, it is indeed impossible to interpret \(10 - 5 - 2\) as \(10 - (5 - 2)\), because the precedence of the righthand argument of the principal operator is 500, i.e., it is not strictly lower than 500. We also say the operator - “associates to the left” or “is left-associative”.

In Prolog associativity (together with such restrictions on arguments’ precedences) is represented by atoms like `yfx`. Here \(f\) indicates the position of the operator (i.e., `yfx` denotes an infix operator) and \(x\) and \(y\) indicate the positions of the arguments. A \(y\) should be read as on this position a term with a precedence less than or equal to that of the operator has to occur, whereas \(x\) means that on this position a term with a precedence strictly less than that of the operator has to occur.

Checking precedence and associativity. It is possible to check both precedence and associativity of any previously defined operator by using the predicate `current_op/3`. If the last of its arguments is instantiated with the name of an operator it will match the first one with the operator’s precedence and the second with its associativity pattern. The following example for multiplication shows that \(\ast\) has precedence 400 and the same associativity pattern as subtraction.

\[
?\:- \text{current_op(Precedence, Associativity, \(\ast\)).}
\]

```
Precedence = 400
Associativity = yfx
Yes
```
Here are some more examples. Note that - is defined twice; once as subtraction (infix) and once as negative sign (prefix). The same is true for +.1

\begin{verbatim}
?- current_op(Precedence, Associativity, **).
Precedence = 200
Associativity = xfx ;
No

?- current_op(Precedence, Associativity, -).
Precedence = 200
Associativity = fy ;
Precedence = 500
Associativity = yfx ;
No

?- current_op(Precedence, Associativity, <).
Precedence = 700
Associativity = xfx ;
No

?- current_op(Precedence, Associativity, =).
Precedence = 700
Associativity = xfx ;
No

?- current_op(Precedence, Associativity, :-).
Precedence = 1200
Associativity = fx ;
Precedence = 1200
Associativity = xfx ;
No
\end{verbatim}

As you can see, there aren’t just arithmetic operators, but also stuff like = and even :- are declared as operators. From the very last example you can see that :- can also be a prefix operator. You will see an example for this in the next section.

Table 4.1 provides an overview of possible associativity patterns. Note that it is not possible to nest non-associative operators. For example, \texttt{is} is defined as an \texttt{xfx}-operator, which means a term like \texttt{X is Y is 7} would cause a syntax error. This makes sense, because that term certainly doesn’t (make sense).

1 When generating these examples I always pressed ; to get all alternatives. This is why at the end of each query Prolog answered with \texttt{No}.
4.2 Declaring Operators with op/3

Now we want to define our own operators. Recall the example on big and not so big animals from Chapter 1. Maybe, instead of writing terms like `is_bigger(elephant, monkey)` we would prefer to be able to express the same thing using `is_bigger` as an infix operator:

`elephant is_bigger monkey`

This is possible, but we first have to declare `is_bigger` as an operator. As precedence we could choose, say, 300. It doesn’t really matter as long as it is lower than 700 (the precedence of `=`) and greater than 0. What should the associativity pattern be? We already said it’s going to be an infix operator. As arguments we only want atoms or variables, i.e., terms of precedence 0. Therefore, we should choose xfx to prevent users from nesting `is_bigger`-expressions.

Operators are declared using the `op/3` predicate, which has the same syntax as `current_op/3`. The difference is that this one actually defines the operator rather than retrieving its definition. Therefore, all arguments have to be instantiated. Again, the first argument denotes the precedence, the second one the associativity type, and the third one the name of the operator. Any Prolog atom could become the name of an operator, unless it is one already. Our `is_bigger`-operator is declared by submitting the following query:

```prolog
?- op(300, xfx, is_bigger).
Yes
```

Now Prolog knows it’s an operator, but doesn’t necessarily have a clue how to evaluate the truth of an expression containing this operator. This has to be programmed in terms of facts and rules in the usual way. When implementing them you have the choice of either using the operator notation or normal predicate notation. That means we can use the program from Chapter 1 in its present form. The operator `is_bigger` will be associated with the functor `is_bigger` that has been used there, i.e., after having compiled the program file we can ask queries like the following:
?- elephant is_bigger donkey.
Yes

As far as matching is concerned, predicate and operator notation are considered to be identical, as you can see from Prolog’s reply to this query:

?- (elephant is_bigger tiger) = is_bigger(elephant, tiger).
Yes

Query execution at compilation time. Obviously, it wouldn’t be very practical to redefine all your operators every time you re-start the Prolog interpreter. Fortunately, it is possible to tell Prolog to make the definitions at compilation time. More generally speaking, you may put any query you like directly into a program file, which will cause it to be executed whenever you consult that file. The syntax for such queries is similar to rules, but without a head. Say, for instance, your program contains the following line:

```
:- write('Hello, have a beautiful day!').
```

Then every time you consult the file, this will cause the goal after :- to be executed:

```
?- consult('my-file.pl').
Hello, have a beautiful day!
my-file.pl compiled, 0.00 sec, 224 bytes.
Yes
?- 
```

You can do exactly the same with operator definitions, i.e., you could add the definition for `is_bigger`

```
:- op(300, xfx, is_bigger).
```

at the beginning of the big animals program file and the operator will be available directly after compilation. This means that you can use `is_bigger` in infix-notation to define clauses in your program file and you can use it for queries when you run your program.

4.3 Exercises

Exercise 4.1. Consider the following operator definitions:

```
:- op(100, yfx, plink),
    op(200, xfy, plonk).
```

(a) Copy the operator definitions into a program file and compile it. Then run the following queries and explain what is happening.

(i) `?- tiger plink dog plink fish = X plink Y.`
(ii) ?- cow plonk elephant plink bird = X plink Y.

(iii) ?- X = (lion plink tiger) plonk (horse plink donkey).

(b) Write a Prolog predicate `pp_analyse/1` to analyse plink/plonk-expressions. The output should tell you what the principal operator is and which are the two main subterms. If the main operator is neither `plink` nor `plonk`, then the predicate should fail. Examples:

```prolog
?- pp_analyse(dog plink cat plink horse).
Principal operator: plink
Left subterm: dog plink cat
Right subterm: horse
Yes
```

```prolog
?- pp_analyse(dog plonk cat plonk horse).
Principal operator: plonk
Left subterm: dog
Right subterm: cat plonk horse
Yes
```

```prolog
?- pp_analyse(lion plink cat plonk monkey plonk cow).
Principal operator: plonk
Left subterm: lion plink cat
Right subterm: monkey plonk cow
Yes
```

Exercise 4.2. Consider the following operator definitions:

```prolog
:- op(100, fx, the),
op(100, fx, a),
op(200, xfx, has).
```

(a) Indicate the structure of this term using parentheses and name its principal functor:

```
claudia has a car
```

(b) What would Prolog reply when presented with the following query?

```
?- the lion has hunger = Who has What.
```

(c) Explain why the following query would cause a syntax error:

```
?- X = she has whatever has style.
```

Exercise 4.3. Define operators in Prolog for the connectives of propositional logic. Use the following operator names:

- Negation: `neg`

- Conjunction: \texttt{and}
- Disjunction: \texttt{or}
- Implication: \texttt{implies}

Think about what precedences and associativity patterns are appropriate. In particular, your declarations should reflect the precedence hierarchy of the connectives as they are defined in propositional logic. Define all binary logical operators as being left-associative. Your definitions should allow for double negation without parentheses (see examples).

\textit{Hint}: You can easily test whether your operator declarations work as intended. Recall that Prolog omits all redundant parentheses when it prints out the answer to a query. That means, when you ask Prolog to match a variable with a formula whose structure you have indicated using parentheses, those that are redundant should all disappear in the output. Parentheses that are necessary, however, will be shown. Examples:

\begin{verbatim}
?- Formula = a implies ((b and c) and d).
Formula = a implies b and c and d
Yes

?- AnotherFormula = (neg (neg a)) or b.
AnotherFormula = neg neg a or b
Yes

?- ThirdFormula = (a or b) and c.
ThirdFormula = (a or b)and c
Yes
\end{verbatim}

\textbf{Exercise 4.4}. A formula of propositional logic (involving only negation, conjunction, and disjunction, but not, e.g., implication) is said to be in \textit{negation normal form} (NNF) if it is the case that every subformula that is negated is a negative literal (i.e., the negation of an atomic proposition). That is, for example, \((p \lor \neg q) \land \neg r\) is in NNF, while \(p \land (q \lor r)\) and \(\neg \neg p\) are not.

Define appropriate Prolog operators for negation, conjunction, and disjunction (as in the exercise above). Then write a predicate \texttt{nnf/1} that takes a formula of propositional logic (involving only these three operators) as an argument and that succeeds if and only if the formula provided is in NNF. Examples:

\begin{verbatim}
?- nnf((p or neg q) and neg r).
Yes

?- nnf(p and neg (q or r)).
No
\end{verbatim}
?- nnf(neg neg p).
No

Hint: Propositional atoms correspond to atoms in Prolog. You can test whether a given term is a valid Prolog atom by using the built-in predicate `atom/1`.

Note: If you are looking for a challenge, you could also try to implement a predicate for translating a given formula into an equivalent formula in NNF (using de Morgan’s laws).

Exercise 4.5. Write a Prolog predicate `cnf/1` to test whether a given formula of propositional logic is in conjunctive normal form (CNF), using the operators you defined for Exercise 4.3. Examples:

?- cnf((a or neg b) and (b or c) and (neg d or neg e)).
Yes

?- cnf(a or (neg b)).
Yes

?- cnf((a and b and c) or d).
No

?- cnf(a and b and (c or d)).
Yes

?- cnf(a).
Yes

?- cnf(neg neg a).
No

Exercise 4.6. Using the operators for the logical connectives defined in Exercise 4.3, but this time also covering an operator `iff` for bi-implications, implement a Prolog predicate `cnf/2` to compute the CNF of a given formula. Examples:

?- cnf(p iff neg neg q, CNF).
CNF = (neg p or q) and (neg q or p)
Yes

?- cnf(p and q or r and s, CNF).
CNF = (p or r) and (p or s) and (q or r) and (q or s)
Yes

Hints: For this kind of problem, it is tempting to define lots of redundant cases, resulting in a messy program. So try to be concise and systematic in your presentation, and only
include rules that are actually required. It’s a good idea to first implement a predicate to eliminate any occurrences of *implies* and *iff* from the input formula.

Note: You could also think about how to simplify a given formula in CNF. For instance, you could try to remove redundant disjuncts or conjuncts (e.g., \(P \land (P \lor Q) \) simplifies to \(P \)), or you could remove disjunctions containing complementary literals.
Chapter 5

Backtracking, Cuts and Negation

In this chapter you will learn a bit more on how Prolog resolves queries. We will also introduce a control mechanism (cuts) that allows for more efficient implementations. Furthermore, some extensions to the syntax of Prolog programs will be discussed. Besides conjunction (remember, a comma separating two subgoals in a rule-body represents a conjunction) we shall introduce negation and disjunction.

5.1 Backtracking and Cuts

In Chapter 1 the term “backtracking” has been mentioned already. Next we are going to examine backtracking in some more detail, note some of its useful applications as well as problems, and discuss a way of overcoming such problems (by using so-called cuts).

5.1.1 Backtracking Revisited

During proof search, Prolog keeps track of choicepoints, i.e., situations where there is more than one possible match. Whenever the chosen path ultimately turns out to be a failure (or if the user asks for alternative solutions), the system can jump back to the last choicepoint and try the next alternative. This is process is known as backtracking. It is a crucial feature of Prolog and facilitates the concise implementation of many problem solutions.

Let’s consider a concrete example. We want to write a predicate to compute all possible permutations of a given list. The following implementation uses the built-in predicate `select/3`, which takes a list as its second argument and matches the first argument with an element from that list. The variable in the third argument position will then be matched with the rest of the list after having removed the chosen element. Here’s a very simple recursive definition of the predicate `permutation/2`:

\[
\text{permutation([], []).}
\]

\[
\text{permutation(List, [Element | Permutation] :-}
\]

```prolog
permutation(List, [Element | Permutation]) :-
```
The simplest case is that of an empty list. There’s just one possible permutation, the empty list itself. If the input list has got elements, then the subgoal \texttt{select(Element, List, Rest)} will succeed and bind the variable \texttt{Element} to an element of the input list. It makes that element the head of the output list and recursively calls \texttt{permutation/2} again with the rest of the input list. The first answer to a query will simply reproduce the input list, because \texttt{Element} will always be assigned to the value of the head of \texttt{List}. If further alternatives are requested, however, backtracking into the \texttt{select}-subgoal takes place, i.e., each time \texttt{Element} is instantiated with another element of \texttt{List}. This will generate all possible orders of selecting elements from the input list, in other words, this will generate all permutations of the input list. Example:

\begin{verbatim}
?- permutation([1, 2, 3], X).
X = [1, 2, 3] ;
X = [1, 3, 2] ;
X = [2, 1, 3] ;
X = [2, 3, 1] ;
X = [3, 1, 2] ;
X = [3, 2, 1] ;
No
\end{verbatim}

We have also seen other examples for exploiting the backtracking feature before, e.g., in Section 2.2. There we used backtracking into \texttt{concat_lists/3} (which is the same as the built-in predicate \texttt{append/3}) to find all possible decompositions of a given list.

5.1.2 Problems with Backtracking

There are cases, however, were backtracking is not desirable. Consider, for example, the following definition of the predicate \texttt{remove_duplicates/2} to remove duplicate elements from a given list.

\begin{verbatim}
remove_duplicates([], []).
remove_duplicates([Head | Tail], Result) :-
 member(Head, Tail),

\end{verbatim}
remove_duplicates(Tail, Result).

remove_duplicates([Head | Tail], [Head | Result]) :-
 remove_duplicates(Tail, Result).

The declarative meaning of this predicate definition is the following. Removing duplicates from the empty list yields again the empty list. There’s certainly nothing wrong with that. The second clause says that if the head of the input list can be found in its tail, the result can be obtained by recursively applying `remove_duplicates/2` to the list’s tail, discarding the head. Otherwise we get the tail of the result also by applying the predicate to the tail of the input, but this time we keep the head.

This works almost fine. The first solution found by Prolog will indeed always be the intended result. But when requesting alternative solution things will start going wrong. The two rules provide a choicepoint. For the first branch of the search tree Prolog will always pick the first rule, if that is possible, i.e., whenever the head is a member of the tail it will be discarded. During backtracking, however, also all other branches of the search tree will be visited. Even if the first rule would match, sometimes the second one will be picked instead and the duplicate head will remain in the list. The (semantically wrong) output can be seen in the following example:

```prolog
?- remove_duplicates([a, b, b, c, a], List).
List = [b, c, a] ;
List = [b, b, c, a] ;
List = [a, b, c, a] ;
List = [a, b, b, c, a] ;
No
```

That is, Prolog not only generates the correct solution, but also all other lists we get by keeping some of the elements that should have been deleted. To solve this problem we need a way of telling Prolog that, even when the user (or another predicate calling `remove_duplicates/2`) requests further solutions, there are no such alternatives and the goal should fail.

5.1.3 Introducing Cuts

Prolog provides a solution to the sort of problems discussed above. It is possible to explicitly “cut out” backtracking choicepoints, thereby guiding the proof search and prohibiting unwanted alternative solutions to a query.
A cut is written as !. It is a predefined Prolog predicate and can be placed anywhere inside a rule’s body (or similarly, be part of a sequence of subgoals in a query). Executing the subgoal ! will always succeed, but afterwards backtracking into subgoals placed before the cut inside the same rule body is not possible anymore.

We will define this more precisely a bit later. Let’s first look at our example about removing duplicate elements from a list again. We change the previously proposed program by inserting a cut after the first subgoal inside the body of the first rule; the rest remains exactly the same as before.

\[
\begin{align*}
\text{remove_duplicates}([], []). \\
\text{remove_duplicates}([\text{Head} | \text{Tail}], \text{Result}) :- \\
\quad \text{member(\text{Head}, \text{Tail}), !,} \\
\quad \text{remove_duplicates(\text{Tail}, \text{Result}).} \\
\text{remove_duplicates}([\text{Head} | \text{Tail}], [\text{Head} | \text{Result}]) :- \\
\quad \text{remove_duplicates(\text{Tail}, \text{Result}).}
\end{align*}
\]

Now, whenever the head of a list is a member of its tail, the first subgoal of the first rule, i.e., \text{member(\text{Head}, \text{Tail})}, will succeed. Then the next subgoal, !, will also succeed. Without that cut it would be possible to backtrack, that is, to match the original goal with the head of the second rule to search for alternative solutions. But once Prolog went past the cut, this isn’t possible anymore: alternative matchings for the parent goal\(^1\) will not be tried.

Using this new version of the predicate \text{remove_duplicates/2}, we get the desired behaviour. When asking for alternative solutions by pressing ; we immediately get the right answer, namely No.

\[
?- \text{remove_duplicates}([\text{a, b, b, c, a}], \text{List}). \\
\text{List} = [\text{b, c, a}] ; \\
\text{No}
\]

Now we are ready for a more precise definition of cuts in Prolog: Whenever a cut is encountered in a rule’s body, all choices made between the time that rule’s head has been matched with the parent goal and the time the cut is passed are final, i.e., any choicepoints are being discarded.

Let’s exemplify this with a little story. Suppose a young prince wants to get married. In the old days he’d simply have saddled his best horse to ride down to the valleys of, say, Essex\(^2\) and find himself the sort of young, beautiful, and intelligent girl he’s after. But, obviously, times have changed, life in general is becoming much more complex these days, and most importantly, our prince is rather busy defending monarchy against

\(^1\)With “parent goal” we mean the goal that caused the matching of the rule’s head.

\(^2\)This story has been written with a British audience in mind. Please adapt to your local circumstances.
communism/anarchy/democracy (pick your favourite). Fortunately, his royal board of advisors consists of some of the finest psychologists and Prolog programmers in the country. They form an executive committee to devise a Prolog program to automatise the prince’s quest for a bride. The task is to simulate as closely as possible the prince’s decision if he actually were to go out there and look for her by himself. From the expert psychologists we gather the following information:

- The prince is primarily looking for a beautiful girl. But, to be eligible for the job of a prince’s wife, she’d also have to be intelligent.

- The prince is young and very romantic. Therefore, he will fall in love with the first beautiful girl he comes across, love her for ever, and never ever consider any other woman as a potential wife again. Even if he can’t marry that girl.

The MI5 provides the committee with a database of women of the appropriate age. The entries are ordered according to the order the prince would have met them on his ride through the country. Written as a list of Prolog facts it looks something like this:

```
beautifi(claudia).
beautifi(sharon).
beautifi(denise).
...

intelligi(margaret).
intelligi(sharon).
...
```

After some intensive thinking the Prolog sub-committee comes up with the following ingenious rule:

```
bride(Girl) :-
    beautifi(Girl), !,
    intelligi(Girl).
```

Let’s leave the cut in the second line unconsidered for the moment. Then a query of the form

```
?- bride(X).
```

will succeed, if there is a girl X for which both the facts `beautifi(X)` and `intelligi(X)` can be found in the database. Therefore, the first requirement identified by the psychologists will be fulfilled. The variable X would then be instantiated with the girl’s name.

In order to incorporate the second condition the Prolog experts had to add the cut. If the subgoal `beautifi(Girl)` succeeds, i.e., if a fact of the form `beautifi(X)` can
be found (and it will be the first such fact), then that choice will be final, even if the subgoal intelligent(X) for the same \(X \) should fail.

Given the above database, this is rather tragic for our prince. The first beautiful girl he’d meet would be Claudia, and he’d fall in love with her immediately and forever. In Prolog this corresponds to the subgoal beautiful(Girl) being successful with the variable instantiation Girl = claudia. And it stays like this forever, because after having executed the cut, that choice cannot be changed anymore. As it happens, Claudia isn’t the most amazingly intelligent young person that you might wish her to be, which means they cannot get married. In Prolog, again, this means that the subgoal intelligent(Girl) with the variable Girl being bound to the value claudia will not succeed, because there is no such fact in the program. That means the entire query will fail. Even though there is a name of a girl in the database, who is both beautiful and intelligent (Sharon), the prince’s quest for marriage is bound to fail:

\[
\text{?- bride(X). No}
\]

5.1.4 Problems with Cuts

Cuts are very useful to “guide” the Prolog interpreter towards a solution. But this doesn’t come for free. By introducing cuts, we give up some of the (nice) declarative character of Prolog and move towards a more procedural system. This can sometimes lead to unexpected results.

To illustrate this, let’s implement a predicate `add/3` to insert an element into a list, if that element isn’t already a member of the list. The element to be inserted should be given as the first argument, the list as the second one. The variable given in the third argument position should be matched with the result. Examples:

\[
\text{?- add(elephant, [dog, donkey, rabbit], List).}
\]
\[
\text{List = [elephant, dog, donkey, rabbit] ;
}\]
\[
\text{No}
\]

\[
\text{?- add(donkey, [dog, donkey, rabbit], List).}
\]
\[
\text{List = [dog, donkey, rabbit] ;
}\]
\[
\text{No}
\]

The important bit here is that there are no wrong alternative solutions. The following Prolog program does the job:

\[
\text{add(Element, List, List) :-}
\]
\[
\text{member(Element, List), !.}
\]
\[
\text{add(Element, List, [Element | List]).}
\]
If the element to be inserted can be found in the list already, the output list should be identical with the input list. As this is the only correct solution, we prevent Prolog from backtracking by using a cut. Otherwise, i.e., if the element is not already in the list, we use the head/tail-pattern to construct the output list.

This is an example for a program where cuts can be problematic. When used as specified, namely with a variable in the third argument position, add/3 works fine. If, however, we put an instantiated list in the third argument, Prolog’s reply can be different from what you might expect. Example:

?- add(a, [a, b, c, d], [a, a, b, c, d]).
Yes

Compare this with the definition of the add/3-predicate from above and try to understand what’s happening here. One possible solution would be to explicitly say in the second clause that member(Element,List) should not succeed, rather than using a cut in the first clause. We are going to see how to do this using negation in the next section. An alternative solution would be to rewrite the definition of add/3 as follows:

\[
\text{add(Element, List, Result) :-}
\text{member(Element, List), !,}
\text{Result = List.}
\]

Try to understand how this solves the problem. Note that from a declarative point of view the two versions of the program are equivalent, but procedurally they behave differently. So be careful with those cuts!

5.2 Negation as Failure

In the marriage example from before, from the fact intelligent(claudia) not appearing in the database we concluded that beautiful Claudia wasn’t intelligent. This touches upon an important issue of Prolog semantics, namely that of negation.

5.2.1 The Closed World Assumption

In order to give a positive answer to a query, Prolog has to construct a proof to show that the set of facts and rules of a program implies that query. Therefore, precisely speaking, answering \text{Yes} to a query means not only that the query is true, but that it is provably true. Consequently a \text{No} doesn’t mean the query is necessarily false, just not provably true: Prolog failed to derive a proof.

This attitude of negating everything that is not explicitly in the program (or can be concluded from the information provided by the program) is often referred to as the
closed world assumption. That is, we think of our Prolog program as a little world of its own, assuming nothing outside that world does exist (or is true).

In everyday reasoning we usually don’t make this sort of assumption. Just because the duckbill might not appear in even a very big book on animals, we cannot infer that it isn’t an animal. In Prolog, on the other hand, when we have a list of facts like

\[
\text{animal(elephant).} \\
\text{animal(tiger).} \\
\text{animal(lion).} \\
... \\
\text{animal(duckbill)}
\]

and \text{animal(duckbill)} does not appear in that list (and there are no rules with \text{animal/1} in the head), then Prolog would react to a query asking whether the duckbill was an animal as follows:

\[
? - \text{animal(duckbill).} \\
\text{No}
\]

The closed world assumption might seem a little narrow-minded at first sight, but you will appreciate that it is the only admissible interpretation of a Prolog reply, as Prolog clauses only give sufficient, not necessary conditions for a predicate to hold. Note, however, that if you have completely specified a certain problem, i.e., when you can be sure that for every case where there is a positive solution Prolog has all the data to be able to construct the respective proof, then the notions of not provable and false coincide. A No then really does mean no.

5.2.2 The \text{\textbackslash +-Operator}

Sometimes we might not want to ask whether a certain goal succeeds, but whether it fails. That is, we want to be able to negate goals. In Prolog this is possible using the \text{\textbackslash +-operator}. This is a prefix operator that can be applied to any valid Prolog goal. A goal of the form \text{\textbackslash + Goal} succeeds, if the goal \text{Goal} fails and vice versa. In other words, \text{\textbackslash + Goal} succeeds, if Prolog fails to derive a proof for \text{Goal} (i.e., if \text{Goal} is not provably true). This semantics of the negation operator is known as negation as failure. Prolog’s negation is defined as the failure to provide a proof. In real life this is usually not the right notion (though it has been adopted by judicature: “innocent unless proven guilty”).

Let’s look at an example for the use of the \text{\textbackslash +-operator}. Assume we have a list of Prolog facts with pairs of people who are married to each other:

\[
\text{married(peter, lucy).} \\
\text{married(paul, mary).} \\
\text{married(bob, juliet).} \\
\text{married(harry, geraldine).}
\]
Then we can define a predicate `single/1` that succeeds if the argument given can neither be found as the first nor as the second argument in any of the `married/2`-facts. We can use the anonymous variable for the other argument of `married/2`, because its value would be irrelevant:

\[\text{single(Person)} : - \\
\text{\quad \quad \quad \quad \quad \quad \quad + married(Person, _),} \\
\text{\quad \quad \quad \quad \quad \quad \quad + married(_, Person).} \]

Example queries:

\[\text{?- single(mary).} \]
\[\text{No} \]

\[\text{?- single(claudia).} \]
\[\text{Yes} \]

Again, we have to read the answer to the last query as “Claudia is assumed to be single, because she cannot be shown to be married”. We are only allowed to shorten this interpretation to “Claudia is single”, if we can be sure that the list of `married/2`-facts is exhaustive, i.e., if we accept the closed world assumption for this example.

Now consider the following query and Prolog’s response:

\[\text{?- single(X).} \]
\[\text{No} \]

This means, that Prolog cannot provide any example for a person `X` that would be single. This is so, because our little database of married people is all that Prolog knows about in this example.

Where to use `\+`. We have mentioned already that the `\+`-operator can be applied to any valid Prolog goal. Recall what this means. Goals are either (sub)goals of a query or subgoals of a rule-body. Facts and rule-heads aren’t goals. Hence, it is not possible to negate a fact or the head of a rule. This perfectly coincides with what has been said about the closed world assumption and the notion of negation as failure: it is not possible to explicitly declare a predicate as being false.

5.3 Disjunction

The comma in between two subgoals of a query or a rule-body denotes a conjunction. The entire goal succeeds if both the first and the second subgoal succeed.

We already know one way of expressing a disjunction. If there are two rules with the same head in a program then this represents a disjunction, because during the goal execution process Prolog could choose either one of the two rule bodies when the current
goal matches the common rule-head. Of course, it will always try the first such rule first, and only execute the second one if there has been a failure or if the user has asked for alternative solutions.

In most cases this form of disjunction is the one that should be used, but sometimes it can be useful to have a more compact notation corresponding to the comma for conjunction. In such cases you can use ; (semicolon) to separate two subgoals. As an example, consider the following definition of parent/2:

```
parent(X, Y) :-
    father(X, Y).

parent(X, Y) :-
    mother(X, Y).
```

This means, “X can be shown to be the parent of Y, if X can be shown to be the father of Y or if X can be shown to be the mother of Y”. The same definition can also be given more compactly:

```
parent(X, Y) :-
    father(X, Y);
    mother(X, Y).
```

Note that the precedence value of ; (semicolon) is higher than that of , (comma). Therefore, when implementing a disjunction inside a conjunction you have to structure your rule-body using parentheses.

The semicolon should only be used in exceptional cases. As it can easily be mixed up with the comma, it makes programs less readable.

5.4 Example: Evaluating Logic Formulas

As an example, let’s try to write a short Prolog program that may be used to evaluate a row in a truth table. Assume appropriate operator definitions have been made before (see for example the exercises at the end of the chapter on operators). Using those operators, we want to be able to type a Prolog term corresponding to the logic formula in question (with the propositional variables being replaced by a combination of truth values) into the system and get back the truth value for that row of the table.

In order to compute the truth table for \(A \land B\) we would have to execute the following four queries:

```
?- true and true.
Yes

?- true and false.
No
```
?- false and true.
No

?- false and false.
No

Hence, the corresponding truth table would look like this:

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>A ∧ B</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>F</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>F</td>
</tr>
</tbody>
</table>

One more example before we start writing the actual program:

?- true and (true and false implies true) and neg false.
Yes

In the examples we have used the Prolog atoms true and false. The former is actually a built-in predicate with exactly the meaning we require, so that’s fine. Also false will be available as a built-in on some Prolog systems (with the same meaning as fail). If not, we can easily define it ourselves:

false :- fail.

Next are conjunction and disjunction. They obviously correspond to the Prolog operators , (comma) and ; (semicolon), respectively. We use the built-in predicate call/1 to invoke the subformulas represented by the variables as Prolog goals:

and(A, B) :- call(A), call(B).

or(A, B) :- call(A); call(B).

Our own negation operator neg again is just another name for the built-in \+ Operator:

neg(A) :- \+ call(A).

Defining implication is a bit more tricky. One way would be to exploit the classical equivalence of A→B ≡ ¬A ∨ B and define implies in terms of or and neg. A somewhat nicer solution (this, admittedly, depends on one’s sense of aesthetics), however, would be to use a cut. Like this:

implies(A, B) :- call(A), !, call(B).

implies(_, _).

How does that work? Suppose A is false. Then the first rule will fail, Prolog will jump to the second one and succeed whatever B may be. This is exactly what we want: an implication evaluates to true whenever its antecedent evaluates to false. In case call(A) succeeds, the cut in the first rule will be passed and the overall goal will succeed if and only if call(B) does. Again, this is precisely what we want in classical logic.
Remark. We know that in classical logic \(\neg A \) is equivalent to \(A \rightarrow \perp \). Similarly, instead of using \(+\) in Prolog we could define our own negation operator as follows:

\[
\text{neg}(A) :- \text{call}(A), !, \text{fail}.
\]

\[
\text{neg}(_).
\]

5.5 Exercises

Exercise 5.1. Type the following queries into a Prolog interpreter and explain what happens.

(a) \(?- (\text{Result} = a ; \text{Result} = b), !, \text{Result} = b.\)

(b) \(?- \text{member}(X, \text{[a, b, c]}), !, X = b.\)

Exercise 5.2. Consider the following Prolog program:

\[
\text{result}([_, E | L], [E | M]) :- !,
\]

\[
\text{result}(L, M).
\]

\[
\text{result}(_, []).
\]

(a) After having consulted this program, what would Prolog reply when presented with the following query? Try answering this question first without actually typing in the program, but verify your solution later on using the Prolog system.

\(?- \text{result}([a, b, c, d, e, f, g], X).\)

(b) Briefly describe what the program does and how it does what it does, when the first argument of the \text{result/2}-predicate is instantiated with a list and a variable is given in the second argument position, i.e., as in item (a). Your explanations should include answers to the following questions:

- What case(s) is/are covered by the Prolog fact?
- What effect has the cut in the first line of the program?
- Why has the anonymous variable been used?

Exercise 5.3. Implement Euclid’s algorithm to compute the greatest common divisor (GCD) of two non-negative integers. This predicate should be called \text{gcd/3} and, given two non-negative integers in the first two argument positions, should match the variable in the third position with the GCD of the two given numbers. Examples:

\(?- \text{gcd}(57, 27, X).\)

\(X = 3\)

Yes
?- gcd(1, 30, X).
X = 1
Yes

?- gcd(56, 28, X).
X = 28
Yes

Make sure your program behaves correctly also when the semicolon key is pressed.

Hints: The GCD of two numbers a and b (with $a \geq b$) can be found by recursively substituting a with b and b with the rest of the integer division of a and b. Make sure you define the right base case(s).

Exercise 5.4. Implement a Prolog predicate `occurrences/3` to count the number of occurrences of a given element in a given list. Make sure there are no wrong alternative solutions. Example:

?- occurrences(dog, [dog, frog, cat, dog, dog, tiger], N).
N = 3
Yes

Exercise 5.5. Write a Prolog predicate `divisors/2` to compute the list of all divisors for a given natural number. Example:

?- divisors(30, X).
X = [1, 2, 3, 5, 6, 10, 15, 30]
Yes

Make sure your program doesn’t give any wrong alternative solutions and doesn’t fall into an infinite loop when the user presses the semicolon key.

Exercise 5.6. Write a predicate `factor/2` to compute the prime factorisation of a given integer ≥ 2. Use the same notation as in the following examples:

?- factor(30, X).
X = [2, 3, 5]
Yes

?- factor(300, X).
X = [2^2, 3, 5^2]
Yes

?- factor(1024, X).

\[X = [2^{10}] \]
Yes

?- factor(17, X).
\[X = [17] \]
Yes

Use your program to give the prime factorisations of 7777777 and 12345654321.

Exercise 5.7. In the Treaty of Rome (1957) the six founding countries of the European Union specified the voting rule to decide on proposals in the Council of the European Commission. To pass, a proposal has to reach the threshold of 12 votes. The large countries (France, Germany, and Italy) each have 4 votes; the medium-sized countries (Belgium and the Netherlands) each have 2 votes; Luxembourg has 1 vote. Let us represent these facts in Prolog:

```
countries([belgium, france, germany, italy, luxembourg, netherlands]).
weight(france, 4).
weight(germany, 4).
weight(italy, 4).
weight(belgium, 2).
weight(netherlands, 2).
weight(luxembourg, 1).
threshold(12).
```

This may suggest that, say, Germany has twice as much voting power as the Netherlands, which in turn have twice as much power as Luxembourg. But, as we shall see, this would be a rather naïve interpretation of the rule.

A **coalition** of countries (a subset of the six countries) is called **winning**, if their sum of weights is at least equal to the threshold; otherwise it is called a **losing** coalition. Write a predicate \(\text{winning}/1 \) that, when given a list of countries, succeeds if and only if that list constitutes a winning coalition. Examples:

```
?- winning([belgium, france, germany, netherlands]).
Yes

?- winning([belgium, netherlands, luxembourg]).
No
```

Let us say that a given country \(x \) is **critical** for a given coalition \(C \) if (i) \(C \) does not include \(x \), (ii) \(C \) alone is not winning, but (iii) \(C \) together with \(x \) is winning. Implement a predicate \(\text{critical}/2 \) to check whether a given country is critical for a given coalition. Examples:

```
?- critical(netherlands, [belgium, france, germany]).
Yes
```
?- critical(netherlands, [france, germany, italy]).
No

Next we want to find a way to generate *all* coalitions that are critical for a given country. To this end, implement a predicate `sublist/2` that succeeds when its first argument matches a sublist of the list given as the second argument. It should be possible to use it like this:

?- sublist(X, [a, b, c]).
 X = [a, b, c] ;
 X = [a, b] ;
 X = [a, c] ;
 X = [a] ;
 X = [b, c] ;
 X = [b] ;
 X = [c] ;
 X = [] ;
No

Now we can generate all critical coalitions for a given country through enforced back-tracking:

?- countries(All), sublist(Coalition, All), critical(netherlands, Coalition).
 All = [belgium, france, germany, italy, luxembourg, netherlands],
 Coalition = [belgium, france, germany, luxembourg] ;
 All = [belgium, france, germany, italy, luxembourg, netherlands],
 Coalition = [belgium, france, germany] ;
 All = [belgium, france, germany, italy, luxembourg, netherlands],
 Coalition = [belgium, france, italy, luxembourg] ;
 All = [belgium, france, germany, italy, luxembourg, netherlands],
 Coalition = [belgium, france, italy] ;
 All = [belgium, france, germany, italy, luxembourg, netherlands],
 Coalition = [belgium, germany, italy, luxembourg] ;
 All = [belgium, france, germany, italy, luxembourg, netherlands],
 Coalition = [belgium, germany, italy] ;
 No

That is, the 6 different lists bound to the variable `Coalition` above represent the 6 coalitions for which the Netherlands is critical. Let us define the *voting power* of a country as the number of coalitions for which it is critical (i.e., the voting power of the Netherlands is 6).\(^3\) Write a predicate `voting_power/2` to compute a given country’s voting power (at this point you will need to make use of a built-in predicate called `findall/3`, which you can look up in your Prolog reference manual). Example:

\(^3\)If you are interested to find out more about this topic, search the Internet for “weighted voting games” and “Banzhaff power index” (what we have called the voting power of a country is a simplified version of the so-called Banzhaf power index used widely in political science and economics).
?- voting_power(netherlands, Power).
Power = 6
Yes

What is the voting power of Germany? How about Luxembourg? Explain what this means for the voting rule used.

Note: The only place in your program referring to the specific countries or the specific threshold mentioned in the text above should be the Prolog facts given at the very start. That is, it should be possible to re-use your program for later incarnations of the European Union (with more countries, different weights, and a different threshold) by only changing those facts.

Exercise 5.8. Check some of your old Prolog programs to see whether they produce wrong alternative solutions or even fall into a loop when the user presses ; (semicolon). Fix any problems you encounter using cuts (one will often be enough).
Chapter 6

Logic Foundations of Prolog

From using expressions such as “predicate”, “true”, “proof”, etc. when speaking about Prolog programs and the way goals are executed when a Prolog system attempts to answer a query it should have become clear already that there is a very strong connection between logic and Prolog. Not only is Prolog the programming language that is probably best suited for implementing applications that involve logical reasoning, but Prolog’s query resolution process itself is actually based on a logical deduction system. This part of the notes is intended to give you a first impression of the logics behind Prolog.

We start by showing how (basic) Prolog programs can be translated into sets of first-order logic formulas. These formulas all have a particular form; they are known as Horn formulas. Then we shall briefly introduce resolution, a proof system for Horn formulas, which forms the basis of every Prolog interpreter.

6.1 Translation of Prolog Clauses into Formulas

This section describes how Prolog clauses (i.e., facts, rules, and queries) can be translated into first-order logic formulas. We will only consider the very basic Prolog syntax here, in particular we won’t discuss cuts, negation, disjunction, the anonymous variable, or the evaluation of arithmetic expressions at this point. Recall that given their internal representation (using the dot-functor, see Section 2.1) lists don’t require any special treatment, at least not at this theoretical level.

Prolog predicates correspond to predicate symbols in logic, terms inside the predicates correspond to functional terms appearing as arguments of logic predicates. These terms are made up of constants (Prolog atoms), variables (Prolog variables), and function symbols (Prolog functors). All variables in a Prolog clause are implicitly universally quantified (that is, every variable could be instantiated with any Prolog term).

Given this mapping from Prolog predicates to atomic first-order formulas the translation of entire Prolog clauses is straightforward. Recall that :- can be read as “if”, i.e., as an implication from right to left; and that the comma separating subgoals in a clause constitutes a conjunction. Prolog queries can be seen as Prolog rules with an empty
head. This empty head is translated as ⊥ (falsum). Why this is so will become clear later. When translating a clause, for every variable \(X \) appearing in the clause we have to put \(\forall x \) in front of the resulting formula. The universal quantification implicitly inherent in Prolog programs has to be made explicit when writing logic formulas.

Before summarising the translation process more formally we give an example. Consider the following little program consisting of two facts and two rules:

\[
\text{bigger(elephant, horse).} \\
\text{bigger(horse, donkey).} \\
\text{is_bigger(X, Y) :- bigger(X, Y).} \\
\text{is_bigger(X, Y) :- bigger(X, Z), is_bigger(Z, Y).}
\]

Translating this into a set of first-order logic formulas yields:

\[
\{
\text{bigger(elephant, horse),} \\
\text{bigger(horse, donkey),} \\
\forall x.\forall y.(\text{bigger}(x, y) \rightarrow \text{is_bigger}(x, y)), \\
\forall x.\forall y.\forall z.\text{is_bigger}(x, z) \land \text{is_bigger}(z, y) \rightarrow \text{is_bigger}(x, y)
\}
\]

Note how the head of a rule is rewritten as the consequent of an implication. Also note that each clause has to be quantified independently. This corresponds to the fact that variables from distinct clauses are independent from each other, even when they’ve been given the same name. For example, the \(X \) in the first rule has nothing to do with the \(X \) in the second one. In fact, we could rename \(X \) to, say, \(\text{Claudia} \) throughout the first but not the second rule—this would not affect the behaviour of the program. In logic, this is known as the renaming of bound variables.

If several clauses form a program, that program corresponds to a set of formulas and each of the clauses corresponds to exactly one of the formulas in that set. Of course, we can also translate single clauses. For example, the query

\[
?- \text{is_bigger(elephant, X), is_bigger(X, donkey)}.
\]

corresponds to the following first-order formula:

\[
\forall x.(\text{is_bigger(elephant, x)} \land \text{is_bigger(x, donkey)} \rightarrow \perp)
\]

As you know, queries can also be part of a Prolog program (in which case they are preceded by \(:- \)), i.e., such a formula could also be part of a set corresponding to an entire program.

To summarise, when translating a Prolog program (i.e., a sequence of clauses) into a set of logic formulas you have to carry out the following steps:

(1) Every Prolog predicate is mapped to an atomic first-order logic formula (syntactically, both are exactly the same: you can just rewrite them without making any changes).
(2) Commas separating subgoals correspond to conjunctions in logic (i.e., you have to replace every comma between two predicates by a \land in the formula).

(3) Prolog rules are mapped to implications, where the rule body is the antecedent and the rule head the consequent (i.e., rewrite \leftarrow as \rightarrow and change the order of head and body).

(4) Queries are mapped to implications, where the body of the query is the antecedent and the consequent is \bot (i.e., rewrite \leftarrow or $\texttt{?}$ as \rightarrow, which is put after the translation of the body and followed by \bot).

(5) Each variable occurring in a clause has to be universally quantified in the formula (i.e., write $\forall x$ in front of the whole formula for each variable x).

6.2 Horn Formulas and Resolution

The formulas we get when translating Prolog rules all have a similar structure: they are implications with an atom in the consequent and a conjunction of atoms in the antecedent (this implication again is usually in the scope of a sequence of universal quantifiers). Abstracting from the quantification for the moment, these formulas all have the following structure:

$$A_1 \land A_2 \land \cdots \land A_n \rightarrow B$$

Such a formula can be rewritten as follows:

$$A_1 \land A_2 \land \cdots \land A_n \rightarrow B \equiv \\
\neg(A_1 \land A_2 \land \cdots \land A_n) \lor B \equiv \\
\neg A_1 \lor \neg A_2 \lor \cdots \lor \neg A_n \lor B$$

Note that if B is \bot (which is the case when we translate queries) we obtain the following:

$$\neg A_1 \lor \neg A_2 \lor \cdots \lor \neg A_n \lor \bot \equiv \neg A_1 \lor \neg A_2 \lor \cdots \lor \neg A_n$$

Hence, every formula we get when translating a Prolog program into first-order formulas can be transformed into a universally quantified disjunction of literals with at most one positive literal. Such formulas are called Horn formulas.\footnote{A Prolog fact is simply translated into an atomic formula, i.e., a positive literal. Therefore, formulas representing facts are also Horn formulas.} (Sometimes the term Horn formula is also used to refer to conjunctions of disjunctions of literals with at most one positive literal each; that would corresponds to an entire Prolog program.)

As $A \rightarrow \bot$ is logically equivalent to $\neg A$, by translating queries as implications with \bot in the consequent we are basically putting the negation of the goal in a query into the set of formulas. Answering a query in Prolog means showing that the set corresponding to the associated program together with the translation of that query is logically inconsistent.
This is equivalent to showing that the goal logically follows from the set representing the program:

$$\mathcal{P}, (A \rightarrow \bot) \vdash \bot \quad \text{if and only if} \quad \mathcal{P} \vdash A$$

In plain English: to show that A follows from \mathcal{P}, show that adding the negation of A to \mathcal{P} will lead to a contradiction.

In principle, such a proof could be accomplished using any formal proof system (e.g., natural deduction or semantic tableaux), but usually the resolution method is chosen, which is particularly suited for Horn formulas. We are not going to present the resolution method in its entirety here, but the basic idea is very simple. This proof system has just one rule, which is exemplified in the following argument (all formulas involved need to be Horn formulas):

$$\neg A_1 \lor \neg A_2 \lor B_1$$
$$\neg B_1 \lor \neg B_2$$

If we know $\neg A_1 \lor \neg A_2 \lor B_1$ and $\neg B_1 \lor \neg B_2$, then we also know $\neg A_1 \lor \neg A_2 \lor \neg B_2$, because in case B_1 is false $\neg A_1 \lor \neg A_2$ has to hold and in case B_1 is true, $\neg B_2$ has to hold. In the example, the first formula corresponds to this Prolog rule:

$$b_1 :- a_1, a_2.$$

The second formula corresponds to a query:

$$?- b_1, b_2.$$

The result of applying the resolution rule then corresponds to the following new query:

$$?- a_1, a_2, b_2.$$

And this is exactly what we would have expected. When executing the goal b_1, b_2 Prolog starts by looking for a fact or a rule-head matching the first subgoal b_1. Once the right rule has been found, the current subgoal is replaced with the rule body, in this case a_1, a_2. The new goal to execute therefore is a_1, a_2, b_2.

In Prolog this process is repeated until there are no more subgoals left in the query. In resolution this corresponds to deriving an “empty disjunction”, in other words \bot.

When using variables in Prolog, we have to move from propositional to first-order logic. The resolution rule for first-order logic is basically the same as the one for propositional logic. The difference is, that it is not enough anymore just to look for complementary literals (B_1 and $\neg B_1$ in the previous example) that can be found in the set of Horn formulas, but now we also have to consider pairs of literals that can be made complementary by means of unification. Unification in logic corresponds to matching in Prolog (but see the exercise section for some important subtleties). The variable instantiations returned by Prolog for successful queries correspond to the unifications made during a resolution proof.
This short presentation has only touched the very surface of what is commonly referred to as the theory of logic programming. The “real thing” goes much deeper and has been the object of intensive research for many years all over the world. More details can be found in books on automated theorem proving (in particular resolution), more theoretically oriented books on logic programming in general and Prolog in particular, and various scientific journals on logic programming and alike.

6.3 Exercises

Exercise 6.1. Translate the following Prolog program into a set of first-order logic formulas:

\[
\begin{align*}
\text{parent}(\text{peter}, \text{sharon}). \\
\text{parent}(\text{peter}, \text{lucy}). \\
\text{male}(\text{peter}). \\
\text{female}(\text{lucy}). \\
\text{female}(\text{sharon}). \\
\text{father}(X, Y) : - \\
&\text{parent}(X, Y), \\
&\text{male}(X). \\
\text{sister}(X, Y) : - \\
&\text{parent}(Z, X), \\
&\text{parent}(Z, Y), \\
&\text{female}(X).
\end{align*}
\]

Exercise 6.2. Type the following query into Prolog and try to explain what happens:

```
?- X = f(X).
```

Hint: This example shows that matching (Prolog) and unification (logic) are in fact not exactly the same concept. Take your favourite Prolog book and read about the “occurs check” to find out more about this.

Exercise 6.3. As we have seen in this chapter, the goal execution process in Prolog can be explained in terms of the resolution method. (By the way, this also means, that a Prolog interpreter could be based on a resolution-based automated theorem prover implemented in a low-level language such as Java or C++.)

Recall the mortal Socrates example from the introductory chapter (page 10) and what has been said there about Prolog’s way of deriving a solution to a query. Translate that
program and the query into first-order logic and see if you can construct the corresponding resolution proof. Compare this with what we have said about the Prolog goal execution process when we first introduced the Socrates example. Then, sit back and appreciate what you have learned.
Appendix A

Recursive Programming

Recursion has been mentioned over and over again in these notes. It is not just a Prolog phenomenon, but one of the most basic and most important concepts in computer science (and mathematics) in general.

Some people tend to find the idea of recursive programming difficult to grasp at first. If that’s you, maybe you’ll find the following helpful.

A.1 Complete Induction

The concept of recursion closely corresponds to the induction principle used in mathematics. To show a statement for all natural numbers, show it for a base case (e.g., $n = 1$) and show that from the statement being true for a particular n it can be concluded that the statement also holds for $n + 1$. This proves the statement for all natural numbers n.

Let’s look at an example. You might recall the formula for calculating the sum of the first n natural numbers. Before one can use such a formula, it has to be shown that it is indeed correct.

\[\text{Claim: } \sum_{i=1}^{n} i = \frac{n(n+1)}{2} \quad \text{ (induction hypothesis)} \]

\[\text{Proof by complete induction:} \]

\[n = 1 : \quad \sum_{i=1}^{1} i = 1 = \frac{1(1+1)}{2} \quad \checkmark \quad \text{ (base case)} \]

\[n \sim n + 1 : \quad \sum_{i=1}^{n+1} i = \sum_{i=1}^{n} i + (n + 1) \quad \text{ (induction step, using the hypothesis)} \]

\[= \frac{n(n+1)}{2} + (n + 1) = \frac{(n + 1)(n + 2)}{2} \quad \checkmark \]
A.2 The Recursion Principle

The basic idea of recursive programming, the recursion principle is the following: To solve a complex problem, provide the solution for the simplest problem of its kind and provide a rule for transforming such a (complex) problem into a slightly simpler problem.

In other words, provide a solution for the base case and provide a recursion rule (or step). You then get an algorithm (or program) that solves every problem of this particular problem class.

Compare: Using induction, we prove a statement by going from a base case “up” through all cases. Using recursion, we compute a function for an arbitrary case by going through all cases “down” to the base case.

Recursive definition of functions. The factorial $n!$ of a natural number n is defined as the product of all natural numbers from 1 to n. Here’s a more formal, recursive definition (also known as an inductive definition):

\[
\begin{align*}
1! &= 1 & \text{(base case)} \\
n! &= (n-1)! \cdot n \quad \text{for } n > 1 & \text{(recursion rule)}
\end{align*}
\]

To compute the actual value of, say, 5! we have to pass through the second part of that definition 4 times until we get to the base case and are able to calculate the overall result. That’s a recursion!

Recursion in Java. Here’s a Java method to compute the factorial of a natural number. It is recursive (for didactic reasons; note that this is not the best way of implementing the factorial in Java).

```java
public int factorial(int n) {
    if (n == 1) {
        return 1; // base case
    } else {
        return factorial(n-1) * n; // recursion step
    }
}
```

Recursion in Prolog. The definition of a Prolog predicate to compute factorials:

```
factorial(1, 1). % base case

factorial(N, Result) :- % recursion step
    N > 1,
    N1 is N - 1,
    factorial(N1, Result1),
    Result is Result1 * N.
```
Take an example, say the query `factorial(5, X)`, and go through the goal execution process step by step, just as Prolog would—and just as you would, if you wanted to compute the value of 5! systematically by yourself.

Another example. The following predicate can be used to compute the length of a list (it does the same as the built-in predicate `length/2`):

```prolog
len([], 0). % base case

len([_|Tail], N) :- % recursion step
    len(Tail, N1),
    N is N1 + 1.
```

A.3 What Problems to Solve

You can only use recursion if the class of problems you want to solve can somehow be parametrised. Typically, parameters determining the complexity of a problem are (natural) numbers or, in Prolog, lists (or rather their lengths).

You have to make sure that every recursion step will really transform the problem into the next simpler case and that the base case will eventually be reached.

That is, if your problem complexity depends on a number, make sure it is striving towards the number associated with the base case. In the `factorial/2`-example the first argument is striving towards 1; in the `len/2`-example the first argument is striving towards the empty list.

Understanding it. The recursion principle itself is very simple and applicable to many problems. Despite the simplicity of the principle the actual execution tree of a recursive program might become rather complicated.

Make an effort to really understand at least one recursive predicate definition, such as `concat_lists/3` (see Section 2.2) or `len/2` completely. Draw the Prolog goal execution tree and do whatever else it takes.

After you got to the stage where you are theoretically capable of understanding a particular problem in its entirety, it is usually enough to look at things more abstractly:

“I know I defined the right base case and I know I defined a proper recursion rule, which is calling the same predicate again with a simplified argument. Hence, it will work. This is so, because I understand the recursion principle, I believe in it, and I am able to apply it. Now and forever.”

A.4 Debugging

In SWI-Prolog (and most other Prolog systems) it is possible to debug your Prolog programs. This might help you to understand better how queries are resolved (it might
however just be really confusing). This is a matter of taste.

Use _spy/1_ to put a spypoint on a predicate (typed into the interpreter as a query, after compilation). Example:

```prolog
?- spy(len).
Spy point on len/2
Yes
[debug] ?-
```

For more information on how to use the Prolog debugger check your reference manual. Here's an example for the _len/2_ predicate defined before.

```prolog
[debug] ?- len([dog, fish, tiger], X).
* Call: ( 8) len([dog, fish, tiger], _G397) ? leap
* Call: ( 9) len([fish, tiger], _L170) ? leap
* Call: (10) len([tiger], _L183) ? leap
* Call: (11) len([], _L196) ? leap
* Exit: (11) len([], 0) ? leap
* Exit: (10) len([tiger], 1) ? leap
* Exit: ( 9) len([fish, tiger], 2) ? leap
* Exit: ( 8) len([dog, fish, tiger], 3) ? leap
X = 3
Yes
```

Your Prolog system may also provide more sophisticated tools (e.g., graphical tools) to help you inspect what Prolog is doing when you ask it to resolve a query.
Index

Symbols

= 2 7
\= 2 13
\+ Operator 54

A

anonymous variable 5
append/3 18
arithmetic evaluation 23
associativity 38
associativity patterns 38, 39
atom 5, 63
atom/1 7

B

backtracking 10, 47
 problems with 48
bar notation 15
body of a rule 6
built-in predicate
 =/2 7
 \=/2 13
 \+/1 54
append/3 18
atom/1 7
call/1 57
compound/1 7
consult/1 7
current_op/2 38
cut 50
problems with 52

C

call/1 57
clause 5
closed world assumption 54
comments 11
compilation 7, 41
complete induction 69
compound/1 7
compound term 5
concatenation of lists 16
conjunction (,) 55
consult/1 7
current_op/2 38
cut 50

D

disjunction (;) 55
debugging 71

E

empty list 15

F

fact 6, 65
false 7
fail/0 6, 65
fail/0 7
false/0 7
false/0 7

<table>
<thead>
<tr>
<th>Index</th>
<th>Page(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>functor</td>
<td>5, 63</td>
</tr>
<tr>
<td>G</td>
<td></td>
</tr>
<tr>
<td>goal execution</td>
<td>10, 66</td>
</tr>
<tr>
<td>ground term</td>
<td>5</td>
</tr>
<tr>
<td>H</td>
<td></td>
</tr>
<tr>
<td>head of a list</td>
<td>15</td>
</tr>
<tr>
<td>head of a rule</td>
<td>6</td>
</tr>
<tr>
<td>head/tail-pattern</td>
<td>16</td>
</tr>
<tr>
<td>help/1</td>
<td>8</td>
</tr>
<tr>
<td>Horn formula</td>
<td>65</td>
</tr>
<tr>
<td>I</td>
<td></td>
</tr>
<tr>
<td>induction</td>
<td>69</td>
</tr>
<tr>
<td>infix operator</td>
<td>38</td>
</tr>
<tr>
<td>is-operator</td>
<td>23</td>
</tr>
<tr>
<td>L</td>
<td></td>
</tr>
<tr>
<td>last/2</td>
<td>18</td>
</tr>
<tr>
<td>length/2</td>
<td>18</td>
</tr>
<tr>
<td>list</td>
<td></td>
</tr>
<tr>
<td>empty</td>
<td>15</td>
</tr>
<tr>
<td>list notation</td>
<td></td>
</tr>
<tr>
<td>bar</td>
<td>15</td>
</tr>
<tr>
<td>head/tail-pattern</td>
<td>16</td>
</tr>
<tr>
<td>internal</td>
<td>15</td>
</tr>
<tr>
<td>literature</td>
<td>1</td>
</tr>
<tr>
<td>M</td>
<td></td>
</tr>
<tr>
<td>matching</td>
<td>8, 23, 66</td>
</tr>
<tr>
<td>operators</td>
<td>41</td>
</tr>
<tr>
<td>member/2</td>
<td>18</td>
</tr>
<tr>
<td>N</td>
<td></td>
</tr>
<tr>
<td>negation as failure</td>
<td>54</td>
</tr>
<tr>
<td>nl/0</td>
<td>7</td>
</tr>
<tr>
<td>number</td>
<td>5</td>
</tr>
<tr>
<td>O</td>
<td></td>
</tr>
<tr>
<td>occurs check</td>
<td>67</td>
</tr>
<tr>
<td>op/3</td>
<td>40</td>
</tr>
<tr>
<td>operator</td>
<td></td>
</tr>
<tr>
<td>infix</td>
<td>38</td>
</tr>
<tr>
<td>postfix</td>
<td>38</td>
</tr>
<tr>
<td>prefix</td>
<td>38</td>
</tr>
<tr>
<td>operator definition</td>
<td>40</td>
</tr>
<tr>
<td>P</td>
<td></td>
</tr>
<tr>
<td>parent goal</td>
<td>50</td>
</tr>
<tr>
<td>postfix operator</td>
<td>38</td>
</tr>
<tr>
<td>precedence</td>
<td>37</td>
</tr>
<tr>
<td>predicate</td>
<td>5, 63</td>
</tr>
<tr>
<td>prefix operator</td>
<td>38</td>
</tr>
<tr>
<td>program</td>
<td>6</td>
</tr>
<tr>
<td>Q</td>
<td></td>
</tr>
<tr>
<td>query</td>
<td>6, 65</td>
</tr>
<tr>
<td>R</td>
<td></td>
</tr>
<tr>
<td>recursive programming</td>
<td>70</td>
</tr>
<tr>
<td>resolution</td>
<td>66</td>
</tr>
<tr>
<td>reverse/2</td>
<td>18</td>
</tr>
<tr>
<td>rule</td>
<td>6, 65</td>
</tr>
<tr>
<td>S</td>
<td></td>
</tr>
<tr>
<td>select/3</td>
<td>18</td>
</tr>
<tr>
<td>spy/1</td>
<td>72</td>
</tr>
<tr>
<td>T</td>
<td></td>
</tr>
<tr>
<td>tail of a list</td>
<td>15</td>
</tr>
<tr>
<td>term</td>
<td>4, 63</td>
</tr>
<tr>
<td>compound</td>
<td>5</td>
</tr>
<tr>
<td>ground</td>
<td>5</td>
</tr>
<tr>
<td>transitive closure</td>
<td>2</td>
</tr>
<tr>
<td>translation</td>
<td>63</td>
</tr>
<tr>
<td>true/0</td>
<td>7</td>
</tr>
<tr>
<td>U</td>
<td></td>
</tr>
<tr>
<td>unification</td>
<td>66</td>
</tr>
<tr>
<td>V</td>
<td></td>
</tr>
<tr>
<td>variable</td>
<td>5, 63</td>
</tr>
<tr>
<td>anonymous</td>
<td>5</td>
</tr>
<tr>
<td>W</td>
<td></td>
</tr>
<tr>
<td>write/1</td>
<td>7</td>
</tr>
</tbody>
</table>