
Sorting PSS 2018

Problem Solving and Search

Ulle Endriss

Institute for Logic, Language and Computation

University of Amsterdam

[
http://www.illc.uva.nl/~ulle/teaching/pss/

]
Ulle Endriss 1

http://www.illc.uva.nl/~ulle/teaching/pss/

Sorting PSS 2018

Table of Contents

Lecture 7: Sorting Algorithms and Complexity Analysis 3

Ulle Endriss 2

Sorting PSS 2018

Lecture 7: Sorting Algorithms and
Complexity Analysis

Ulle Endriss 3

Sorting PSS 2018

Plan for Today

Having to sort a list is an issue that will come up again and again

when you work on somewhat more complex programs.

Sorting thus is a standard topic in introductory programming courses.

Also because it demonstrates particularly well that there can be several

very different solutions (algorithms) to the same problem, and that it

can be useful to systematically compare these alternative approaches.

In this lecture, we are going to:

• introduce different sorting algorithms (bubblesort and quicksort)

• discuss their implementation in Prolog

• analyse their computational complexity using the Big-O notation

Ulle Endriss 4

Sorting PSS 2018

Objective

We want to implement a predicate that takes an ordering relation and

an unsorted list and that returns a sorted list. Examples:

?- sort(<, [3,8,5,1,2,4,6,7], List).

List = [1, 2, 3, 4, 5, 6, 7, 8]

Yes

?- sort(>, [3,8,5,1,2,4,6,7], List).

List = [8, 7, 6, 5, 4, 3, 2, 1]

Yes

?- sort(is_bigger, [horse,elephant,donkey], List).

List = [elephant, horse, donkey]

Yes

Ulle Endriss 5

Sorting PSS 2018

Auxiliary Predicate to Check Orderings

We will use this predicate to check whether the terms A and B are

ordered with respect to the ordering relation Rel:

check(Rel, A, B) :-

Goal =.. [Rel,A,B], % so Goal becomes Rel(A,B)

call(Goal).

Here are two examples of check/3 in action:

?- check(is_bigger, elephant, monkey).

Yes

?- check(<, 7, 5).

No

Ulle Endriss 6

Sorting PSS 2018

Bubblesort

Our first sorting algorithm is called bubblesort. The way it operates is

reminiscent of the bubbles floating upwards in a glass of champagne.

This algorithm works as follows:

• Go through the list from left to right until you hit two consecutive

elements that are ordered the wrong way round. Swap them.

• Repeat the above until you can go through the full list without

encountering such a pair. Then the list is sorted.

Try sorting the list [3, 7, 20, 16, 4, 46] this way . . .

Ulle Endriss 7

Sorting PSS 2018

Bubblesort in Prolog

The following predicate calls swap/3 and then continues recursively.

If swap/3 fails, then the current list is sorted and can be returned:

bubblesort(Rel, List, SortedList) :-

swap(Rel, List, NewList), !,

bubblesort(Rel, NewList, SortedList).

bubblesort(_, SortedList, SortedList).

Go recursively through a list until you find a pair A/B to swap and return the

new list, or fail if there is no such pair:

swap(Rel, [A,B|List], [B,A|List]) :-

check(Rel, B, A).

swap(Rel, [A|List], [A|NewList]) :-

swap(Rel, List, NewList).

Remark: This implementation makes the implicit assumption that Rel is

asymmetric, like > but unlike >= (otherwise there could be a loop).

Ulle Endriss 8

Sorting PSS 2018

Examples

Just to show that it really works:

?- bubblesort(<, [5,3,7,5,2,8,4,3,6], List).

List = [2, 3, 3, 4, 5, 5, 6, 7, 8]

Yes

?- bubblesort(is_bigger, [donkey,horse,elephant], List).

List = [elephant, horse, donkey]

Yes

?- bubblesort(@<, [donkey,horse,elephant], List).

List = [donkey, elephant, horse]

Yes

Ulle Endriss 9

Sorting PSS 2018

An Improvement

The version of bubblesort we have given before can be improved upon.

For the version presented, we know that we are going to have to do a

lot of redundant comparisons:

Suppose we have just swapped elements 100 and 101.

Then in the next round, the earliest we are going to find an

unordered pair is after 99 comparisons (because the first 99

elements have already been sorted in previous rounds).

This problem can be avoided, by continuing to swap elements and only

to return to the front of the list once we have reached its end.

The Prolog implementation is just a little more complicated . . .

Ulle Endriss 10

Sorting PSS 2018

Improved Bubblesort in Prolog

bubblesort2(Rel, List, SortedList) :-

swap2(Rel, List, NewList), % this now always succeeds

List \= NewList, !, % check there’s been a swap

bubblesort2(Rel, NewList, SortedList).

bubblesort2(_, SortedList, SortedList).

swap2(Rel, [A,B|List], [B|NewList]) :-

check(Rel, B, A),

swap2(Rel, [A|List], NewList). % continue!

swap2(Rel, [A|List], [A|NewList]) :-

swap2(Rel, List, NewList).

swap2(_, [], []). % new base case: reached end of list

Ulle Endriss 11

Sorting PSS 2018

Complexity Analysis of Algorithms

It is important to understand the computational complexity of your

algorithm. We may be interested in these resources:

• Time complexity : How long will it take to compute a solution?

• Space complexity : How much memory do we need to do so?

We cannot really talk about all cases our algorithm may be applied to.

What we can try instead:

• Worst-case analysis: How much time/memory will the algorithm

take in the worst case (for the most difficult problem of its kind)?

• Average-case analysis: How much time/memory will the algorithm

take on average (or: for a “typical” problem instance)?

It is usually very difficult to carry out an average-case analysis that is

theoretically sound (hard to define “average” problem instances).

Experimental studies using real-world data are often the only way.

Ulle Endriss 12

Sorting PSS 2018

Complexity Analysis of Sorting Algorithms

We will look into the worst-case time complexity of sorting algorithms.

Let n be the length of the list to be sorted (i.e., the problem size).

We will measure the complexity of an algorithm in terms of the

number of primitive comparison operations (i.e., the number of calls

to check/3 in Prolog) required by that algorithm to sort a list of

length n. This is a reasonable approximation of actual runtimes.

Want to understand what happens to the time required to solve a

problem with a given algorithm as we increase n. Example:

• for n = 2, improved bubblesort makes at most 2 comparisons

• for n = 3, improved bubblesort makes at most 6 comparisons

• for n = 4, improved bubblesort makes at most 12 comparisons

• . . .

• for lists of size n, improved bubblesort makes at most f(n) comparisons

But what is this function f? Is it linear? Quadratic? Exponential?

Ulle Endriss 13

Sorting PSS 2018

Big-O Notation

When analysing the complexity of algorithms, small constants and the

like don’t matter very much. What we are really interested in is the

order of magnitude with which the complexity of the algorithm

increases as we increase the size of the input.

Let n be the problem size and let f(n) be the precise complexity .

Think of f as computing, for any problem size n, the worst-case time

complexity f(n). This may be rather complicated a function.

Suppose g is a “nice” function that is a “good approximation” of f .

The Big-O Notation is a way of making this mathematically precise.

We say that f(n) is in O(g(n)) if and only if there exist an

n0 ∈ N and a c ∈ R+ such that f(n) 6 c · g(n) for all n > n0.

Thus, from some n0 onwards, the difference between f and g will be

at most some constant factor c.

Ulle Endriss 14

Sorting PSS 2018

Examples

(1) Let f(n) = 5 · n2 + 20. Then f(n) is in O(n2).

Proof: Use c = 6 and n0 = 5.

(2) Let f(n) = n+ 1000000. Then f(n) is in O(n).

Proof: Use c = 2 and n0 = 1000000 (or vice versa).

(3) Let f(n) = 5 · n2 +20. Then f(n) is also in O(n3), but this is not

very interesting. We want complexity classes to be “sharp”.

Ulle Endriss 15

Sorting PSS 2018

Complexity of Bubblesort

How many comparisons does bubblesort perform in the worst case?

Suppose we are using the improved version of bubblesort . . .

In the worst case, the list is presented exactly the wrong way round, as

in the following example:

?- bubblesort2(<, [10,9,8,7,6,5,4,3,2,1], List).

The algorithm will first move 10 to the end of the list, then 9, etc.

In each round, we have to go through the full list, i.e., make n−1
comparisons. And there are n rounds (one for each element to be

moved). Hence, we require n · (n−1) comparisons.

; Hence, the complexity of improved bubblesort is O(n2).

Remark: The complexity of our original version of bubblesort is O(n3),

but we will not prove this here.

Ulle Endriss 16

Sorting PSS 2018

Quicksort

The next sorting algorithm we consider is called quicksort. It works as

follows (for a non-empty list):

• Select an arbitrary element X from the list.

• Split the remaining elements into a list Left containing all the

elements preceding X in the ordering relation, and a list Right

containing all the remaining elements.

• Sort Left and Right using quicksort (recursion), resulting in

SortedLeft and SortedRight, respectively.

• Return the result: SortedLeft ++ [X] ++ SortedRight.

How fast quicksort runs will, in part, depend on the choice of X.

In Prolog, we simply select the head of the unsorted list.

Ulle Endriss 17

Sorting PSS 2018

Quicksort in Prolog

Sorting the empty list results in the empty list (base case):

quicksort(_, [], []).

For the recursive rule, we first remove the Head from the unsorted list

and split the Tail into those elements that preceed Head w.r.t. Rel

(list Left) and the rest (list Right). Then Left and Right get sorted,

and finally everything is put together to return the full sorted list:

quicksort(Rel, [Head|Tail], SortedList) :-

split(Rel, Head, Tail, Left, Right),

quicksort(Rel, Left, SortedLeft),

quicksort(Rel, Right, SortedRight),

append(SortedLeft, [Head|SortedRight], SortedList).

Still to do: implement split/5

Ulle Endriss 18

Sorting PSS 2018

Splitting Lists

The predicate split/5 takes an ordering relation, an element, and a

list, and returns two lists: one containing the elements from the input

list preceding the input element w.r.t. the ordering relation, and one

containing the remaining elements from the input list (both unsorted).

split(_, _, [], [], []).

split(Rel, Middle, [Head|Tail], [Head|Left], Right) :-

check(Rel, Head, Middle), !,

split(Rel, Middle, Tail, Left, Right).

split(Rel, Middle, [Head|Tail], Left, [Head|Right]) :-

split(Rel, Middle, Tail, Left, Right).

Ulle Endriss 19

Sorting PSS 2018

Testing the Splitting Predicate

The following example demonstrates how split/5 works:

?- split(<, 20, [18,7,21,15,20,55,7,8,87], X, Y).

X = [18, 7, 15, 7, 8]

Y = [21, 20, 55, 87]

Yes

Ulle Endriss 20

Sorting PSS 2018

Quicksort Examples

A couple of examples demonstrating that quicksort works:

?- quicksort(>, [2,4,5,3,6,5,1], List).

List = [6, 5, 5, 4, 3, 2, 1]

Yes

?- quicksort(is_bigger, [elephant,donkey,horse], List).

List = [elephant, horse, donkey]

Yes

Ulle Endriss 21

Sorting PSS 2018

Complexity of Splitting

To analyse the complexity of quicksort, we first analyse the complexity

of splitting, a crucial sub-routine of the algorithm.

Given a list L and an element X, how many comparisons are required

to divide the elements in L into those that are to be placed to the left

and those that are to be placed to the right of X?

Let n be the length of [X|L]. Clearly, we require exactly n−1
comparison operations. Hence, the complexity of splitting in O(n).

Ulle Endriss 22

Sorting PSS 2018

Complexity of Quicksort

To analyse the complexity of quicksort, we have to check how often

quicksort performs splitting, and on lists of what size.

A run of quicksort can be visualised as a tree. The height of the tree

corresponds to the recursion depth. The width of the tree corresponds

to the work done by the splitting sub-routine at each recursion level . . .

This will crucially depend on what elements we select for splitting.

Splitting could be relatively balanced or relatively unbalanced . . .

Ulle Endriss 23

Sorting PSS 2018

Extremely Unbalanced Splitting

In the case of extremely unbalanced splitting (say, we always select the

smallest element and all other elements go into the righthand sublist),

quicksort has complexity O(n2):
n

︸ ︷︷ ︸
n

Example: This happens when the input list is already sorted and we

always select the head of the list for splitting (as we do in Prolog).

Ulle Endriss 24

Sorting PSS 2018

Balanced Splitting

For the case of balanced splitting (the number of elements ending up

to the left of the selected element is always roughly equal to the

number of elements ending up on the righthand side), the following

figure depicts the situation:
?

︸ ︷︷ ︸
n

To find out about the time complexity of quicksort in the case of

(more or less) balanced splitting, we thus need to know what the

height of such a tree is (with respect to n).

Ulle Endriss 25

Sorting PSS 2018

Height of a Binary Tree

• How high is a binary tree of width n?

• There is 1 root node. Each time we go down one level, the

number of nodes per level doubles. On the final level, there are n

nodes (= width of the tree).

• So, how many times do we have to multiply 1 by 2 to get n?

1 · 2 · 2 · · · · · 2︸ ︷︷ ︸
x

= n

2x = n

x = log2 n

• Remark: Logarithms with different bases just differ by a constant

factor (e.g., log2 n = 5 · log32 n). So, in particular, when we use

the Big-O Notation, the basis of logarithms does not matter and

we are simply going to write “log n”.

Ulle Endriss 26

Sorting PSS 2018

Complexity of Quicksort (continued)

For balanced splitting, we thus end up with an overall complexity of

O(n log n) for quicksort. This is much better than O(n2)!

In practice, we can usually assume that splitting will occur in more or

less balanced a fashion. This is why quicksort is usually regarded as an

O(n log n) algorithm, although we have seen that complexity can be

quadratic for cases where this assumption is not justified.

The assumption of balancedness is justified, for instance, when the

input list is randomly ordered. In general, of course, we cannot always

make this assumption. In general, always selecting the head of the

input list for splitting may not be the best strategy.

Ulle Endriss 27

Sorting PSS 2018

Summary: Sorting Algorithms

• Sorting a list is a fundamental algorithmic problem that comes up

again and again in Computer Science and AI.

• We have discussed three sorting algorithms:

näıve bubblesort, improved bubblesort, and quicksort.

• The Prolog implementations of each of these take an ordering

relation and a list as input, and return the sorted list.

• The complexity of (improved) bubblesort is O(n2). Slow.

• The complexity of quicksort is O(n log n), at least under the

assumption of reasonably balanced splitting. Fast.

• There are many other sorting algorithms around. Two of them,

insert-sort and merge-sort are explained in the textbook.

Ulle Endriss 28

	Lecture 7: Sorting Algorithms and Complexity Analysis

